Hybrid Typing Secure Information Flow in a Core of
JavaScript

José Fragoso Santos

December 17, 2014

José Fragoso Santos () Hybrid Typing Secure Information Flow in a C December 17, 2014 1/29

Problem: Property names are computed dynamically

Example:

o={}

o.secret = secret_input();
o.publicl = public_input();
o.public2 = public_input();
public_out = o[f()]

Remarks:

» When £ () evaluates to "secret" = illegal flow

» When £() does NOT evaluate to "secret" = only legal flow

José Fragoso Santos () Hybrid Typing Secure Information Flow in a C

December 17, 2014

2/ 29

Original Program:

(0)
(0]
(0)
(0]

public_out = o[£f()]

Idea: Combine Typing with Rewritting

Idea

Use a type-directed transformation to cut illegal behaviors.

Transformed Program:

.secret = secret_input();
.publicl = public_input();

O O O O

=1

.public2 = public_input();
.secret = secret_input(); o P P

x = £(0;
if (_x !== "secret") {
public_out = o[f()]

} else {

abort ()

}

.publicl = public_input();
.public2 = public_input();

José Fragoso Santos () Hybrid Typing Secure Information Flow in a C December 17, 2014

3/ 29

Idea: Combine Typing with Rewritting

Idea

Use a type-directed transformation to cut illegal behaviors.

Problem

How to automate this type of transformation?

José Fragoso Santos () Hybrid Typing Secure Information Flow in a C December 17, 2014 4 /29

Core JavaScript

Defining Features of the Language

Extensible Objects

Prototype-based Inheritance

Functions as first class values

Closures

Constructs for checking the existence of object properties

e @ o> W =

Atypical interactions between the binding of properties and the
binding of variables

José Fragoso Santos () Hybrid Typing Secure Information Flow in a C December 17, 2014 5/29

Core JavaScript

Syntax
e E€EExpr = w % Value

| this’ % This
| ot % Identifier
| e op’ €1 % Binary operation
| x=e % Variable Assignment
| eolel]? % Property Look-up
| e in’ ey % Membership Testing
| eoler] = ez % Property Assignment
| delete’ egle] % Property Deletion
| eoler)’ % Function Call
| 60[61](62)i % Method Call
| eo 77 (e1): (e2) % Conditional
| eo, €1 % Sequence
| {} % Object Literal
| function’(z){var y1, - ,yn; €} % Function Literal

José Fragoso Santos () Hybrid Typing Secure Information Flow in a C December 17, 2014 6 /29

Information Flow Security in One Slide

Idea
Public Outputs (LOW) may NOT depend on Private Inputs (HIGH)

Ingredients

1. A lattice of security levels

2. A security labelling mapping resources to security types

José Fragoso Santos () Hybrid Typing Secure Information Flow in a C December 17, 2014

7/ 29

Information Flow Types for a Core of JavaScript

Idea

Annotate safety types with security levels

Syntax of Security Types

T € Type 1= PRIM % Prim Type
| (7.7 3) % Function Type
| (k72 F) % Method Type
| wr.(p” i 7, ,p° :7,%x% : 7y % Ext Obj Type
| ur.(p% 7, -, p% : T) % NonExt Obj Type
7 € SType 1= 71° % Security Type
16 [Freyese Semties (() i) Tt Seme (i [l i 2 4 December 17, 2014

8 /29

Attacker Model - 1

Important Questions

1. What can an attacker know about the contents of a JavaScript
memory?

2. How can he use the language in order to learn it?

Short Answer:

1. Values of Variables
2. Values of Properties

3. Existence of Properties

José Fragoso Santos () Hybrid Typing Secure Information Flow in a C December 17, 2014 9 /29

Attacker Model - 2
Type-Based Labellings

(w2 e) | (i, X, v)
A type based labelling is a mapping from references to their security types.
p [¥° — What can an attacker see at a given level o7

1. The existence of properties whose existence level is < o
2. The values associated with properties whose level is < o

3. The value associated with variables whose level is < o

Low-Equality for Labelled Memories

WS~) 2 [Po=)

José Fragoso Santos () Hybrid Typing Secure Information Flow in a C December 17, 2014

10 / 29

Noninterference

Consistency

A typing environment I' must be consistent with the type based labelling

Y. Example. Suppose x € dom(I") and I'(z) is an object type, then:

The expression e is noninterferent with respect to I' iff
for any two memories i and 1/, type-based labellings ¥ and ¥/, and
security level o € L such that:
1. ¥ and ¥/ are consistent with T,
2. #globt (u,X,e) I (us, X, v),
3. #globk (u', ¥, e) I (u}, X%, v'), and
4., Y~ !, X
It holds that: iy, ¥ ~o pi'y, 2.

José Fragoso Santos () Hybrid Typing Secure Information Flow in a C December 17, 2014

11 /29

Static Typing

Typing Judgements
FopeFe:t

1. T is the typing environment
2. oy the context level
3. e is the expression to be typed

4. 7 the type that is assigned to it

José Fragoso Santos () Hybrid Typing Secure Information Flow in a C December 17, 2014 12 /29

Hybrid Typing - General Ideas

Ideas

1. Rewrite each expression in order to bookkeep the values of
intermediate expressions

2. Type each expression with the set of all its possible types

3. Each type is paired up with a runtime assertion that describes the
conditions under which it is applicable

4. Constraints that cannot be verified statically should be verified
dynamically

José Fragoso Santos () Hybrid Typing Secure Information Flow in a C December 17, 2014 13 /29

Hybrid Typing
Typing Judgements

D,Lpc ke~ g : T

=

. I' is the typing environment

2. Ly is a level set that represents all the possible levels of the current
context,

3. e is the expression to be typed

4. €' is a new expression semantically equivalent to e except for the
executions that are considered illegal,

5. €” is an expression that bookkeeps the value to which €’ evaluates,

(@)}

. T is the type set representing all possible types of e.

José Fragoso Santos () Hybrid Typing Secure Information Flow in a C December 17, 2014 14 /29

Type Sets and Level Sets

Type Sets
A type set T is a set of security types paired up with runtime assertions:

T = {(7"0,0.)0), coo o (fnawn)}

Level Sets

A level set L is a set of security types paired up with runtime assertions:

L ={(00,w0), ", (on,wn)}

José Fragoso Santos () Hybrid Typing Secure Information Flow in a ¢ December 17, 2014 15 /29

A Program Logic for Reasoning about Local Scope

Idea

Add new variables to bookkeep the values of intermediate expressions.

Syntax of Runtime Assertions
wu=% eV |veV | true|wVw|wAw|w

Satisfaction Relation for Runtime Assertions

w,rE%v, €V <= 1’ =Scope(u,r,$v;) A pu(r’-string($v;)) € V
wrEwVw < purEw V p,rEw
wrEwAwr < prFEw) A p,rEw

wrE-w < urfw

w,rFtrue < always

José Fragoso Santos () Hybrid Typing Secure Information Flow in a C December 17, 2014 16 / 29

Typing Rules - Variable Assignment

Static

I'opeFe:t 7o <X T'(z)
FopebFz=¢:7

Hybrid

T, Lpe b €0 ~ 0/ : Ty w = Whenk(Ty ", [(z))
e = epy, Wrap(w, z = €{))
I LyeFxz=eg we/eg : Ty

José Fragoso Santos () Hybrid Typing Secure Information Flow in a € December 17, 2014

17 / 29

Operations on Type Sets - 1

The Operator When

w = When% (Tp, T1)

w is the assertion that describes the conditions under which there are two
pairs: (7o, wo) € Tp and (71,w1) € 11 such that 79 < 71 and wy A w; holds.

Exponentiation with Level Set - T

TL = {(#,w) | (F,ws) €T A (o,w)) €L A w=ws Awy A 7 =7}

José Fragoso Santos () Hybrid Typing Secure Information Flow in a C December 17, 2014 18 /29

Typing Rules - Binary Operation

Static

Fyopcl-€:7 T=70 Y 71

IopeFegoper: 7

Hybrid

/
Vio,1 I, Lpc - ej ~ /o 1 T; €' = €g, €1, 8v; = e op €]
y !
I, Lpc = eq op? e ~» 6/$vj :To @y Th

José Fragoso Santos () Hybrid Typing Secure Information Flow in a C December 17, 2014 19 /29

Operations on Type Sets - 2

Combining Type Sets

(T,w) € To &y Ty
For every memory p and reference r, u,r F w if and only if:
(70, wo) € To
(f1,w1) € Th
w,r E (wo Awi)

v

v

v

>» T =179 Y 11

José Fragoso Santos () Hybrid Typing Secure Information Flow in a C December 17, 2014 20 /29

Typing Rules - Property Lookup

Static
Vi:071 0 P,O'pc = €; - 7"1' T = Wtype(l—)T (i’o,P))
o = lev(7y) Ulev(7y)
I,ope Fegler, Pl : 79
Hybrid

VZ’:()J 0 F, ch F €; M e//i/e;, o Tz
TP = 71-’CYPG(P? (T07 P7 6/1/))
L =lev(Tp) ®ulev(Th) e = e, €, $v; = eglel]
T, Lpe = eoler, PP ~» /g, = TH

José Fragoso Santos () Hybrid Typing Secure Information Flow in a C December 17, 2014 21 /29

Operations on Type Sets - 3

Inspecting the Type of a Property

. | (o5, {7/Kr}1p) T =pr(pT T,)C
" (.p) —{ (o LRI 67 = il (oo e A% 2 Faree)0 A p & dom(F)

Inspecting the Type of a Property Set

PT (T’P) = u{& | pE PAG = 7-‘—lev(’—> (Tvp))}v Y{’i—/ |p € P/\T/ = 7Ttype(|—> (Tap))}

Py (F,P) =16 | p € PA6 = mey (P (7,p))}, A7 | p € PAF' = meype (7 (7,p)) }

José Fragoso Santos () Hybrid Typing Secure Information Flow in a C December 17, 2014 22 /29

Operations on Type Sets - 4

Inspecting the Type of a Property

7 (+, P, $z) = {(0,7,($z € {p})) | p € P Ndom(7) AT (7,p) = (0,7)}

Inspecting the Type of a Property Set

P? (T,P,$z) = {(0,7,wAW) | (,w) €T A (0,7,0) € p? (7, P, $x)}

José Fragoso Santos () Hybrid Typing Secure Information Flow in a C December 17, 2014 23 /29

Example

Code
x[y'] = u[v/] +* z
Typing Environment

[(x) = 7, = pr.(pf : PRIME pl . prIME «F - pRIME)E
T(u) = 7, = pr.(gf : PRIME, gF - PRIMT 5L 2 pRIMET)E
['(z) = [(y) = [(v) = PRIME

José Fragoso Santos () Hybrid Typing Secure Information Flow in a C December 17, 2014 24 /29

Example

Typing Environment

[(x) = 7p = pK <p0 pRIMIT pl : prRIME %L : pRIME) T
[(u) = 7 = pr. (g : PRME, gF - PRIME 5L prIMIT) L
I(z) =(y) = T(v) = PrIM"

Property Types

Ty = {(PrIMT Sv; € {po}), (PRIM", $v; € {p1}), (PRIM", =($v; € {po,p1}))}

Tuws] = {(PriME, $v; € {qo}), (PRIMTT v, € {q1}), (PRIMT, —($v; € {q0,1}))}

José Fragoso Santos () Hybrid Typing Secure Information Flow in a C December 17, 2014 25 /29

Example

Property Types

Tyyi] = {(PriMT $v; € {po}), (PRIME, $v; € {p1}), (PRIME, =(Sv; € {po,p1}))}

Tuw] = {(PriMY, $v; € {qo}), (PRIMTT v, € {q1}), (PRIMT, —($v; € {q0,1}))}

Combining Property Sets
Tu[v}j Dy {(PRIML,true)} = Tu[v}j

Tapp v {(PrIM true)} = {(PRIM, true)}

José Fragoso Santos () Hybrid Typing Secure Information Flow in a C December 17, 2014 26 / 29

Example

Code
x[y'] = u[v/] +* z
Property Types
WhenX (Tyyiy, Typea)) = ($v: € {po})l|($0; € {a0})

Instrumented Code

$v; = y,%v; = v,
($vi == po || $v; == qo) 7 (x[$vi] = u[$v;] + 2) : ($diverge()))

José Fragoso Santos () Hybrid Typing Secure Information Flow in a C December 17, 2014 27 /29

Properties of the Type Systems

Static

» Soundness: I',o,.Fe:7 = NIl(eI)

Hybrid

» Soundness: T',Lt e~ ¢/ :T = NI(¢,T)
» Transparancy: The semantics of the original expression is preserved

» Optimality: One cannot gain precision by improving the precision of
property set annotations

José Fragoso Santos () Hybrid Typing Secure Information Flow in a ¢ December 17, 2014 28 /29

Future Work

More Expressive Types

» Polimorphic Security Types

» More permissive subtyping relation

Hybrid Mechanism

» Combination of typing with a more expressive logic

» Simplying the generated constraints

Deployment

» Targeting the full language
» Annotating TypeScript with Security levels?

José Fragoso Santos () Hybrid Typing Secure Information Flow in a € December 17, 2014

29 / 29

