Automated Verification for Secure Messaging
Protocols and their Implementations:
A Symbolic and Computational Approach

Nadim Kobeissi — Karthikeyan Bhargavan — Bruno Blanchet
Presented by Nadim Kobeissi

2nd I[EEE European Symposium on Security and Privacy
April 28 2017, Paris, France

2l — e cham

About

 We are interested in the formal veritication of web protocols.
* Protocols of current and previous interest:

o Transport layer (TLS, QUIC). (0akiand s&P 2017)

e Secure messaging (Signal Protocol, OTR, Telegram). «

e Domalin validation (ACME). (Financial Cryptography 2017)

Impactful Vulnerabillities in Today's World

 Our TLS findings in 2015 show that these are attacks that matter:

* Protocol logic flaws: Iricking the protocol state machine into
assuming a state too early (SMACK, Early CCS).

* Cryptographic design flaws: Padding oracle attacks (POODLE),
truncated hash attacks (SLOTH), factoring weak keys (FREAK).

 Implementation flaws.

| essons Learned so rar

e “"Code first, specity later.”

e |esting cryptographic protocol implementations has been
overlooked, with disastrous results.

 We need an approach towards veritying production code and more
tools for today’s real-world cryptography developer.

Secure Messaging Today

WhatsApp, Telegram, Wire, Signal Protocol
Cryptocat. .. Telegram Protocol (“MTProto”)

* Long-term conversations between
“buddies” using multiple devices.

* Secrecy, integrity, authenticity.
Special context:

* Asynchronous messaging (O-RTT
AKE with added data).

* Forward secrecy, future secrecy.

Signal Protocol: Overview

A B
Knows sk, a.pkg.,g" Knows skg.b,pk, g%, 0.s
* Four-way Diffie-Hellman in AKE o Preken(g” sign*s (&)
S t e p - (‘k,.c.]li,l;c:f; f \(g\;‘ 1:‘(;1 Lao‘l‘n }:l‘m:‘ *)
Msg(g*, aead* (m)[g% g%, &%) .

) Offe rS Off i n e m e S S ag i n g (d U e tO Generates y and computes:
zero-round-trip AKE.) k) = .,

Msg(aead e (m')[g", 2% &)

-~

° C O m p ‘ ex key S C h e d u ‘ e fO r Generates X"’ and computes:
(K., K.) = kdf(ky, &)

ratcheting between messages. K k) — k)

Conversation: Conversation:
A—=B:m A—B:m
B—A:m B—A:m

Signal O-RTT: Asynchronous Messaging

- 4-way Diffie-Hellman:
* One ephemeral (g3) is signed.

 Usable even when g°is
exhausted.

Signal Ratchet: Key Refresh

 Every message has a new
ephemeral value gx.

 New keys derived from
old keys + g% (new X, old y).

e Key separation via multiple HKDFs.

|

Generates x,x’ and computes:

(k,.k,.) = kdf (™. ¢

th oXS X0 oX's

! : : r..a }" ,'.',
Msgo(g* . aead ™ (m)[e%. 2”. 2")
- - »-

Generates y and computes:

(k! k") = kdf (k;,g"”)

/
(k,.k.) = kdf (g, g%, g%, 2%, &)

s J . h ‘ . /. .
Msg(aead s (m')[2”. 2%, 2¥ |)

et

ProScript: A Language for Protocol Implementation

 Aims to be the ideal language for reliably implementing and rapidly
prototyping cryptographic protocols inside web applications.

e JavasScript is tricky but important: a restricted subset of JavaScript
based on Defensive JavaScript (Delignat-Lavaud et. al).

o Automatic translation from real-world implementation code to
symbolic models!

ProScript: A Language for Protocol Implementation

o Essentially, the subset manifests as a style:

o Typed: ProScript’s type checker infers the initial type of variables,
constants, objects, functions and allows custom type definitions (eg.
32 byte array becomes a “key” type.)

 Immutable structures: Extensible hash tables, objects and arrays
are disallowed, and scoping is enforced.

* Purely functional: We take advantage of Javascript's naturally

functional paradigms in order to encourage a programming style
resembling the applied pi calculus.

10

The ProScript We Want

o A complete framework, not just an isolated subset, for the
implementation and verification of cryptographic protocols, both:

 Automatic verification: Efficient compilation into ProVerit (and In
the future CryptoVerif) models that complete, that correctly model

adversaries, and that accurately and intuitively reflect original
code.

« Human verification: Models that are human-readable to allow

developers to extend them manually and to understand where anad
Why a security guarantee Is not achieved.

11

PS2PV: ProScript to ProVerif

W34 sendMessage = function(msg, state) { : s . s _
T ivioy = Cryets. Maakatrtes (0T 1etf::ws§:3rgiiszgsfr£:$:b1tstr1ng, state:object_1)
W30 newPubKey = Crypto.DH25519(; *RET . _
newprieryY [P : let newPubKey = Crypto DH25519(newPrivKey, key_9) 1in

0x00, 0x00, 0x00, 0x00, let shared = Crypto DH25519(
0x00, 0x00, 0x00, 0x00, é newPrivKey,
0x00, 0x00, 0x00, 0x00, : Object 1_get theirPubKey(state)
0x00, 0x00, 0x00, 0x00, :) in
0x00, 0x00, 0x00, 0x00, ; Object 8(
0x00, 0x00, 0x00, 0x00, : Ubgect 10(

0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x09, Crypto_AESGCMEncrypt(

] ; shared, msg
))5
shared = Crypto.DH25519(: newPubKey
newPrivKey, state.theirPubKey :),
) : Object 1(
return { newPrivKey,
data: { : newPubKey,
msg: Crypto.AESGCMEncrypt(shared, msg), : Object 1 get theirPubKey(state)
pubKey: newPubKey :) - -
}, :
state: { :).

myPrivKey: newPrivKey,
myPubKey: newPubKey,
theirPubKey: state.theirPubKey

12

ProScript Veritication Approach:
Rapid Prototyping for Implementers

JavaScript Web App

Protocol Code

Crypto ProScript
Library Compiler
Protocol Symbolic ProVerif CryptoVerif Computational
Fix Crypto Model nanual Model Crypto
| edits
Potential . .
Attack ProVerif CryptoVerif
Symbolic Cryptographic
Proof Proof

13

Signal Protocol: Verification Results

* \WWe have implemented Signal Protocol (version 3) in ProVerif, where we
are able to symbolically verity under an active Dolev-Yao attacker, with
up to three messages between Alice, Bob and a compromised
Mallory:

e Secrecy, Authenticity,
* |ndistinguishabillity,
* Forward/Future Secrecy,

o Key Compromise Impersonation.

14

Signal Protocol: Verification Results

-+ Secrecy: The adversary cannot compute messages sent between
Alice and Bob.

- Indistinguishability: The adversary cannot distinguish which of two
messages IS being sent.

- Authenticity: We define a query that creates a correspondence
between send and receive events:

» event(Recv(a, b, m)) = event(Send(a, b, m)).

15

Signal Protocol: Verification Results

- Forward secrecy: when are previous messages leaked?
- In a single-message model: out(io, responderIdentityKey)

- In a multiple message model, we can leak the entire state, or
individual keys (latest ephemeral shared secret, etc.) (also how
we test for Future secrecy, which refers to future messages.)

16

» Single-Flight Pattern:

Signal Protocol: Verification Results
* We were able to distinguish refined
scenarios: m
1. Alice cannot obtain fresh key
share so just hashes forward.
2. For forward secrecy, Alice
must delete prior keys: can
deletion be guaranteed?
3. Message re-ordering” Memory
volatity? m
4. No future secrecy.

17

Signal Protocol: Verification Results

* We were able to distinguish refined
scenarios;:

 Message-Response Pattern:

1. Alice obtains fresh key
material.

2. Forward secrecy Is
maintained less dependently
of physical factors (key
deletion, network reliability).

U

3. Future secrecy.

18

Signal Protocol: Discovered Attacks

* Replay attack on the first message
iINn case of a one-time pre-key not
being used (it is optional.)

|
» Replay attacks are not present if) — g
the one-time pre-key Is used. (kr ke) = kdf(kr &™)
Conversation: Conversation:
' ' ' Co A—->B:m A—->B:m
o Key ,Compromlse |mp§rsonat|on. f A bim A Bim
Bob's signed pre-key Is : i

compromised, an attacker can force
him to accept fake messages from
Alice.

19

Signal Protocol: Verification Speeds

 Reasonably fast given the
complexity of the protocol.

e All models were au

generated from act

Cryptocat implementatior

using PS2PV.

Jal ur

‘omatically
touched

code

20

authenticity-1-abm-oneway : O0Oh. 24m. 51s.
authenticity-1-abm-twoway : 26h. 10m. 08s.
authenticity-1-ab-oneway : OOh. 04m. 07s.
authenticity-1-ab-twoway : O0Oh. 09m. 25s.
forwardsecrecy-1-ab-oneway : 00Oh. 06m. 14s.

forwardsecrecy-2-ab-oneway : OOh. 14m. 10s.

forwardsecrecy-3-ab-oneway : 00Oh. 46m. 14s.
futuresecrecy-3-ab-oneway.pv : 00h. 44m. 25s.
indistinguishability-1-ab-oneway : 01h. 51m. 17s.
kci-1-a-oneway : OOh. 17m. 35s.

kci-1-b-oneway : OOh. 05m. 59s.
secrecy-1-ab-oneway : 00Oh. 03m. 30s.
secrecy-1-ab-twoway : OOh. 07m. 06s.

How our Approach is Different

e Generating symbolic models from ProScript takes into account
protocol details whose relevance only appears at
iImplementation:

* Need to keep different hash chains in Signal Protocol.
e [rial decryption to deal with unreliable networks.

o Verification of symbolic model says something about your real-
world implementation!

21

Signal Protocol: Computational Proofs

 We begin from certain assumptions:

 GDH Assumption on EC25519.

« ED25519 signatures are unforgeable under CMA.

* Different HKDF constructions constitute independent random
oracles.

« HMAC-SHA256 is a PRF.

« AES-GCM is a secure AEAD secure against IND-CPA and INT-CTXT.

22

Signal Protocol: Computational Proofs

* From our assumptions, we produce proofs in the computational model
using CryptoVerif (with one message). We prove:

o Authenticity.

 Absence of KCI (when long-term keys are compromised).
* |Indistinguishability.

* Forward secrecy.

 Replay Attack: We find the same attack from the symbolic analysis.

23

Cryptocat: Software and Implementation

Popular chat software, recently rewritten.
30,000+ weekly users.

Implements Signal protocol in ProScript,
a purely functional subset of JavaScript
we can automatically type check,

translate and verity in ProVerif.

* \Why the rewrite?

e AES-CTR nonce re-use.

* |ncorrect typing leading to weak
Curve25519 private keys.

e And more!

24

O ® madonut

! i MADONUT IS CURRENTLY ONLINE.

Feb., 11:44am

NADIM (MacBook Pro)

Here are the slides, let me know if you need any

Cryptocat Architecture:
| anguage-based + thread-based isolation

Internet

Untrusted Chat Window

Process Threads
(JavaScript)

‘----

Trusted
Messaging
Protocol Process

Thread
(ProScript)

Network

Process

Thread
(JavaScript)

Verified Keys &
Protocol State

25

Cryptocat: Software and Implementation

any

* Works great!

 No performance or feature set hit
due to veritication.

 Send 200MB files, video messages, |
elc. 4 @ & @ O &

20

Caveats

* One consequence of using mechanized tools is that we are limited by their heuristics and
expressiveness.

 Limited to 2 or 3 messages depending on model.

e |In KCI, forward/future secrecy and indistinguishability models, Alice only plays the initiator role
and Bob only the responder role, and they do not run the protocol with malicious principals.

* Not to worry! The next presentation in this session, “A Formal Security Analysis of the Signal
Messaging Protocol”, covers what we miss (but we covered stuff they miss too!)

o PS2PV compiler buggy and experimental.
* We target only protocol-level analysis. JavaScript runtimes might be broken.

* \erification # perfection.

27

Future Work

* Use compositional theorems to prove larger parts of the protocol.
We do this for TLS 1.3 in our upcoming Oakland S&P 2017 paper,
Verified Models and Reference Implementations for the TLS 1.3
Standard Candidate.

e Also uses ProVerif, ProScript, CryptoVerif.

* Develop verified translations to both ProVerit and also CryptoVerif.

28

Thank You

o With disciplined programming and some verification expertise, the

systematic analysis of complex cryptographic web applications is
now becoming practical.

e Paper, models, code and more:
https://github.com/Inria-Prosecco/proscript-messaging/

e Cryptocat: https://crypto.cat

29

https://github.com/Inria-Prosecco/proscript-messaging/
https://crypto.cat

