Generalizing permissive-upgrade in dynamic information flow analysis

Vineet Rajani, Deepak Garg
MPI-SWS

Joint work with

Abhishek Bichhawat, Christian Hammer

University of Saarland

Funded by the Deutscheforschungsgemeinschaft (DFG) priority program – Reliably Secure Software Systems (RS3)

Objective

Build Information Flow Control (IFC) for web browsers

Performance and permissiveness

Plan:

- JavaScript, DOM, event handlers, local storage
- Declassification

Summary of results: POST'14

- Hybrid approach for IFC for Webkit's JS Bytecode:
 - Taint tracking
 - Immediate postdominator analysis
- Complete JavaScript: eval, exceptions, return in the middle and all unstructured control flow
- Performance: ~ 40% on micro benchmarks
- Deferred NSU: Permissive handling of implicit flows

Focus of this talk

Generalizing Permissive upgrade strategy to arbitrary lattices.

Implicit leak

Low:Visible, High: Secret

Due to control structure

```
v := 0
if (s=1){
  v := 1
}
```

No direct assignment

Secret gets leaked via visible variable

Program counter label

 Lower bound on the taint of the variables on which the current instruction is control dependent

No Sensitive Upgrade

- No Sensitive Upgrade (NSU) ¹
- Does not allow assignment to low variables under high guard
- Ends up over-approximating the set of safe programs.
- Sound but gives some obvious false positives

Permissive Upgrade Strategy

Permissive Upgrade Strategy (PUS) ¹

$$v := 0, w := 0$$

if (s=1)

 $v := 1$
 $v := 1$

if (v=0)

 $v := 1$
 $v := 1$
 $v := 1$
 $v := 1$

- The non-leaky program is permitted by this approach
 - 1. Austin and Flanagan, Permissive Dynamic Information Flow Analysis, PLAS 10

Security Lattice

There is a problem

NSU generalizes to arbitrary lattice

It is not clear if PUS generalizes to arbitrary lattices¹

Our contribution: PLAS'14

 It is indeed possible to generalize permissive upgrade to arbitrary lattices

We present a provably sound approach

Outline

- New label for specifying partial leaks
- Assignment rules and examples
- Soundness
- Comparison

Standard while language

```
egin{array}{lll} e:=&n\mid x\mid e_1\odot e_2\ c:=&x:=&e\mid c_1;c_2\mid\ &&	ext{if $e$ then $c_1$ else $c_2$}\ &&	ext{while $e$ do $c_1$} \end{array}
```

New Label for Partial leak

 When we work with arbitrary lattice a single partially leaked label "P" is too coarse grained

Every label A in the lattice has a corresponding A* label

New Label for Partial leak

 Intuition of A*: A is a lower bound on the label in all alternate executions

Assignment rules

Case: No variable upgrade

Case: Variable upgrade

assn-2:
$$\frac{l := \Gamma(\sigma(x)) \qquad \langle e, \sigma \rangle \Downarrow n^m \qquad l = \mathcal{A}_x \lor l = \mathcal{A}_x^{\star} \qquad pe \not\sqsubseteq \mathcal{A}_x \qquad k := (\mathcal{A}_x)^{\star} }{\langle x := e, \sigma \rangle \Downarrow_{pc} \sigma[x \mapsto n^k]}$$

assn-2:
$$\frac{l := \Gamma(\sigma(x)) \qquad \langle e, \sigma \rangle \Downarrow n^m \qquad l = \mathcal{A}_x \vee l = \mathcal{A}_x^{\star} \qquad pc \not\sqsubseteq \mathcal{A}_x \qquad \boxed{k := (pc \sqcap \mathcal{A}_x)^{\star}} }{\langle x := e, \sigma \rangle \Downarrow_{pc} \sigma[x \mapsto n^k]}$$

Example

Attacker at level L1

Execution

 $w=false^{L1}$, $x1 = true^{L1}$, $y1 = false^{M1}$, $y2 = true^{M2}$

 \rightarrow z := x1 if(not(x2))

z := x2

→ W := Z

if (z)

pc=L1, z=true^{L1}

branch not taken

pc=L1, w=true^{L1}

Execution with A_x*

 $w=false^{L1}$, $x1 = true^{L1}$, $y1 = false^{M1}$, $y2 = true^{M2}$

else

$$\rightarrow$$
 z := y2

if(x1)

$$\rightarrow$$
 z := x1 if(not(x2))

 \rightarrow z := x2 if (z)

w := z

pc=L1, z=true^{M2*}

pc=L2, z=false^{L2}

Branch not taken w=false^{L1}

'w' differs in 2 runs
Information leaked

Execution with $(pc \Pi A_x)^*$

 $w=false^{L1}$, $x1 = true^{L1}$, $y1 = false^{M1}$, $y2 = true^{M2}$

$$z := y1$$

else

$$\rightarrow$$
 z := y2

if(x1)

$$\rightarrow$$
 z := x1

if(not(x2))

pc=L', z=true^{M2}

pc=L2, z=false^{L*}

Execution halted

Safe (Termination insensitively)

Memory equivalence

Definition 5. Two values n_1^k and n_2^m are \mathcal{A} -equivalent, written $n_1^k \sim_{\mathcal{A}} n_2^m$, iff either

1.
$$k = m = A' \sqsubseteq A \text{ and } n_1 = n_2, \text{ or }$$

2.
$$k = \mathcal{A}' \not\sqsubseteq \mathcal{A} \text{ and } m = \mathcal{A}'' \not\sqsubseteq \mathcal{A}, \text{ or }$$

3.
$$k = \mathcal{A}_1^*$$
 and $m = \mathcal{A}_2^*$, or

4.
$$k = A_1^*$$
 and $m = A_2$ and $(A_2 \not\sqsubseteq A \text{ or } A_1 \sqsubseteq A_2)$, or

5.
$$k = A_1$$
 and $m = A_2^*$ and $(A_1 \not\sqsubseteq A \text{ or } A_2 \sqsubseteq A_1)$

Memory equivalence

 We obtain this by constructing examples of all possible transitions of pairs of labels

- Necessary and sufficient
 - Necessary: because we can construct example programs which use these states.
 - Sufficient: because it suffices to prove sondness

Soundness

Theorem 4 (TINI for generalized permissive-upgrade). If $\sigma_1 \sim_{\mathcal{A}} \sigma_2$ and $\langle c, \sigma_1 \rangle \Downarrow_{pc} \sigma'_1$ and $\langle c, \sigma_2 \rangle \Downarrow_{pc} \sigma'_2$, then $\sigma'_1 \sim_{\mathcal{A}} \sigma'_2$.

- ~ a is not transitive
- some additional lemmas

Comparison

- Generalization from 2 element lattice to pointwise product lattice¹
- Both approaches are sound
- Since both of them apply to powerset lattice
 - Which one is more permissive?
- Neither is more permissive than the other in all cases

Conclusion

- It is indeed possible to generalize permissive upgrade to arbitrary lattices.
- Design choices are quite non-trivial
 - Assignment rules are really non-obvious
 - Equivalence definition is quite involved

Proved the soundness of permissive upgrade strategy for generalized lattice

