
Automated Verification for Secure Messaging
Protocols and their Implementations:

A Symbolic and Computational Approach

Nadim Kobeissi — Karthikeyan Bhargavan — Bruno Blanchet
Presented by Nadim Kobeissi

2nd IEEE European Symposium on Security and Privacy
April 28 2017, Paris, France

1

About
• We are interested in the formal verification of web protocols.

• Protocols of current and previous interest:

• Transport layer (TLS, QUIC). (Oakland S&P 2017)

• Secure messaging (Signal Protocol, OTR, Telegram).

• Domain validation (ACME). (Financial Cryptography 2017)

2

Very Condensed

Impactful Vulnerabilities in Today’s World

• Our TLS findings in 2015 show that these are attacks that matter:

• Protocol logic flaws: Tricking the protocol state machine into
assuming a state too early (SMACK, Early CCS).

• Cryptographic design flaws: Padding oracle attacks (POODLE),
truncated hash attacks (SLOTH), factoring weak keys (FREAK).

• Implementation flaws.

3

Lessons Learned so Far

• “Code first, specify later.”

• Testing cryptographic protocol implementations has been
overlooked, with disastrous results.

• We need an approach towards verifying production code and more
tools for today’s real-world cryptography developer.

4

Signal Protocol
Telegram Protocol (“MTProto”)

Secure Messaging Today
• WhatsApp, Telegram, Wire,

Cryptocat…

• Long-term conversations between
“buddies” using multiple devices.

• Secrecy, integrity, authenticity.

• Special context:

• Asynchronous messaging (0-RTT
AKE with added data).

• Forward secrecy, future secrecy.

5

Signal Protocol: Overview

• Four-way Diffie-Hellman in AKE
step.

• Offers offline messaging (due to
zero-round-trip AKE.)

• Complex key schedule for
ratcheting between messages.

6

Signal 0-RTT: Asynchronous Messaging

• 4-way Diffie-Hellman:

• One ephemeral (gs) is signed.

• Usable even when go is
exhausted.

ga gb

gx gs

go

7

Signal Ratchet: Key Refresh

• Every message has a new  
ephemeral value gx’.

• New keys derived from  
old keys + gyx’ (new x, old y).

• Key separation via multiple HKDFs.

8

ProScript: A Language for Protocol Implementation

• Aims to be the ideal language for reliably implementing and rapidly
prototyping cryptographic protocols inside web applications.

• JavaScript is tricky but important: a restricted subset of JavaScript
based on Defensive JavaScript (Delignat-Lavaud et. al).

• Automatic translation from real-world implementation code to
symbolic models!

9

ProScript: A Language for Protocol Implementation
• Essentially, the subset manifests as a style:

• Typed: ProScript’s type checker infers the initial type of variables,
constants, objects, functions and allows custom type definitions (eg.
32 byte array becomes a “key” type.)

• Immutable structures: Extensible hash tables, objects and arrays
are disallowed, and scoping is enforced.

• Purely functional: We take advantage of JavaScript’s naturally
functional paradigms in order to encourage a programming style
resembling the applied pi calculus.

10

The ProScript We Want
• A complete framework, not just an isolated subset, for the

implementation and verification of cryptographic protocols, both:

• Automatic verification: Efficient compilation into ProVerif (and in
the future CryptoVerif) models that complete, that correctly model
adversaries, and that accurately and intuitively reflect original
code.

• Human verification: Models that are human-readable to allow
developers to extend them manually and to understand where and
why a security guarantee is not achieved.

11

PS2PV: ProScript to ProVerif

12

ProScript Verification Approach:
Rapid Prototyping for Implementers

13

Signal Protocol: Verification Results
• We have implemented Signal Protocol (version 3) in ProVerif, where we

are able to symbolically verify under an active Dolev-Yao attacker, with
up to three messages between Alice, Bob and a compromised
Mallory:

• Secrecy, Authenticity,

• Indistinguishability,

• Forward/Future Secrecy,

• Key Compromise Impersonation.

14

Signal Protocol: Verification Results
• Secrecy: The adversary cannot compute messages sent between

Alice and Bob.

• Indistinguishability: The adversary cannot distinguish which of two
messages is being sent.

• Authenticity: We define a query that creates a correspondence
between send and receive events:

• event(Recv(a, b, m)) !!==> event(Send(a, b, m)).

15

Signal Protocol: Verification Results

• Forward secrecy: when are previous messages leaked?

• In a single-message model: out(io, responderIdentityKey)

• In a multiple message model, we can leak the entire state, or
individual keys (latest ephemeral shared secret, etc.) (also how
we test for Future secrecy, which refers to future messages.)

16

Signal Protocol: Verification Results
• We were able to distinguish refined

scenarios:

• Single-Flight Pattern:

1. Alice cannot obtain fresh key
share so just hashes forward.

2. For forward secrecy, Alice
must delete prior keys: can
deletion be guaranteed?

3. Message re-ordering? Memory
volatility?

4. No future secrecy.

Alice Bob

Alice Bob

Alice Bob

17

Signal Protocol: Verification Results
• We were able to distinguish refined

scenarios:

• Message-Response Pattern:

1. Alice obtains fresh key
material.

2. Forward secrecy is
maintained less dependently
of physical factors (key
deletion, network reliability).

3. Future secrecy.

Alice Bob

AliceBob

Alice Bob

18

Signal Protocol: Discovered Attacks
• Replay attack on the first message

in case of a one-time pre-key not
being used (it is optional.)

• Replay attacks are not present if
the one-time pre-key is used.

• Key compromise impersonation: if
Bob’s signed pre-key is
compromised, an attacker can force
him to accept fake messages from
Alice.

19

Signal Protocol: Verification Speeds

• Reasonably fast given the
complexity of the protocol.

• All models were automatically
generated from actual untouched
Cryptocat implementation code
using PS2PV.

20

How our Approach is Different
• Generating symbolic models from ProScript takes into account

protocol details whose relevance only appears at
implementation:

• Need to keep different hash chains in Signal Protocol.

• Trial decryption to deal with unreliable networks.

• Verification of symbolic model says something about your real-
world implementation!

21

Signal Protocol: Computational Proofs

22

• We begin from certain assumptions:

• GDH Assumption on EC25519.

• ED25519 signatures are unforgeable under CMA.

• Different HKDF constructions constitute independent random
oracles.

• HMAC-SHA256 is a PRF.

• AES-GCM is a secure AEAD secure against IND-CPA and INT-CTXT.

Signal Protocol: Computational Proofs

23

• From our assumptions, we produce proofs in the computational model
using CryptoVerif (with one message). We prove:

• Authenticity.

• Absence of KCI (when long-term keys are compromised).

• Indistinguishability.

• Forward secrecy.

• Replay Attack: We find the same attack from the symbolic analysis.

Cryptocat: Software and Implementation
• Popular chat software, recently rewritten.

30,000+ weekly users.

• Implements Signal protocol in ProScript,
a purely functional subset of JavaScript
we can automatically type check,
translate and verify in ProVerif.

• Why the rewrite?

• AES-CTR nonce re-use.

• Incorrect typing leading to weak
Curve25519 private keys.

• And more!

24

Cryptocat Architecture:
Language-based + thread-based isolation

25

Cryptocat: Software and Implementation

• Works great!

• No performance or feature set hit
due to verification.

• Send 200MB files, video messages,
etc.

26

Caveats
• One consequence of using mechanized tools is that we are limited by their heuristics and

expressiveness.

• Limited to 2 or 3 messages depending on model.

• In KCI, forward/future secrecy and indistinguishability models, Alice only plays the initiator role
and Bob only the responder role, and they do not run the protocol with malicious principals.

• Not to worry! The next presentation in this session, “A Formal Security Analysis of the Signal
Messaging Protocol”, covers what we miss (but we covered stuff they miss too!)

• PS2PV compiler buggy and experimental.

• We target only protocol-level analysis. JavaScript runtimes might be broken.

• Verification ≠ perfection.

27

Future Work

• Use compositional theorems to prove larger parts of the protocol.
We do this for TLS 1.3 in our upcoming Oakland S&P 2017 paper,
Verified Models and Reference Implementations for the TLS 1.3
Standard Candidate.

• Also uses ProVerif, ProScript, CryptoVerif.

• Develop verified translations to both ProVerif and also CryptoVerif.

28

Thank You

• With disciplined programming and some verification expertise, the
systematic analysis of complex cryptographic web applications is
now becoming practical.

• Paper, models, code and more:  
https://github.com/Inria-Prosecco/proscript-messaging/

• Cryptocat: https://crypto.cat

29

https://github.com/Inria-Prosecco/proscript-messaging/
https://crypto.cat

