
Deliverable WP1: Final report on the
mechanization of the full JavaScript language

Project Ajacs

June 2016

The technical content of this deliverable is the JSExplain platform, found
at https://github.com/jscert/jsexplain. What follows is a motivation
for this approach and an overview of the platform.

1 Motivation for JSExplain

Our previous work on formalizing JavaScript, called JSCert [1] consisted of
two formalization in Coq [2] of the semantics. First, we provided a descrip-
tive formalization, close to the specification and useful to prove programs.
Second, we also provided an executable specification, to run the JavaScript
test suite. Finally, we proved that these two formalizations captured the
same semantics.

This principled approach is very robust, but requires a lot of investment
since adding any feature amounts to formalizing it twice and proving both
formalizations match. To cover the full semantics of recent JavaScript, we
need to extend from ES5 (whose specification is a 252 pages document) to
ES2016 (586 pages). The amount of work is staggering. In addition, only
people fluent in Coq can participate to this formalization. These are the
reasons why we switched to a different approach, where the amount of work
required is lessened, and where it is no necessary to know Coq to contribute.

2 Description of JSExplain

JSExplain is an implementation of a JavaScript interpreter in a subset of
OCaml. We started from the extraction to OCaml of our interpreter written
in Coq, which we then manually edited to make it easier to read. For instance
we rely on monadic operators to simplify error handling.

1

https://github.com/jscert/jsexplain


The code let%run (s,r) = e in cont is evaluated as follows:

1. execute e;

2. make sure there is no internal problem (is so, propagate it);

3. check the result type, if it’s not normal, then propagate it;

4. bind the state and value to s and r and evaluate cont.

The subset of OCaml we rely on is pure, there are no side effects, with
the following features:

• types: bool, string, int, float;

• algebraic datatypes, tuples, records;

• simple pattern matching;

• no partial application;

• custom notation for monadic operators (ppx).

We can then leverage this implementation to obtain several tools:

• a compilation in a subset of JavaScript, allowing standardization people
to easily experiment with the language (done);

• an instrumentation of the implementation, to execute JavaScript pro-
grams step by step showing both the state of the program and the
state of the interpreter, allowing an inspection of how the spec exe-
cutes (done, a demonstration is available1);

• a compilation to Coq to recover a descriptive formal semantics (to be
done);

• an extraction of a textual description of the semantics from the OCaml
implementation (to be done).

This new approach is still close to the specification and can be executed
to run the test suite, both the OCaml version and the JavaScript version.
We are currently extending it to cover recent features of JavaScript, in par-
ticular proxies. Our long-term goal is to make the code easy to write for the
participants of the specification committee, so that they directly provide the
formalization.

1https://jscert.github.io/jsexplain/branch/master/driver.html

2

https://jscert.github.io/jsexplain/branch/master/driver.html


References

[1] Martin Bodin et al. “A Trusted Mechanised JavaScript Specification”.
In: Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL 2014). San Diego, CA,
USA, Jan. 2014, pp. 87–100.

[2] The Coq development team. The Coq proof assistant reference manual.
Version 8.4. 2011. url: http://coq.inria.fr.

3

http://coq.inria.fr

	Motivation for JSExplain
	Description of JSExplain

