Generalizing permissive-upgrade in
dynamic information flow analysis

Funded by the Deutscheforschungsgemeinschaft (DFG) priority program — Reliably
Secure Software Systems (RS3)

Objective

Build Information Flow Control (IFC) for web
browsers

 Performance and permissiveness

Plan:
e JavaScript, DOM, event handlers, local storage
* Declassification

Summary of results: POST 14

Hybrid approach for IFC for Webkit’s JS Bytecode:
— Taint tracking
— Immediate postdominator analysis

Complete JavaScript: eval, exceptions, return in the
middle and all unstructured control flow

Performance: ~ 40% on micro benchmarks

Deferred NSU: Permissive handling of implicit flows

Focus of this talk

Generalizing Permissive upgrade strategy to
arbitrary lattices.

Implicit leak

Low:Visible, High: Secret
@ ® e Due to control structure

=0
if (s=1){
V=

}

* No direct assignment

Secret gets leaked via visible variable

Program counter label

B v:=0 * Lower bound on the taint of the
s if(s=1){ y variables on which the current

. v:==1 PC=@ instruction is control dependent

}

No Sensitive Upgrade

* No Sensitive Upgrade (NSU) *

v:i=0,w:=0

=1 | * Does not allow assighment to low
i }V =1 & variables under high guard

§ (=0 . n
— w=1 Ends up over-approximating the

set of safe programes.

* Sound but gives some obvious

= false positives

s=0=>w=1

1. Stephan A. Zdancewic, PhD thesis, 2002.

Permissive Upgrade Strategy

* Permissive Upgrade Strategy (PUS) !

v:=0,w:=0
if (s=1)
“P”: label for
vi=1 Partially
leaked data
— if(v=0) ¢
w:=1

* The non-leaky program is permitted by
this approach

1. Austin and Flanagan, Permissive Dynamic Information Flow Analysis, PLAS 10

Secret

Public

Security Lattice

Top Secret

Secret

Public

L2

L5

L4

L1

L3

There is a problem

 NSU generalizes to arbitrary lattice

* |t is not clear if PUS generalizes to arbitrary lattices?!

1. Buiras et al, On dynamic flow-sensitive floating label systems, CSF 14

Our contribution: PLAS 14

* |tis indeed possible to generalize permissive
upgrade to arbitrary lattices

 We present a provably sound approach

Outline

New label for specifying partial leaks
Assignment rules and examples
Soundness

Comparison

n|zl|e ®es

r:=¢€| c;co |
if e then c; else ¢ |

while e do ¢

New Label for Partial leak

e When we work with arbitrary lattice a single partially
leaked label “P” is too coarse grained

 Every label A in the lattice has a corresponding A*
label

New Label for Partial leak

L4 L4*

L2* L2 L3 L3*

L1 1%

* |ntuition of A*: A is a lower bound on the label in all alternate
executions

l:=T(o(z))

[:=T(o(z)) (&) §n™

H

VRN
M, M,
N

r at level L1

L' Lo
|/
L

if(x’)
—> z:=vyl
else
Z:=y2
if(x1)
= Z.=X1
if(not(x2))
Z:=X2
if (z)

— W =Z

Execution

w=false'?, x1 = true'!, y1= falseM!, y2=trueM?

X' =truel
x2=true'?

pc=L’, z=falseM!

pc=L1, z=true"!

branch not taken

pc=L1, w=true*!

Execution with A *

w=false!, x1 = true'!, y1= falseM?!, y2=trueM?

x'=falsel
x2=falsel2

if(x') / \

z:=yl

else
z:=y2 pc=L’, z=trueM? -\ I / ‘2
9 L

z:=x1 pc=L1, z=trueM?*
if(not(x2))
Z:=X2 pc=L2, z=false'?
f (2) _
w’ differs in 2 runs
W :=2 Branch not taken

falsell Information leaked
w=talse

Execution with (pc M A)*

w=false'?, x1 = true'!, y1= falseM!, y2=trueM?

if(x')
z:=yl
else
Z:=y2
if(x1)
z:.=x1
if(not(x2))
Z:=X2
if (z)
W =12

x'=falsel
x2=falsel?

pc=L’, z=trueM?

pc=L1, z=truel”

pc=L2, z=falsel"

Execution halted

/\

\/
(L] ©

\\/
L

Safe (Termination
insensitively)

Lo

Definition 5. Two values n¥ and n§* are A-equivalent,

written n¥ ~ 4 N3, iff either

I.k=m=AC A and n1 = ng, or

2k=A"ZLAandm=A"1Z A, or

3. k= A1* and m = Ay*, or

4. k=A1" andm = Az and (A2 Z A or A1 C As), or
5.k=A1 and m = Ax* and (A1 Z A or A2 C A;)

Memory equivalence

 We obtain this by constructing examples of all
possible transitions of pairs of labels

 Necessary and sufficient
— Necessary: because we can construct example
programs which use these states.
— Sufficient: because it suffices to prove sondness

Soundness

Theorem 4 (TINI for generalized permissive-upgrade).
If 01 ~4 02 and (c,01) {pc 01 and (c,02) {pc 05, then
o~ 5.

* ~,Is not transitive

e some additional lemmas

Comparison

Generalization from 2 element lattice
to pointwise product lattice?!

Both approaches are sound

Since both of them apply to powerset lattice
- Which one is more permissive ?

Neither is more permissive than the other in all cases

1. Austin and Flanagan, Permissive Dynamic Information Flow Analysis, PLAS 10

Conclusion

It is indeed possible to generalize permissive upgrade to
arbitrary lattices.

W\
. . . R 00'
Design choices are quite non-trivial \$\\
— Assignment rules are really non-obvious \\
g Y «\(\’b

— Equivalence definition is quite involved

Proved the soundness of permissive upgrade strategy for
generalized lattice

