
1/28

Defensive JS in JSCert
Initial steps

Petar Maksimović

Inria Rennes – Bretagne Atlantique

ANR AJACS Meeting
Paris, 27/11/2015



2/28

Current State of JSCert



3/28

Coverage of JSCert @ POPL’14



4/28

Coverage of JSCert @ POPL’14

I Main functionalities (Ch 8-14) dominantly implemented
I For-in broken, ergo not implemented
I Functionalities depending on for-in not implemented

I Libraries (Function, Array, String... (Ch 15)) not formalised
I Functionalities depending on Ch 15 not formalised
I Array initialiser not formalised



5/28

How to improve JSCert?

I Better Coverage of the Standard Libraries
We need Ch 15 to fully test Ch 8–14 using Test262

I Better Testing Infrastructure
We need to increase our confidence in the test results

I Separate core from non-core library functionality
I Core functionality: everything the underlying

implementation must provide
I Non-Core functionality: everything that can be implemented

in JavaScript on top of core functionality

I Extend JSCert, JSRef, proof with core library functionality
I Implement (or borrow an implementation of) non-core

functionality in JavaScript and load it into the initial heap



6/28

Coverage of JSCert



7/28

Coverage of JSCert - Detailed Results



8/28

Coverage of JSCert - Detailed Results



9/28

Coverage of JSCert - Detailed Results



10/28

Coverage of JSCert - Array Library



11/28

JSRef Testing Results: Array Library

Chs 8-14 Array Library
Pass Fail Abort Pass Fail Abort

POPL’14 paper 1796 404 582 139 873 1307
POPL’14 talk 1851 392 539 149 864 1306
CAV’15 paper 2437 129 216 180 1204 935
+V8 Array 2440 126 216 1309 59 951
CAV’15 talk 2506 47 229 267 1956 69
+V8 Array 2510 43 229 2170 12 111

Evaluation

I Implementation of new features uncovered bugs in previously
unused and unverified code.

I Changing the parser forced re-evaluation of parsing failures



12/28

Defensive JavaScript



13/28

What is DJS and why was it created?

I Typed subset of JavaScript
I Authors: K. Bhargavan, A. Delignat-Lavaud, S. Maffeis
I Motivation: Guarantee that program functionalities cannot

be tampered with, even in a malicious environment
I Applications: Crypto libraries, single sign-on widgets,

bookmarklets



14/28

What is meant by “defensiveness”?

Isolate security-critical code from the environment:
I Use function closures/wrappers
I Do not call external function explicitly
I Prevent triggering of coercions
I Prevent prototype lookups



15/28

How is this achieved?

Using a static type system:
I Static scopes

I Limited occurrences of variable declarations,
I Strong scoping restriction on with

I Statically typed objects, functions, arrays
I No out-of-bounds, not extensible

I Coercion-free operations
I Disjoint heaps

I No heap references allowed to be imported or exported,
only string→ string



16/28

Syntactic categories

I Literals (bool, number, string, object, array)
I Most unary and binary operators
I LHS-expressions (severely limiting dynamic access)

I Properties only via e.x
I Arrays and strings indexed only within bounds

I Expressions
I Assignments; unary, binary operations
I Fully applied function and method applications

I Statements
I If-then-else, while, sequence
I with(e)s, all FV(s) are properties of e
I No variable declarations



17/28

Syntactic categories

I Functions
I Variable declarations
I Series of statements
I Single return statement

f := function(x1, . . . , xn){
var y1 = e1, . . . ym = em;

s1; . . . ; sk; return e}



18/28

Syntactic categories

I Programs
I Wrapper around a single function f
I Ensures argument is string
I Calls function, returns result

pf := (function (){
var = f ;

return function(x){if (typeof(x) == ”string”)

return (x); }})();

I Wrapping—no leaking of source code of f
I Argument type check—no import of external heap refs



19/28

Types and Environments



20/28

Illustration of the typing rules



21/28

Key Properties of DJS

Independence: pf preserves the independence of f if any two
sequences of calls with the same arguments to the result of pf ,
interleaved with arbitrary JS code, return the same sequences
of return values, provided no call triggered an exception.

Encapsulation: pf encapsulates f over D if no JS program that
runs pf can distinguish between running pf and pf ′ without
calling the returned wrapped functions. Moreover, for any
tuple ṽ ∈ D, heaps resulting from pf (ṽ) and f (ṽ) are equivalent.

Defensiveness: If ` f : string → string, then the DJS program pf
encapsulates f over strings and preserves its independence.



22/28

What has been done so far in Coq?

1. Complete Syntax
2. Complete Type System
3. Mapping DJS → JSCert
4. Predicate describing allowed JSCert terms
5. Proof that (3) and (4) are equivalent



23/28

Some more details

I Defined size for DJS types, DJS terms, JSCert terms
I All proofs by induction on appropriate size
I Using size, derive structural induction principles

I Rules of variable length (object, array, function)
I Using Forall from TLC
I Pretty-big-step style rules
I PBS for functions, Forall for the rest

| typing Array : forall G t le,
length le > 0 ->
Forall (fun e => G |- e :: t) le ->

G |- (djs a le) :: [[t, length le]]



24/28

Some more details
I Translation DJS → JSCert (toJSC)

I Mapping of unary and binary operators
I Follow descriptions from the syntax



25/28

Some more details
I Allowed terms in JSCert (DJS allowed term)

I Mapping of operators
I Follow descriptions from the syntax



26/28

Some more details

I Relationship between toJSC and DJS allowed term
I T – DJS term, t – JSCert term

∀t,DJS allowed term t ↔ (∃T,toJSC T = t)



27/28

What are the next steps?

I Compatibility between Γ in DJS and (S, C) in JSCert
I Type safety
I Properties of the heap

I Equivalence of heaps
I Separation

I Additional information within JSCert
I Traces?

I Semantics of DJS?



28/28

Thank you for your
attention!


