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Abstract
This paper describes an investigation into developing certified ab-
stract interpreters from big-step semantics using the Coq proof as-
sistant. We base our approach on Schmidt’s abstract interpretation
principles for natural semantics, and use a pretty-big-step (PBS) se-
mantics, a semantic format proposed by Charguéraud. We propose
a systematic representation of the PBS format and implement it in
Coq. We then show how the semantic rules can be abstracted in a
methodical fashion, independently of the chosen abstract domain,
to produce a set of abstract inference rules that specify an abstract
interpreter. We prove the correctness of the abstract interpreter in
Coq once and for all, under the assumption that abstract operations
faithfully respect the concrete ones. We finally show how to define
correct-by-construction analyses: their correction amounts to prov-
ing they belong to the abstract semantics.

Categories and Subject Descriptors F.3.1 [Specifying and Veri-
fying and Reasoning about Programs]: Mechanical verification

Keywords Abstract Interpretation; Big-step semantics; Coq

1. Introduction
Static program analyzers are complex pieces of software that are
hard to build correctly. Abstract interpretation [9] is a theory for
relating semantics of programming languages which has proven ex-
tremely powerful for proving the correctness of static program anal-
yses. Programming the theory of abstract interpretation in a proof
assistants such as Coq has led to certified abstract interpretation,
where static analyzers are developed alongside their correctness
proof. This significantly increases the confidence in the analyzers
so produced.

In this paper, we study the use of big-step operational semantics
as a basis for certified abstract interpretation. Big-step semantics
is a semantic framework that can accommodate fine-grained oper-
ational features while at the same time keeping some of the com-
positionality of denotational semantics. Furthermore, it has been
shown to be able to handle large-scale definitions of program-
ming languages, as witnessed by the recent JSCert semantics of
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JavaScript [3]. The latter development is the direct motivation for
the work reported here. We present a general Coq framework [4]
to build abstract semantics correct by construction out of minimum
proof effort.

As JSCert is written in a pretty-big-step (PBS) semantics [7],
we naturally decided to use it as foundation for this work. PBS
semantics are convenient because they reduce duplication in the
definition of the language and because they have a constrained
format. These constraints allowed us to define our framework in the
most general way, without committing to a particular language—see
Sections 2 and 3.

1.1 Abstract Interpretation of Natural Semantics
The principles behind abstract interpretation of natural (big-step)
semantics were studied by Schmidt [20]. They form the starting
point for the mechanization proposed here, although the final result
deviates in several ways from Schmidt’s proposal (see Section 7).

Intuitively, abstract interpretation of big-step semantics consists
of the following steps:

• define abstract executions as derivations over abstract domains
of program properties;

• show abstract executions are correct by relating them to concrete
executions;

• program an analyzer that builds an abstract execution among
those possible. Such an analyzer is correct by construction, but
its precision depends on the abstract execution returned.

The first step in Schmidt’s formal development is a precise def-
inition of the notion of semantic tree. These are the derivation trees
obtained from applying the inference rules of a big-step semantics
to a term. This results in concrete judgments of the form t, E ⇓ r.

The abstract interpretation of this big-step semantics starts with a
Galois connection (in the form of a correctness relation rel) between
concrete and abstract domains of base values (see Section 5.1 for
an example). This relation extends in the standard way to compos-
ite data structures, to environments, and to judgments of the form
t, E ⇓ r. An abstract semantic tree is then taken to be a semantic
tree where the values at the nodes are drawn from the abstract do-
main. A central step in the development is the extension of the cor-
rectness relation to derivation trees. Written relU , this relation states
that a (concrete) derivation tree is related to an abstract derivation
tree if the conclusions are related by rel, and that for every con-
crete sub-derivation there exists an abstract sub-derivation that is
relU -related to it. This leads to a way of proving correctness of an
abstract interpretation, by checking that each rule from the concrete
semantics has a corresponding rule in the abstract semantics.

Our approach is similar: concrete and abstract executions are
assemblages of rules. The rules and the syntax of terms are shared
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between the concrete and abstract versions. The difference between
the two versions is twofold: on the semantic domains (contexts in
which the execution occurs, such as state, and results), and the way
the rules are assembled. An important feature of our approach is
that the soundness of the approach depends neither on the specific
abstract domains chosen, nor on the semantics itself, as long as the
domains correctly abstract operations on the concrete domain.

Abstract derivation trees may be infinite. Convergence of an
analysis is obtained by identifying an invariant in the derivation tree.
Whichever invariant the analysis uses, it is correct if the returned
derivation belongs to the set of abstract derivations.

To summarize the parametricity of our approach, we describe
the steps required to produce a certified analysis. First, our frame-
work is parametric in the language used, which thus must be de-
fined as a PBS semantics based on transfer functions (see Sections
2 and 3). Next, the framework is also parametric in the abstract do-
mains, which must also be defined, along with the abstract transfer
functions. Once these functions are shown to correctly abstract the
concrete transfer functions, a correct-by-construction abstract se-
mantics is automatically defined. Finally, an analysis must be devel-
oped. The fact that the result of the analysis belongs to the abstract
semantics is a witness that it is correct.

1.2 Organization of the Paper
The paper is organized as follows. We first review the principles
behind PBS operational semantics and show its instantiation on a
simple imperative language in Section 2. In Section 3 we make a
detailed analysis of PBS rules and propose a dependently-typed for-
malization of their format. The representation of this formalization
in Coq is described in Section 4. Section 5 describes the represen-
tation of abstract domains and explains how PBS rules can be ab-
stracted in a systematic fashion which facilitates the proof of cor-
rectness. Section 6 demonstrates the use of the abstract interpreta-
tion for building additional reasoning principles and program veri-
fiers. Section 7 discusses related work and Section 8 concludes and
outlines avenues for further work based on our certified abstract in-
terpretation.

2. Pretty-big-step Semantics
Pretty-big-step semantics (PBS) is a flavor of big-step, or natural,
operational semantics which directly relates terms to their results.
PBS semantics was proposed by Charguéraud [7] with the purpose
of avoiding the duplication associated with big-step semantics when
features such as exceptions and divergence are added. In this section,
we introduce PBS semantics through a simple While language with
an abort mechanism. To simplify the presentation, we restrict the set
of values to the integers, and let the value 0 be considered as “false”
in the branching statements if and while.

We give some intuition of how a pretty-big-step semantics works
through a simple example: the execution of a while loop. In a big
step semantics, the while loop inference rules have one or three
premises. In both cases, the first premise is the evaluation of the
condition. If it returns 0, there is no further premise. If it returns
another number, the other two premises are the evaluation of the
statement and the evaluation of the rest of the loop. In the following,
the evaluation of expressions returns a value, whereas the evaluation
of statements returns a modified state. Writing E for states, such
rules would be written as follows.

WhileFalse
e,E ⇓ 0

while e s, E ⇓ E

WhileTrue
e,E ⇓ v s, E ⇓ E′ while e s, E′ ⇓ E′′

while e s, E ⇓ E′′ v ̸= 0

In the pretty-big-step approach, only one sub-term is evaluated in
each rule, and the result of the evaluation is gathered, along with the
state, in a new construct called a semantic context. New terms, called
extended terms, are added to the syntactic constructs. For instance,
the first reduction for the while loop is as follows.

While
while1 e s, retE ⇓ o

while e s, E ⇓ o

The ret construction signals that there was no error, its role will
be detailed below. The extended term while1 indicates that the loop
has been entered. It reduces as follows.

While1
e, E ⇓ o while2 e s, (E, o) ⇓ o′

while1 e s, retE ⇓ o′

This rule says: if the semantic context is a state E that is not an
error, then reduce the condition e in the semantic context E, and
bundle the result of that evaluation with E as semantic context for
the evaluation of the extended syntactic term while2 e s.

The term while2 e s can in turn be evaluated using one of two
rules. If the result that was bundled into the semantic context is the
value 0, then return the current state.

While2False

while2 e s, (E, val 0) ⇓ retE
Otherwise, evaluate s and use its result as semantic context to

continue the loop with the term while1 e s.

While2True
s, E ⇓ o while1 e s, o ⇓ o′

while2 e s, (E, val v) ⇓ o′
v ̸= 0

Putting it all together, Figure 1 depicts a full derivation of one
run of a loop, where k ̸= 0.

The set of terms for our language is defined in Figure 2a. Terms
t are either expressions e, extended expressions ex, statements s,
or extended statements sx. (Ordinary) expressions and statements
form the standard While language, with an added abort statement
abort . An example of an extended expression is +1 e2 that indi-
cates the left expression of+ e1 e2 has been computed, and it is now
the turn of e2 to be computed. An example of an extended statement
is if1 s1 s2 that indicates the expression forming the condition has
been evaluated; and the statement to evaluate depends on that result,
present in the semantic context.

Evaluation of terms uses the following semantic domains.
• val = Z;
• error = {Err};
• env = var →f val, the finite maps from var to val;
• oute = val + error, the expression outputs;
• outs = env + error, the statement outputs.

Thus, the evaluation of an expression or an extended expression will
either produce a value v ∈ val or produce an error. Evaluation of a
statement or an extended statement will produce a new environment
or an error. To differentiate between a value element of oute and a
value of val, the former will be noted val v and the latter simply v.
We proceed similarly for environments, where retE ∈ outs.
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...

e, E ⇓ val k

...

s, E ⇓ retE′

...

while1 e s, retE′ ⇓ retE′′

while2 e s, (E, val k) ⇓ retE′′ While2True

while1 e s, retE ⇓ retE′′ While1

while e s, E ⇓ retE′′ While

Figure 1: PBS reduction of a while loop

The semantic rules are given in Figure 3. To see how the ex-
tended terms work, consider the rule Add1 (e) for evaluating the
extended expression +1 e.

Add1 (e)

e, E ⇓ o +2, (v1, o) ⇓ o′

+1 e, (E, val v1) ⇓ o′

The evaluation of +1 e is done with a semantic context comprised
of an environment E and the output of evaluating the first operand.
This rule pattern-matches the latter, requiring it to be a value val v1
and extracting the actual value v1. If +1 e is evaluated with a
semantic context of the form (E,Err), then Add1 (e) does not
apply. In that case, the rule AbortE (+1 e) applies (see Figure 2d),
which propagates the error.

In the case there was no error, the semantics follows rule
Add1 (e) and evaluates e to obtain an output for the second operand.
It then constructs another extended expression +2 and evaluates it
with a semantic context that includes the value v1 the output o.

If this output o is an error, only the rule AbortE (+2) applies
and the error is propagated. Otherwise, the rule Add2 applies.

Add2

add (v1, v2)⇝ v

+2, (v1, val v2) ⇓ val v

This rule is called an axiom as none of its premises mention a
derivation about ⇓. It only performs a local computation, denoted
by⇝, and returns the result.

The PBS format only requires a few rules to propagate errors,
even though they may appear at any point in the execution.

3. Formalization of Rule Schemes
The mechanization of the abstract interpretation of PBS operational
semantics is based on a careful analysis of the rule formats used
in these semantics. Traditional operational semantics are defined
inductively with rules (or, more precisely, rule schemes) of the form

Name
t1, σ1 ⇓ r1 t2, σ2 ⇓ r2 . . .

t, σ ⇓ r
side-conditions

explaining how term t evaluates in a state σ to a result r. There are
several implicit relations between the elements of such rule schemes
that we make explicit, in order to provide a functional representation
for them.

First, we describe the types of the components of t, σ ⇓ r. The
first component t is a syntactic term of type term. It is the program
being evaluated. The second component σ is a semantic context. It
contains the information required to evaluate the program, such as
the current state. Its type depends on the term being evaluated: we
have σ ∈ st (t). For most terms, the semantic context in our con-
crete semantics is an environment E (see Figure 3). The exceptions
are for extended terms that also need information from the previous
computations. For instance, the term +1 e needs both an environ-

ment E and a result o as semantic context. Finally, the third compo-
nent r is the result of the evaluation of t in context σ. Its type also
depends on t: excluding errors, expressions return values whereas
instructions return environments. It is written res (t).

Second, rules are identified not only by their name but also by
syntactic subterms. For instance, a rule to access the variable x is
identified by Var (x), whereas the one for variable y is identified by
Var (y). Similarly, a rule for a “while” loop with condition e and
body s may be identified by While (e, s). Identifiers are designed
such that they uniquely determine the term to which the rule applies.

Formally, a PBS semantics carries a set of rule identifiers I and
a function that maps rule identifiers to actual rules (the type Rulei
is described below).

rule : (i ∈ I) → Rulei
They also provide a function l that maps rule identifiers to the
syntactic term to which the rule applies.

l : I → term

For instance, for the rule Var (x), we have lVar(x) = x.
Third, rules have side-conditions. We impose a clear separation

between these conditions and the hypotheses on the semantics of
subterms made above the inference line. The conditions involve the
rule identifier i and the semantic context σ and are expressed in
a predicate cond which states whether rule i applies in the given
context σ. For a simple example: two rules can apply to the term x,
a variable, depending on whether this variable is defined or not in
the given environment E: it is either the look-up rule Var (x) or the
error rule VarUndef (x).

Var(x)
E[x]⇝ v

x,E ⇓ val v
x ∈ dom(E)

VarUndef(x)

x,E ⇓ Err
x ̸∈ dom(E)

The predicate cond has the type

cond : (i ∈ I) → st (li) → Prop

Finally, the general big-step format allows any number of hy-
potheses above the inference line. The pretty-big-step semantics re-
stricts this to one of three possible formats: axioms (zero hypothe-
ses), rules with one inductive hypothesis, and rules with two in-
ductive hypotheses, respectively written Axi, R1,i or R2,i for a rule
identified by i.

Syntactic Aspects of Rules To summarize, the function type :
I → {Ax,R1,R2} returns the format (axiom, rule 1, or rule 2) of
the rule identified by i ∈ I, and l : I → term returns the actual
syntactic term evaluated by a rule. To evaluate a rule, one needs
to specify which terms to inductively consider (syntactic aspects)
and how the semantic contexts and results are propagated (semantic
aspect). We first describe the former.

In format 1 rules, i.e., rules with one hypothesis, the current
computation is redirected to the computation of the semantics of
another intermediate term (often a sub-term). We thus define a
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t ::= e
| s
| ex
| sx

e ::= c
| x
| + e1 e2

ex ::= +1 e2
| +2

s ::= skip
| x := e
| s1; s2
| if e s1 s2
| while e s
| abort

sx ::= x :=1

| ;1 s2
| if1 s1 s2
| while1 e s
| while2 e s

(a) Terms and Extended Terms

st (e) = env
st (s) = env

st (+1 e2) = env × oute
st (+2) = val × oute

st (x :=1) = env × oute
st (;1 s2) = outs

st (if1 s1 s2) = env × oute
st (while1 e s) = outs
st (while2 e s) = env × oute

(b) Definition of st

The (dependent) type of semantic contexts.

res (ex) = oute
res (sx) = outs
res (e) = oute
res (s) = outs

(c) Definition of res

The type of results.

abort (Err) = True
abort (retE) = False

abort (E,Err) = True
abort (E, val v) = False

abort (v,Err) = True
abort (v, val v) = False

(d) Definition of abort

The abort predicate controls
the rules AbortE (ex) and
AbortS (sx) of Figure 3.

Figure 2: Concrete Semantics Definitions

AbortE(ex)

ex, σ ⇓ Err
abort (σ)

AbortS(sx)

sx, σ ⇓ Err
abort (σ)

Abort

abort , E ⇓ Err

Cst(c)

c, E ⇓ val c

Var(x)
E[x]⇝ v

x,E ⇓ val v
x ∈ dom(E)

VarUndef(x)

x,E ⇓ Err
x ̸∈ dom(E)

Add(e1, e2)
e1, E ⇓ o +1 e2, (E, o) ⇓ o′

+ e1 e2, E ⇓ o′

Add1 (e)

e, E ⇓ o +2, (v1, o) ⇓ o′

+1 e, (E, val v1) ⇓ o′

Add2

add (v1, v2)⇝ v

+2, (v1, val v2) ⇓ val v

Skip

skip, E ⇓ retE

Asn(x, e)
e, E ⇓ o x :=1, (E, o) ⇓ o′

x := e,E ⇓ o′

Asn1 (x)

E[x 7→ v]⇝ E′

x :=1, (E, val v) ⇓ retE′

Seq(s1, s2)
s1, E ⇓ o ;1 s2, o ⇓ o′

s1; s2, E ⇓ o′

Seq1 (s2)

s2, E ⇓ o

;1 s2, retE ⇓ o

If(e, s1, s2)
e, E ⇓ o if1 s1 s2, (E, o) ⇓ o′

if e s1 s2, E ⇓ o′

If1True(s1, s2)
s1, E ⇓ o

if1 s1 s2, (E, val v) ⇓ o
v ̸= 0

If1False(s1, s2)
s2, E ⇓ o

if1 s1 s2, (E, val v) ⇓ o
v = 0

While(e, s)
while1 e s, retE ⇓ o

while e s, E ⇓ o

While1(e, s)
e, E ⇓ o while2 e s, (E, o) ⇓ o′

while1 e s, retE ⇓ o′

While2True(e, s)
s,E ⇓ o while1 e s, o ⇓ o′

while2 e s, (E, val v) ⇓ o′
v ̸= 0

While2False(e, s)

while2 e s, (E, val v) ⇓ retE
v = 0

Figure 3: Concrete Semantics

function u1 : (i ∈ I) → (type (i) = R1) → term returning this
term. Note how this function is restricted on format 1 rules.

Similarly, format 2 rules have two inductive hypotheses, hence
need to evaluate the semantics of two terms, respectively given
by functions u2 : (i ∈ I) → (type (i) = R2) → term and
n2 : (i ∈ I) → (type (i) = R2) → term.1

The functions type, l, u1, u2, and n2 describe the structure of
a rule, but not how it computes with the semantic contexts. This
computation is done in the transfer functions that are contained in
the constructions of type Rulei.
Semantic Aspects of Rules We now define how semantic contexts
and results are manipulated according to the semantics. To this end,
we define transfer functions, which depend on the format of rule

1 uk stands for “up” and n2 stands for “next”.

we are defining. They can be summed up in the following informal
scheme, detailed below.

σ1 ⇓ r2

σ4 ⇓ r5

σ3 ⇓ r5

σ0 ⇓ r5

ax

ax

up

up
next

Depending on the format of a rule i, Rulei will have different
transfer functions. In every case, it will take a semantic context σ of
type st (li) and a proof of condi (σ). Depending on the type type (i)
of the rule, it then proceeds as follows to obtain the semantics of t
in context σ.
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• Axioms directly return a value of type res (li), and are thus
described by a function of type

ax : (σ ∈ st (li)) → condi (σ) → res (li)

Let r ∈ res (lId) be the result of an axiom Id for input t ∈ term,
σ ∈ st (lId), and a proof π of condId (σ). We write such a rule
as follows.

Id
ax (σ, π)⇝ r

lId, σ ⇓ r
condId (σ)

• Rules with one inductive hypothesis are of the following form.
Id
u1,Id, up (σ) ⇓ r

lId, σ ⇓ r
condId (σ)

Such a rule specifies a new term u1,Id as described above, as well
as a new semantic context up (σ) of type st (u1,Id) and returns
the result of evaluating u1,Id in this context as the semantics
of lId. For such rules, the format thus implicitly requires that
res (lId) = res (u1,Id). Hence, the essence of a format 1 rule
is the function up that maps σ to up (σ). Together with the
cond predicate and the l and u1 functions, this function up is
the only information needed for completely defining such rules.
A format 1 rule identified by i is therefore characterized by a
function of type

up : (σ ∈ st (li)) → condi (σ) → st (u1,i)

• Rules with two inductive hypotheses are of the following form.
Id
u2,Id, up (σ) ⇓ r n2,Id, next (σ, r) ⇓ r′

lId, σ ⇓ r′
condId (σ)

Such rules first do an inductive call as in the previous case. The
result r of this call is then used to build the semantic context for
the second inductive call. As the final result is propagated as-
is, the required information is: a first semantic context up (σ) ∈
st (u2,Id), and a function next (σ, ·) transforming the result of the
first inductive call into a semantic context of type st (n2,Id).
A format 2 rule i thus consists of two transfer functions:

up : (σ ∈ st (li)) → condi (σ) → st (u2,i)
next : (σ ∈ st (li)) → condi (σ) → res (u2,i) → st (n2,i)

Analogous to rules of format 1, we impose the result type of li
to be that of n2,i, i.e., res (li) = res (n2,i).
To sum up, we define the set of rules as the set Rulei where each

element is one is one of the following.
Axi(ax : (σ ∈ st (li)) → condi (σ) → res (li))

R1,i(up : (σ ∈ st (li)) → condi (σ) → st (u1,i))

R2,i

( up : (σ ∈ st (li)) → condi (σ) → st (u2,i)
next : (σ ∈ st (li)) → condi (σ) → res (u2,i) → st (n2,i)

)
4. Mechanized PBS Semantics
We now describe how we implemented this formalization in Coq.
The structural aspects directly follow the approach given in the pre-
vious section. Assuming a set of terms, we first define the structural
part of rules, corresponding to the u1, u2, and n2 functions. They
carry the terms that need to be reduced in inductive hypotheses.

Inductive Rule_struct term :=
| Rule_struct_Ax : Rule_struct term
| Rule_struct_R1 : term → Rule_struct term
| Rule_struct_R2 : term → term → Rule_struct term.

Id

lId, σ ⇓ ax (σ)
condId (σ)

Id
u1,Id, up (σ) ⇓ r

lId, σ ⇓ r
condId (σ)

Id
u2,Id, up (σ) ⇓ r n2,Id, next (σ, r) ⇓ r′

lId, σ ⇓ r′
condId (σ)

Figure 4: Rule Formats

Rule identifiers (name in the Coq files) are associated with the
term reduced by the rule (function l, called left in Coq) and to
structural terms. They are packaged together as follows.

Record structure := {
term : Type;
name : Type;

left : name → term;
rule_struct : name → Rule_struct term }.

A semantics, parameterized by such a structure, is then a type
of semantic contexts, a type of results, a predicate to determine
whether a rule may be applied, and transfer functions for the rules.

Record semantics := make_semantics {
st : Type;
res : Type;

cond : name → st → Prop;
rule : name → Rule st res }.

We now detail the components of this semantics, highlighting
the differences with Section 3.

Although a definition based on dependent types is very elegant,
its implementation in Coq proved to be quite challenging. The typi-
cal difficulty we had appeared in format 1 and 2 rules where results
are passed without modification from a premise to the conclusion,
but whose types change from res (lId) to res (uk,Id). In such contexts
these two types happen to be equal because of the implicit hypothe-
ses we enforced in the previous section. However, as usually with
dependent types, a lot of predicates require these terms to have a
specific (syntactical) type. Rewriting “equal” terms (i.e., equal un-
der heterogeneous, or “John Major’s”, equality [14]) becomes really
painful when there exist such syntactic constraints.

We thus switched to a simpler approach. First, the type for se-
mantic contexts (respectively results) is no longer specialized by (or
dependent on) the term under consideration: it is the union of every
possible semantic context (respectively of every result). This can be
seen in the st and res fields above that are simple types.

The rules are then adapted to this setting. They are very similar
to the version of Section 3 as can be seen in Figure 4. The Rule type
uses the following transfer functions.

Inductive Rule st res :=
| Rule_Ax : (st → option res) → Rule st res
| Rule_R1 : (st → option st) → Rule st res
| Rule_R2 : (st → option st) →

(st → res → option st) → Rule st res.

The function ax : st → option res for axioms returns None if
the rule does not apply, either because the semantic context does
not have the correct shape, or if the condition to apply the rule is
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not satisfied. This is in contrast to the definition of Section 3, where
the option was not required: the type (σ ∈ st (li)) → condi (σ) →
res (li) did guarantee that the semantic context was compatible with
the term and that the rule applied.

The transfer function of a format 1 rule is of the form up : st →
option st, constructing a new semantic context if the context given
as argument has the correct shape.

The transfer functions of a format 2 rule are of the form up :
st → option st and next : st → res → option st.

It may seem that we compute the same thing twice: condi (σ)
states that a given rule i applies to σ, while ax (or the corresponding
transfer function) should also return None if the rule cannot be
applied. We actually relax this second requirement to allow for
simpler definition: transfer functions may return a result even if they
do not apply. For instance, the transfer function of VarUndef (x)
always returns Err, but it may only be applied if the variable is
not in the environment. This separation between side-conditions
and transfer functions is a separation between the control flow and
the actual computation. In the Coq development, the first one is
implemented using predicates, and the second using computable
functions.

We now describe how to assemble rules to build a concrete eval-
uation relation ⇓ ∈ P (term × st × res). We define the concrete
semantics as the least fixed point of a function F which we now
detail.

F : P (term × st × res) → P (term × st × res)

Given an existing evaluation relation ⇓0 ∈ P (term × st × res),
the application function applyi (⇓0) : P (term × st × res) for
rule (i) is as follows.

applyi (⇓0) :=
match rule (i) with
| Ax (ax) ⇒ {(li, σ, r) | ax (σ) = Some(r)}

| R1 (up) ⇒

{
(li, σ, r)

∣∣∣∣∣ up (σ) = Some(σ′)

∧ u1,i, σ
′ ⇓0 r

}

| R2 (up, next) ⇒

(li, σ, r)

∣∣∣∣∣∣∣∣∣
up (σ) = Some(σ′)

∧ u2,i, σ
′ ⇓0 r1

∧ next (σ, r1) = Some(σ′′)

∧ n2,i, σ
′′ ⇓0 Some(r)


This relation applyi (⇓0) accepts a tuple (t, σ, r) if it can be com-
puted by making one semantic step using rule (i), calling back ⇓0

for every recursive call.
The final evaluation relation is then computed step by step us-

ing the function F , computing from an evaluation relation ⇓0 the
following new relation F (⇓0):

F (⇓0) = {(t, σ, r) | ∃i, condi (σ) ∧ (t, σ, r) ∈ applyi (⇓0)}

Intuitively, each application of F extends the relation ⇓0 by com-
puting the results of derivations with an extra step.

We can equip the set of evaluation relations P (term × st × res)
with the usual inclusion lattice structure. In this lattice, the functions
applyi and F are monotonic. We can thus define the fixed points of
F in this lattice. We consider as our semantics the least fixed point
⇓lfp, which corresponds to an inductive interpretation of the rules:
only finite behaviors are taken into account, and no semantics is
given to non-terminating programs. We note it ⇓.

The implementation in Coq shown in Figure 5 directly builds the
fixed point as an inductive definition.

Inductive eval : term → st → res → Type :=
| eval_cons : ∀ t sigma r n,

t = left n →
cond n sigma →
apply n sigma r →
eval t sigma r

with apply : name → st → res → Type :=
| apply_Ax : ∀ n ax sigma r,

rule_struct n = Rule_struct_Ax _ →
rule n = Rule_Ax ax →
ax sigma = Some r →
apply n sigma r

| apply_R1 : ∀ n t up sigma sigma' r,
rule_struct n = Rule_struct_R1 t →
rule n = Rule_R1 _ up →
up sigma = Some sigma' →
eval t sigma' r →
apply n sigma r

| apply_R2 : ∀ n t1 t2 up next
sigma sigma1 sigma2 r r',

rule_struct n = Rule_struct_R2 t1 t2 →
rule n = Rule_R2 up next →
up sigma = Some sigma1 →
eval t1 sigma1 r →
next sigma r = Some sigma2 →
eval t2 sigma2 r' →
apply n sigma r'.

Figure 5: Coq definition of the concrete semantics ⇓

5. Mechanized PBS Abstract Semantics
The purpose of mechanizing the PBS semantics is to facilitate the
correctness proof of static analyzers with respect to a concrete se-
mantics. We thus provide a mechanized way to define an abstract
semantics and prove it correct with respect to the concrete one. Its
usage to prove static analyzers is described in Section 6.

As stated in the Introduction, the starting point for our develop-
ment is the abstract interpretation of big-step semantics, laid out by
Schmidt [20]. In this section, we describe how an adapted version
of Schmidt’s framework can be implemented using the Coq proof
assistant. There are several steps in such a formalization:

• define the Galois connection that relates concrete and abstract
domains of semantic contexts and results;

• based on the Galois connection between concrete and abstract
domains, prove the local correctness: the side-conditions and
transfer functions of each concrete rule are correctly abstracted
by their abstract counterpart;

• given the local correctness, prove the global correctness: the
abstract semantics ⇓♯ is a correct approximation of the concrete
semantics ⇓, i.e., the least fixed point of the F operator.

The Galois connections relate the concrete and abstract semantic
triples (t, σ, r) and

(
t, σ♯, r♯

)
by a concretisation function γ. They

let us state and prove the following property relating the concrete
and the abstract semantics. Let t ∈ term, σ ∈ st, σ♯ ∈ st♯, r ∈ res
and r♯ ∈ res♯,

if


σ ∈ γ

(
σ♯

)
t, σ ⇓ r

t, σ♯ ⇓♯ r♯
then r ∈ γ

(
r♯
)

.

We illustrate the development through the implementation of
a sign analysis for our simple imperative language. However, we
emphasize that the approach is generic: once an abstract domain is
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⊤

⊤error

⊤val

± +0−0

0 +−

⊥

Figure 6: The Hasse diagram of the valerr♯ lattice

given, and abstract transfer functions are shown to be correct, then
the full abstract semantics is correct by construction.

5.1 Abstract Domains
The starting point for the abstract interpretation of big-step seman-
tics is a collection of abstract domains, related to the concrete se-
mantic domains by a Galois connection, or just by a concretisa-
tion function γ. The formalization of Galois connections in proof
assistants has been studied in previous work by several authors
(e.g., [5, 18]), and we have relied on existing libraries of construc-
tors for building abstract domains.

For our example analysis, we have abstracted the base domain
of integers by the abstract domain of signs. The singleton domain
of errors is abstracted to a two-point domain where ⊥error means
absence of errors and⊤error means the possible presence of an error.
The result of an expression is either a value or an error, modeled
by the sum domain oute. We abstract this by a product domain
with elements of the form

(
v♯, e♯

)
, where v♯ is a property of the

result (if any is produced) and e♯ indicates the possibility of an
error. A result that is known to be an error is thus abstracted by
(⊥val,⊤error) ∈ out♯e. To summarize, the analysis uses the following
abstract domains:

• val♯ = sign = {⊥val,−, 0,+,−0,±,+0,⊤val};
• error♯ = {⊥error,⊤error}, named aErr in the Coq files;

• valerr♯ =
(
val♯ ⊗ error♯

)⊤;
• env♯ = var → valerr♯, aEnv in Coq;
• out♯e = val♯ × error♯, aOute in Coq;
• out♯s = env♯ × error♯, aOuts in Coq.

As the absence of variable in a concrete environment leads to a dif-
ferent rule than a defined variable whose value we know nothing
about, we have to track the absence of variable in abstract environ-
ments. We use the valerr♯ lattice to achieve this. Its lattice structure
is pictured in Figure 6. Notice that ⊥val and ⊥error are coalesced in
this domain, i.e., we construct valerr♯ as the smash product of val♯
and error♯.

In the Coq formalization, the discrimination between the possi-
ble output domains is implemented with a coalescing sum of partial
orders that identifies the bottom elements of the two domains(

out♯e + out♯s
)⊤

⊥

where the new top element indicates a type error due to confusion
of expressions and statements. The abstract result type is defined as
follows in Coq.

Inductive ares : Type :=
| ares_expr : aOute → ares
| ares_prog : aOuts → ares
| ares_top : ares
| ares_bot : ares.

5.2 Rule Abstraction
The abstract interpretation of the big-step semantics produces a new
set of inference rules where the semantic domains are replaced by
their abstract counterparts. Thus, rules no longer operate over values
but over properties, represented by abstract values. For instance, the
rule for addition Add2, which applies when both sub-expressions of
an addition have been evaluated to an integer value,

Add2

add (v1, v2)⇝ v

+2, (v1, val v2) ⇓ val v

is replaced by a rule using an abstract operator add♯

Add♯
2

add♯ (v1, v2)⇝ v

+2, (v1, val♯ v2) ⇓♯ v

where the concrete addition of integers has been replaced with its
abstraction over the abstract domain of signs.

As explained by Schmidt [20, Section 8], the abstract interpre-
tation of a big-step semantics must be built such that all concrete
derivations are covered by an abstract counterpart. Here, “covered”
is formalized by extending the correctness relation on base domains
and environments to derivation trees. A concrete and an abstract
derivations ∆ and ∆♯ are related if the conclusion statement of ∆
is in the correctness relation with the conclusion of ∆♯, and, fur-
thermore, for each sub-derivation of∆, there exists a corresponding
abstract sub-derivation of ∆♯ which covers it.

There are several ways in which coverage can be ensured. One
way is to add a number of ad hoc rules. For example, it is common
for inference-based analyses to include a rule such as

If-abs
Γ ⊢ e1 : ϕ1 Γ ⊢ e2 : ϕ2

Γ ⊢ if b then e1 else e2 : ϕ1 ⊔ ϕ2

that covers execution of both branches of an if.
Instead of adding extra rules, we pursue an approach where we

obtain coverage in a systematic fashion, by

1. abstracting the conditions and transfer functions of the individ-
ual rules according to a common correctness criterion;

2. defining the way that a set of abstract rules are applied when
analyzing a given term. This is described in Section 5.3 below.

We use exactly the same framework (as shown in the Coq develop-
ment) for concrete and abstract rules. The only difference is how we
assemble abstract rules to build an abstract semantics ⇓♯.

Recall that a rule comprises a side-condition that determines if it
applies and one or more transfer functions to map the input state to a
result. The abstract side-condition cond♯ must satisfy the following
correctness criterion.

∀σ, σ♯. σ ∈ γ(σ♯) ⇒ cond (σ) ⇒ cond♯
(
σ♯

)
.

Intuitively, this means that whenever there is a state in the concreti-
sation of an abstract state σ♯ that would trigger a concrete rule, then
the corresponding abstract rule is also triggered by σ♯. Figure 7 is
a snippet from the Coq formalization showing the conditions of the
various rules for while. They correspond in a one-to-one fashion to
the rules of the concrete semantics defining the cond predicate.
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Definition acond n asigma : Prop :=
match n, asigma with
...
| name_while e s, ast_prog aE ⇒

True
| name_while_1 e s, ast_while_1 ar ⇒

ares_prog (⊥) ⊑ ar
| name_abort_while_1 e s, ast_while_1 ar ⇒

ares_prog (⊥,⊤) ⊑ ar
| name_while_2_true e s, ast_while_2 aE o ⇒

ares_expr (Sign.pos,⊥) ⊑ o ∨
ares_expr (Sign.neg,⊥) ⊑ o

| name_while_2_false e s, ast_while_2 aE o ⇒
ares_expr (Sign.zero,⊥) ⊑ o

| name_abort_while_2 e s, ast_while_2 aE ar ⇒
ares_expr (⊥,⊤) ⊑ ar

...

Figure 7: Snippet of the cond♯ predicate

Definition arule n : Rule sign_ast sign_ares :=
match n with
...
| name_while e s ⇒

let up :=
if_ast_prog (fun E ⇒

Some (sign_ast_while_1
(sign_ares_stat (E, ⊥)))) in

Rule_R1 _ up
| name_while_1 e s ⇒

let up :=
if_ast_while_1 (fun E err ⇒

Some (sign_ast_prog E)) in
let next asigma ar :=

if_ast_while_1 (fun E err ⇒
Some (sign_ast_while_2 E ar)) asigma in

Rule_R2 up next
...

Figure 8: Snippet of the rule function

Similar correctness criteria apply to the transfer function defin-
ing the rules. For example, axioms, that are defined by a function ax
from input states to results, have an abstraction ax♯ that must satisfy

∀σ, σ♯. σ ∈ γ
(
σ♯

)
⇒ ax (σ) ∈ γ

(
ax♯

(
σ♯

))
.

These criteria are defined as a relation ∼ between rules (called
propagates in the Coq files), made precise below. We assume it
has been shown to hold for every pair of concrete and abstract rules
sharing the same identifier.

The Coq snippet of Figure 8 shows the encoding of the abstract
rules While (e, s) and While1 (e, s). The former is a format 1
and thus only need an up function to be defined. The facts that it
applies on lWhile(e,s) = while e s and that its intermediate term is
u1,While(e,s) = while1 e s are already expressed by the structure part
and are not shown here.

This function up should be called on a context σ♯ that satisfies
cond♯

While(e,s)

(
σ♯

)
, that is, on an environment. There is however no

typing rule that enforces this (as we do not use dependent types in
this formalization, as explained in Section 4) and we thus have to

check this, returning None otherwise. We use the following monad
to extract the relevant environment.

if_ast_prog :
(aEnv → option sign_ares)

→ sign_ast → option sign_ares

We then compute the semantic context corresponding to u1 =
while1 e s. In this case, it is sign_ast_while_1 (E, ⊥), where
E is the extracted environment, as the corresponding rule does not
introduce errors while propagating the environment.

The abstract rule While1 (e, s) is a format 2 rule and thus needs
two functions, up and next, to be similarly defined. As the expected
kind of the semantic context is in this case the one of while1 e s, we
use a different monad:

if_ast_while_1 :
(aEnv → aErr → option sign_ares)

→ sign_ast → option sign_ares

These definitions are so similar to the concrete definitions that
they can be built directly from a concrete definition. This similarity
simplifies definitions and proofs considerably.

Finally, the relation∼ that relates concrete and abstract rules can
be defined as follows.

• A concrete and an abstract axioms ax : st → res and ax♯ :
st♯ → res♯ are related iff for all σ and σ♯ on which both
functions ax and ax♯ are defined, and such that σ ∈ γ

(
σ♯

)
,

then ax (σ) ∈ γ
(
ax♯

(
σ♯

))
.

• A concrete and an abstract format 1 rules up : st → st and
up♯ : st♯ → st♯ are related iff for all σ and σ♯ on which both
functions up and up♯ are defined, and such that σ ∈ γ

(
σ♯

)
, then

up (σ) ∈ γ
(
up♯ (σ)

)
.

• For format 2 rules, we impose the same condition on the up
and up♯ transfer functions than above, and we add the additional
condition over the transfer functions next : st → res → st and
next♯ : st♯ → res♯ → st♯: for all σ, σ♯, r and r♯ on which both
functions next and next♯ are defined, and such that σ ∈ γ

(
σ♯

)
and r ∈ γ

(
r♯
)
, then next (σ, r) ∈ γ

(
next♯

(
σ♯, r♯

))
.

5.3 Inference Trees
Concrete and abstract semantic rules have been defined to have
similar structure. However, the semantics given to a set of abstract
rules differs from the concrete semantics defined in Section 4. This
difference manifests itself in the way rules are assembled.

First, the function apply♯i for applying an abstract rule with iden-
tifier i extends the applyi function by allowing to weaken semantic
contexts and results. Indeed, the purpose of the abstract semantics
is to capture every correct abstract analyses, including the ones that
lose precision. It is thus possible to choose a less precise seman-
tic context σ0 before referring to applyi, and to then return a less
precise result r afterwards.

apply♯i
(
⇓♯
0

)
=

(t, σ, r)

∣∣∣∣∣∣∣
∃σ0, ∃r0,

σ⊑♯σ0 ∧ r0⊑♯r ∧
(t, σ0, r0) ∈ applyi

(
⇓♯
0

)


Second, we define a functionF♯ that infers new derivations from
a set of already established derivations, by applying the abstract
inference rules. The definition of the function F♯ differs in one
important aspect from its concrete counterpart: in order to obtain
coverage of concrete rules, F♯ must apply all the rules that are
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Var(x)

x, {x 7→ +0} ⇓♯ +0
··················


while2 x s, ({x 7→ +0} ,+0) ⇓♯ {x 7→ +0}

While2False(x, s)

s, {x 7→ +0} ⇓♯ {x 7→ ⊤val}
. .
.

while1 x s, {x 7→ ⊤val} ⇓♯ {x 7→ ⊤val}
While1(x, s)

while2 x s, ({x 7→ +0} ,+0) ⇓♯ {x 7→ ⊤val}
While2True(x, s)

while1 x s, {x 7→ +0} ⇓♯ {x 7→ ⊤val}
While1(x, s)

whilex s, {x 7→ +0} ⇓♯ {x 7→ ⊤val}
While(x, s)

Figure 9: An infinite abstract derivation tree corresponding to a finite concrete derivation tree, where s ≜ (x := + x (−1))

enabled for a term in the given abstract state.

F♯
(
⇓♯
0

)
=

{
(t, σ, r)

∣∣∣∣∣ ∀i. t = li ⇒ condi (σ) ⇒
(t, σ, r) ∈ apply♯i

(
⇓♯
0

) }
In other words, the function extends the relation ⇓♯

0 by adding those
triples (t, σ, r) such that the result r is valid for all rules. By defining
F♯ in this way, we avoid having to add rules such as the If-abs rule
from above: a correct result is one that includes the computation
from both branches.

Let us consider a simple example to give some intuition. The
program ifx (r := 0) (r := x) always sets r to zero if x is defined.
Let us analyze it in an environment E♯

1 ∈ env♯ where x is +, and
in an environment E♯

2 ∈ env♯ where x is ⊤val, i.e., x is defined
but we know nothing about its value. In either case, it expands after
one step to if1 (r := 0) (r := x), and carries an information about
the computed expression x that is either + or ⊤val (or any weaker
result, but we only consider a precise derivation in this example).
In the first case we know that this expression is non zero, and only
the rule If1True (r := 0, r := x) applies: we evaluate r := 0 and
can conclude that r is zero. However in the second case, we don't
know which branch will be executed and thus additionally consider
the rule If1False (r := 0, r := x). This branch executes r := x
and sets r to ⊤val. This example illustrates a shortcoming of our
approach: even though we know the value tested has to be 0 in the
“false” branch, there is no information about how that value was
computed (evaluating x in this example). The non-local information
that allows to deduce that x is bound to 0 in the environment is
currently not available to our framework.

The function F♯ is a monotone function on the lattice

P
(

term × st♯ × res♯
)
.

The least fixed point of F♯ (with respect to the inclusion ⊆ order)
corresponds to all triples that can be inferred using finite derivation
trees. These triples are valid properties of the program, but the
restriction to finite derivations means that certain properties cannot
be inferred.

Consider the program whilex (x := + x (−1)) evaluated on a
context where x is positive. Its concrete derivation clearly termi-
nates, but there is no finite derivation in the sign abstraction seman-
tics to witness it. Indeed, initially x is bound to +0. After the first
iteration, it is bound to ⊤val, then its value becomes stable. Every
subsequent iteration thus has to consider the case where x is not
0 and to compute an additional iteration. Hence, there is no finite
abstract derivation: the abstract domain is not precise enough.

Intuitively, since the concrete derivation tree has to be “in-
cluded” into the abstract derivation tree, and since there is no bound

on the number of execution steps in the concrete derivation (which
depends on the initial value of x, the loop being unfolded that many
times), any abstract derivation has to be infinite.

Figure 9 depicts the abstract derivation tree built by recur-
sively applying F♯, writing s for (x := + x (−1)). Both rules
While2True (x, s) and While2False (x, s) are executed and their
results {x 7→ +0} and {x 7→ ⊤val} are merged (in this case, the sec-
ond merged element is greater than the first one). This follows the
definition of F♯, that applies every rule that can be applied.

We thus need to allow infinite abstract derivations. To this end,
the abstract evaluation relation, written ⇓♯, is obtained as the great-
est fixed point of F♯. The correctness of this extension, since
lfp

(
F♯

)
⊆ ⇓♯, has been proven in Coq. More importantly, a co-

inductive approach allows analyzers to use more techniques, such
as invariants, to infer their conclusions. The snippet of Figure 10
shows the definition of ⇓♯ in Coq. Note the symmetry between this
definition and the concrete definition of ⇓ in Figure 5.

5.4 Correctness of the Abstract Semantics
We have defined the local correctness as the conjunction of the
correctness of the side-condition predicates cond and cond♯ and the
correctness of the transfer functions ∼, whose Coq versions follow:

Hypothesis acond_correct : ∀ n asigma sigma,
gst asigma sigma → cond n sigma → acond n asigma.

Hypothesis Pr : ∀ n, propagates (arule n) (rule n).

We proved in Coq that under the local correctness, the concrete
and abstract evaluation relations,

⇓ = lfp (F)
⇓♯ = gfp

(
F♯

)
are related as follows.

Theorem 1 (Correctness). Let t ∈ term, σ ∈ st, σ♯ ∈ st♯, r ∈ res
and r♯ ∈ res♯.

If


σ ∈ γ

(
σ♯

)
t, σ ⇓ r

t, σ♯ ⇓♯ r♯
then r ∈ γ

(
r♯
)

.

Here follows the Coq version of this theorem. It has been proven
in a completely parameterized way with respect to the concrete and
abstract domains, as well as the rules.
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CoInductive aeval : term → ast → ares → Prop :=
| aeval_cons : ∀ t sigma r,

(∀ n,
t = left n →
acond n sigma →
aapply n sigma r) →

aeval t sigma r
with aapply : name → ast → ares → Prop :=

| aapply_cons : ∀ n sigma sigma' r r',
sigma ⊑ sigma' →
r' ⊑ r →
aapply_step n sigma' r' →
aapply n sigma r

with aapply_step : name → ast → ares → Prop :=
| aapply_step_Ax : ∀ n ax sigma r,

rule_struct n = Rule_struct_Ax _ →
arule n = Rule_Ax ax →
ax sigma = Some r →
aapply_step n sigma r

| aapply_step_R1 : ∀ n t up sigma sigma' r,
rule_struct n = Rule_struct_R1 t →
arule n = Rule_R1 _ up →
up sigma = Some sigma' →
aeval t sigma' r →
aapply_step n sigma r

| aapply_step_R2 : ∀ n t1 t2 up next
sigma sigma1 sigma2 r r',

rule_struct n = Rule_struct_R2 t1 t2 →
arule n = Rule_R2 up next →
up sigma = Some sigma1 →
aeval t1 sigma1 r →
next sigma r = Some sigma2 →
aeval t2 sigma2 r' →
aapply_step n sigma r'.

Figure 10: Coq definition of the abstract semantics ⇓♯

Theorem correctness : ∀ t asigma ar,
aeval _ _ _ t asigma ar →
∀ sigma r,

gst asigma sigma → eval _ t sigma r → gres ar r.

The predicates aeval and eval respectively represent ⇓♯ and ⇓,
while gst and gres are the concretisation functions for the seman-
tic contexts and the results.

This allows us to easily prove the correctness of an abstract
semantics with respect to a concrete semantics. We now show how
this abstract semantics can be related to analyzers.

6. Building Certified Analyzers
The abstract semantics ⇓♯ is the set of all triples provable using the
set of abstract inference rules. From a program t and an abstract se-
mantic context σ♯, the smallest r♯ such that t, σ♯ ⇓♯ r♯ corresponds
to the most precise analysis. It is, however, rarely computable. De-
signing a good certified analysis thus amounts to writing a program
that returns a precise result that belongs to the abstract semantics.

To this end, we heavily rely on the co-inductive definition of ⇓♯

to prove the correctness of static analyzers. In order to prove that a
given analyzer A : term → st♯ → res♯ is correct with respect to
⇓♯, (and thus with respect to the concrete semantics by Theorem 1),
it is sufficient to prove that the set

⇓♯
A =

{(
t, σ♯,A

(
t, σ♯

))}

is coherent, that is ⇓♯
A ⊆ F♯

(
⇓♯
A

)
. Alternatively, on may define

for every t and σ♯ a set Rt,σ♯ ∈ P
(
term × st♯ × res♯

)
such that(

t, σ♯,A
(
t, σ♯

))
∈ Rt,σ♯ and Rt,σ♯ ⊆ F♯ (Rt,σ♯

)
.

This is exactly Park’s principle [17] applied to F♯.
We instantiate this principle in Coq through the following alter-

native definition of ⇓♯. The parameterized predicate aeval_check
applies one step of the reduction: it exactly corresponds to F♯ and
is defined in Coq similarly to aeval (Figure 10). More precisely,
aeval is the co-inductive closure of aeval_check; we do not de-
fine it directly as such because Coq cannot detect productivity.

Inductive aeval_f : term → ast → ares → Prop :=
| aeval_f_cons : ∀ (R : term → ast → ares → Prop)

t sigma r,
(∀ t sigma r,

R t sigma r →
aeval_check R t sigma r) →

R t sigma r →
aeval_f t sigma r.

We then show the equivalence theorem that allows us to use
Park’s principle.

Theorem aevals_equiv : ∀ t sigma r,
aeval t sigma r ↔ aeval_f t sigma r.

Using this principle, we have built and proved the correctness of
several different analyzers, available in the Coq files accompanying
this paper [4]. Most of these analyzers are generic and can be reused
as-is2 with any abstract semantics built using our framework. We
next describe two such analyzers.

• Admitting a ⊤ rule as a trivial analyzer that always return ⊤
independently of the given t and σ♯.

• Building a certified program verifier that can check loop invari-
ants from a (non-verified) oracle and use these to make abstract
interpretations of programs.

Admitting a⊤ rule This trivial analyzer shows how to add derived
rules to the abstract semantics. There is indeed no axiom rule that
directly returns the ⊤ result for any term and context. Admitting
this rule (which is often taken for granted) amounts exactly to prove
that the corresponding trivial analyzer is correct. We thus define the
set ⇓♯

⊤ =
{(

t, σ♯,⊤
)}

and prove it coherent. We have to prove
that every triple

(
t, σ♯,⊤

)
is also part of F♯

(
⇓♯
⊤

)
, that is that

for every rule i that applies, i.e., cond♯
i

(
σ♯

)
, then

(
t, σ♯,⊤

)
∈

apply♯i
(
⇓♯
⊤

)
. But as ⊤ is greater than any other result, we just have

to prove that there exists at least one result r♯ such that
(
t, σ♯, r♯

)
∈

apply♯i
(
⇓♯
⊤

)
. This last property is implied by semantic fullness,

which we require for every semantics: transfer functions are defined
where cond♯ holds.

Building a certified program verifier To allow the usage of ex-
ternal heuristics to provide potential program properties, and thus
relax proof obligations, we have also proved a verifier: it takes an
oracle, i.e., a set of triples O ∈ P

(
term × st♯ × res♯

)
, and accepts

or rejects it. An acceptance implies the correctness of every triple

2 A function computing the list of rules which apply to a given t and σ♯ has
to be defined. Some of these generic analyzers also need a function detecting
“looping” terms (in this example terms of the form while1 s1 s2).
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Figure 11: An Illustration of the Action of the Verifier

of O. For every triple o =
(
t, σ♯, r♯

)
∈ O, the verifier checks that

it can be deduced from finite derivations starting from axioms and
elements of O, i.e., O ⊆ F♯+ (O). In practice, the verifier com-
putes hypotheses that imply o, a subset S of F♯−1

(o) such that
o ∈ F♯+ (S), and it iterates on S recursively until it reaches only
elements of O and axioms, or until it gives up. This is illustrated in
Figure 11. We prove the following.

Theorem 2 (Correctness of the verifier). If the verifier accepts O,
then O ⊆ F♯+ (O) hence O ⊆ ⇓♯.

We extracts the verifier into OCaml. Note that it can be given
any set, possibly incorrect. In that case it will simply give up. We
have tested the verifier on some simple sets of potential program
properties. These sets were constructed by following some abstract
derivation trees up to a given number of loop unfoldings and ignor-
ing deeper branches.

As an example, consider this program that computes 6×7 using
a while loop.

a := 6; b := 7; r := 0;n := a;whilen (r := + r b;n := + n (−1))

Using our analyzer on this program in the environment mapping
every variable to ⊤error returns the following result.

({r 7→ +, b 7→ +, a 7→ +, n 7→ ⊤val} ,⊥)

This means that we successfully proved that the program does not
abort (i.e., it does not access an undefined variable), but also that
the returned value is strictly positive (i.e., the loop is executed at
least once). Note that this is the best result we can get on such
an example with this formalism and the sign abstract domains. In
particular, remark that the sign domain cannot count how many
times the loop needs to be unfolded, hence the abstract derivation is
infinite. Nevertheless, the analysis deduces significant information.

7. Related Work
Schmidt’s paper on abstract interpretation of big-step operational
semantics [20] was seminal but has had few followers. The only re-
ported uses of big-step semantics for designing a static analyzer are
those of [10] who built a big-step semantics-based foundation for
program slicing by Gouranton and Le Metayer [10] and of Bagnara
et. al. [1] concerned with building a static analyzer of values and
array bounds in C programs.

Other systematic derivations of static analyses have taken small-
step operational semantics as starting point. With the aim of analyz-
ing concurrent processes and process algebras, Schmidt [21] dis-
cusses the general principles for such an approach and compares
small-step and big-step operational semantics as foundations for ab-
stract interpretation. Cousot [8] has shown how to systematically
derive static analyses for an imperative language using the princi-
ples of abstract interpretation. Midtgaard and Jensen [15, 16] used a
similar approach for calculating control-flow analyses for functional
languages from operational semantics in the form of abstract ma-

chines. Van Horn and Might [22] show how a series of analyses for
functional languages can be derived from abstract machines. An ad-
vantage of using small-step semantics is that the abstract interpreta-
tion theory is conceptually simpler and more developed than its big-
step counterpart. In particular, accommodating non-termination is
straightforward in small-step semantics. As both Schmidt and later
Leroy and Grall [13] show, non-termination can be accommodated
in a big-step semantics at the expense of accepting to work with in-
finite derivation trees defined by co-induction. Interestingly, the de-
velopment of the formally verified CompCert compiler [12] started
with big-step semantics but later switched to a mixture of small-step
and big-step semantics. Poulsen and Mosses [19] have used refocus-
ing techniques to automatically compile small-step semantics into
PBS semantics.

Machine-checked static analyzers including the Java byte code
verifier by [11] and the certified flow analysis of Java byte code
by [6] also use a small-step semantics as foundation. Cachera and
Pichardie [5] use denotational-style semantics for building certified
abstract interpretations. In spite of the difference in style of the un-
derlying semantics, these analyzers rely on the same formalization
of abstract domains as lattices. The correctness proof also include
similar proof obligations for the basic transfer functions.

In our Coq formalization we have striven to stay as close to
Schmidt’s original framework as possible, but there are a few de-
viations.

• Our development is based on a specific kind of big-step opera-
tional semantics i.e., the PBS rule format. For the formalization,
this has the advantage that the rule format becomes precisely
defined while still retaining full generality.

• Schmidt also considers infinite derivations for the concrete se-
mantics. More precisely, the set of derivation trees is taken to
be the greatest fixed point gfp(Φ) of the functional Φ induced
by the inference rules. The trees can be ordered so that the set of
semantic trees form a cpo, with a distinguished smallest element
Ω, denoting the undefined derivation. The semantics of a term t
in state E is then defined to be the least derivation tree that ends
in a judgment of form t, E ⇓ r. This tree can be obtained as the
least fixed point of the functional E : Term → env → gfp(Φ)
induced by the inference rules.

• When constructing the abstract semantics, we only abstract
conditions and transfer functions of concrete semantic rules.
Schmidt’s notion of covering relation between concrete and ab-
stract rules is more flexible in that it allows the abstract seman-
tics to be a completely different set of rules, as long as they can
be shown to cover the concrete semantics. Also, we do not in-
clude extra meta-rules that can be shown to correspond to sound
derivations (such as a fixed point rule for loops and a rule for
weakening, for example) in the basic setup. As shown in Sec-
tion 6, such meta-rules can be shown to be sound within our
framework. This deviation guides the definition of the abstract
semantics, helping its mechanization.

• Schmidt appeals to an external equation solver over abstract
domains to make repetition nodes in a derivation tree. We show
how to use an oracle analyzer to provide loop invariants that are
then being verified by the abstract interpreter.

8. Conclusions and Future Work
Big-step operational semantics can be used to develop certified
abstract interpretations using the Coq proof assistant. In this paper,
we have described the foundations of a framework for building
such abstract interpreters, and have demonstrated our approach by
developing a certified abstract interpreter over a sign domain for
a While language extended with an exception mechanism. The
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correctness proof of the analyses has been conducted and verified
using Coq [4]. The abstraction is performed in a systematic rule-by-
rule fashion. While this may complicate the way that certain, more
advanced analyses are expressed, this is deliberately done so that the
approach can scale to larger semantics and other abstract domains.

The development is based on the PBS style of operational se-
mantics. PBS leads to a well-defined, restricted yet expressive rule
format that lends itself well to a formalization in Coq.

We first formalized PBS operational semantics using dependent
types (Section 3) in order to obtain a precise model of the semantic
foundations. When implementing this style of specification within
Coq, it became apparent that Coq is not quite up to reasoning about a
formalization in terms of pure, dependent types, and a less stringent
model had to be adopted. On the other hand, Coq was fully adequate
and very useful for reasoning about the abstraction of the semantics.

The definition of the abstract derivation is co-inductive, but
co-induction only plays a well-defined and confined role in the
development. In practice, Park’s induction principle can be used
to prove soundness of related analyses, and of abstract verifiers, as
shown in Section 6.

Within our framework, defining a correct abstract interpreter is
guided through several basic steps. We first have to define a set
of concrete rules, which leads to a concrete semantics. Abstract
domains and rules are then to be defined. If the atomic computations
of these rules are locally related to the concrete ones, then the
framework provides an abstract semantics correct by construction.
Analyzers can then be defined, and their correctness amounts to
relate them to this abstract semantics.

With the basic principles well established, there are a number of
directions for future work. First, we want to apply this framework to
develop program analyses for other types of properties. We notably
plan to take advantage of the operational semantics to formalize data
flow properties such as def-use of variables and its use in depen-
dency analysis. This will be based on preliminary investigations [2]
on how to reconstruct traditional execution traces and extract def-
use information from derivation trees. Such non-local reasoning is
crucial for precise analyses: it allows for instance to use the knowl-
edge about the condition of a while loop to make more precise the
abstract semantic context used to evaluate its body. This is the rea-
son why our analyses cannot deduce that variable n is zero in the
example at the end of Section 6.

Second, we want to extend our approach to model infinite com-
putations, a standard issue when using big-step operational seman-
tics. As already explained in [20] and recalled in Section 7, infi-
nite computations can be accommodated by using infinite derivation
trees for the concrete semantics, and ordering them into a complete
partial order on which a least fixed point semantics can be defined.
Our correctness theorems should be extended to this more general
semantics.

Finally, we plan to test the scalability of the approach on a large
semantics. The ultimate goal is to develop certified static analyses
for JavaScript based on the JSCert PBS formalization, where the
design and correctness proof of the analysis are guided by our
framework. Developing such an analysis will furthermore enable
us to test another aspect of the approach viz. to what extent our
approach to certified abstract interpretation helps in maintaining
and modifying large-scale analyses.
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Résumé

The memory manipulated by JavaScript programs can be seen as a heap of extensible records
storing values and pointers. We define a separation logic for describing such structures. In order to
scale up to full-fledged languages such as JavaScript, this logic must be integrated with existing
abstract domains from abstract interpretation. However, the frame rule—which is a central notion
in separation logic—does not easily mix with abstract interpretation. We present a domain of
heaps of interlinked extensible records based on both separation logic and abstract interpretation.
The domain features spatial conjunction and uses summary nodes from shape analyses. We show
how this domain can accommodate an abstract interpretation including a frame rule.

1. Introduction
The memory of a JavaScript program is a dynamic and complex heap of extensible records storing
values and pointers. Fields can be added and removed from records dynamically, and their presence can
be tested. Moreover, records are not constrained by a static type structure, which further complicates
the analysis of the shapes that these interlinked objects may form. Obtaining a good approximation
of the memory structure of a JavaScript program is a challenge for static analysis, even if we restrict
other features of the language such as computed field names and dynamic code generation.

In this paper, we present a solution to this challenge, by mixing elements of separation logic and
shape analysis, and integrating them into an abstract interpretation framework. Separation logic in
itself is not adequate for describing the inter-connected heaps of JavaScript. First, separation logic
is based on some additional structures, such as lists or trees. For JavaScript, such structures can be
difficult to identify, as illustrated by Gardner et al. [10]. Second, JavaScript native structures tend
to not separate nicely. Gardner et al. propose to remedy this through a partial separation operator
⊔⋆ (“seppish”). The formula 𝑃 ⊔⋆ 𝑄 describes a heap which can be split in two heaps, one satisfying
𝑃 and the other 𝑄; but these two heaps do not need to be disjoint. Here, we pursue this idea, but
instead of introducing a new operator in separation logic, we inject ideas from shape analyses, and
use summary nodes for modelling the portion of memory that may be shared. In this way, we move
the approximation into the shape structures while keeping a precise separation operator ⋆.

The work described here is part of a larger project on certified static analyses in which static analysis
tools are developed an proved correct based on a mechanised formalisation of the semantics of the
underlying language. More precisely, the aim is to build on the JSCert [2] semantics for JavaScript,
a pretty-big step operational semantics [6] entirely written in Coq. The size of the JavaScript’s
semantics imposes that we take an approach that is both principled and mechanisable. We base the
development on the theory of abstract interpretation. Abstract interpretation [7] provides a powerful
theory for finding and proving loop invariants within a program, assuming minimal structure on the

This research was partially supported by the French ANR-10-LABX-07-01 Laboratoire d’excellence CominLabs and
ANR-14-CE28-0008 project Ajacs.
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space of abstract domains. For the mechanisation, certification in proof assistants such as Coq is
needed. We have previously built a Coq library [3] providing the building blocks for constructing
an abstract interpretation from a pretty-big step operational semantics, following initial ideas of
Schmidt [14]. In that paper, we showed how to derive abstract rules from concrete ones in such a way
that abstract derivations are correct by construction. Here, we show how to extend this approach
with abstractions of heaps using techniques from both separation logic and shape analysis, in order
to give reasonable results for JavaScript.

The abstract domains arising from separation logic do not have the rich structure of lattices
encountered in many abstract interpretations. The theory of abstract interpretation, however, does
generalise to the setting where the underlying structure is that of only a subset of a pre-order. We
shall hence use this more general framework, which provides the same correctness guarantees but does
not explain how to compute a best analysis result.

Separation logic provides useful notions for the analysis of heap-manipulating programs. In
separation logic, abstract rules are only given locally: they only state what is changed by a given
program, assuming that everything not mentioned is left unchanged. The frame rule then allows to
add an unchanged partial heap to the analysed result. This mechanism is very powerful to locally
reason about programs. However JavaScript introduces some new issues about the frame rule:
Reynolds [13, Section 3.5] stated that the frame rule can not be applied as-is if the language allows
constructions similar to JavaScript’s delete operator. We address this issue using a special value ⊠.

The main contributions of this paper are as follows.

• A combination of separation logic and shape analysis, which allows to use the separation ⋆ for
disjoint domains, and shapes for complex domains with potential sharing.

• An alternative to the ⊔⋆ operator that better fits the frame rule.

• An integration of separation logic into an abstract interpretation framework based on pre-orders
and big-step operational semantics, extending our previous work [3].

The paper is organised as follows. We first present our toy language OWhile. Our logic is
presented in two steps: first, a logic over abstract domains is built in Section 3; its structure should
not be surprising to a reader familiar with separation logic. A crucial step of the approach is the
addition of membranes, in Section 4.1, to deal with the frame rule. Second, we add the summary
nodes from shape analyses to the domain in Section 5. Section 6 presents how we build our program
logic for OWhile, leading in Section 6.4 to the correctness of our abstract semantics. Section 7
examines related work and Section 8 concludes.

2. The OWhile Language
We define our analyses on a small imperative language with interlinked records, called OWhile. This
language is inspired from JavaScript’s memory model but we shall disregard all aspects related to
prototype inheritance or type conversion. We can create new records (which we call objects), and read,
write, and delete their fields (also called properties in JavaScript). Records are interlinked because
their fields may contain pointers to other objects.

The syntax of our language is presented in Figure 1. A detailed version of the concrete semantics
can be found in Appendix A, but it comes with no surprises for a pretty-big-step semantics [6]. There
are only numbers in the language, so for the purpose of branching (instructions if and while), the
number 0 behaves as false, and any other number as true. The operation ? non-deterministically
returns a number. Fresh objects are created by the {} expression. We can access the field f of an
object computed by 𝑒 through 𝑒.f. We can check the presence or absence of a given field f in an
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𝑠 ∶∶= skip | 𝑠1; 𝑠2 | if 𝑒 𝑠1 𝑠2
| while 𝑒 𝑠 | throw | x ∶= 𝑒
| 𝑒1.f ∶= 𝑒2 | delete 𝑒.f

(a) Statements

𝑒 ∶∶= 𝑛 ∈ ℤ | ? | x ∈ Var | nil
| {} | 𝑒.f | f in 𝑒 | ¬ 𝑒
| = 𝑒1 𝑒2 | 1 𝑒1 𝑒2 (1 ∈ {>,+,−})

(b) Expressions

Figure 1: The syntax of the OWhile language

object computed by 𝑒 through f in 𝑒, which returns 1 if the field is present and 0 otherwise. As in
JavaScript, writing to the field f of an object adds the field if it is not already present, and deleting
an object’s field succeeds even if the field is absent. There is no explicit declaration of variables: as
for fields, writing a variable which is not defined creates it. A program may abort for the following
reasons: explicitly running throw, reading a variable or a field that is not assigned, or accessing the
field of a value that is not an object. The state 𝑆 of a program is composed of two components.

• An environment (also called store in JavaScript parlance) 𝐸 ∶ Var ⇀ Val, where Var is the
set of variable names and Val is the set of values. A value 𝑣 ∈ Val can either be a location 𝑙𝑖
(including the special null location 𝑙0, always out of the domain of 𝑆), or a basic value 𝑛 ∈ ℤ.

• A heap 𝐻 ∶ Loc ⇀ 𝔉 ⇀ Val, where Loc = {𝑙𝑖 ∣ 𝑖 ∈ ℕ⋆} is the set of non-null locations, and 𝔉 the
set of field names. We assume 𝔉 to be infinite.

We define dom (𝑆) to be dom (𝐸) ∪ dom (𝐻) where 𝐸 and 𝐻 are the respective environment and
heap of 𝑆. The function fresh takes a state 𝑆 and returns a location fresh in 𝑆, i.e., 𝑙𝑗 ∉ dom (𝐻).

3. Abstract Domains

3.1. Abstract State Formulae
In this section we build a separation logic over an abstract domain of base values. There are various
ways of representing separation logic; our logic is based on the work of [10]. Abstract state formulae
𝜙 ∈ State♯ model pairs of concrete heaps and stores. These formulae are defined as follows.

𝜙 ∶∶= emp | 𝜙1 ⋆ 𝜙2 | x =̇ 𝑣♯ | 𝑙 ↦ {𝑜} 𝑜 ∶∶= f ∶ 𝑣♯, 𝑜 | _ ∶ 𝑣♯

These formulae make use of abstract locations 𝑙 ∈ LLoc♯. These locations are identifiers which
are meant to represent one concrete (non-null) location. In the concretisation of formulae, abstract
locations are related to concrete locations by a valuation 𝜌 ∶ LLoc♯ ⇀inj Loc (where ⇀inj denotes a
partial injection). Concrete locations in Loc are written with an exponent 𝑙𝑖 whilst abstract locations
use indexes or primes: 𝑙, 𝑙𝑖, or 𝑙′.

The structure of the abstract domain for values 𝑣♯ ∈ Val♯ is described in detail in Section 3.2. For
now, we just note that this abstract domain contains abstract locations (detailed below) and abstract
properties of numeric values (sign, parity, intervals, …). The concretisation function 𝛾𝜌 of abstract
values relates them to sets of concrete values.

The formula emp describes the empty heap and empty environment. The spatial conjunction 𝜙1⋆𝜙2
describes the set of all heaps and environments which we can separate into two smaller heaps and
environments, each respecting one of the two sub-formulae 𝜙1 and 𝜙2. The ⋆ operator is commutative,
associative, and has emp as neutral element. The formula x =̇ 𝑣♯ states that the value of the variable
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x satisfies the property 𝑣♯. We follow the tracks of [12] and do not consider this formula pure. As we
are not interested in concurrency in this paper, we use a simpler version than [12] where we either
have full permission over x if x =̇ 𝑣♯ is present, and no permission otherwise. The construction 𝑙 ↦ {𝑜}
describes the set of heaps whose only defined location 𝜌 (𝑙) points to an object abstracted by {𝑜}.

Objects are abstracted as a list associating fields to abstract values, with an additional default
abstract value for the other fields present in the object.1 All the specified field names of an object
are supposed to be different. An abstract object {f1 ∶ 𝑣♯1, … , f𝑛 ∶ 𝑣♯𝑛, _ ∶ 𝑣♯𝑟} represents the set
of objects whose respective fields f1, …, f𝑛 are abstracted by respectively 𝑣♯1, …, 𝑣♯𝑛, and all the
other fields are abstracted by 𝑣♯𝑟. Abstract values also include the possibility to state that a field is
undefined. This is expressed through the special value ⊠. The abstract object {f ∶ ⊠, g ∶ 𝑣♯, _ ∶ ⊤}
thus describes the set of objects such that each object has no field f and its field g can be abstracted
by 𝑣♯. Similarly, {_ ∶ ⊠} describes the singleton of the empty object, which is returned by {}.

An alternative approach to model heaps and objects is to allow the separation of fields themselves,
as in 𝑙 f7−→ 𝑣♯1 ⋆ 𝑙 g

7−→ 𝑣♯2, in a way similar to [10]. We experimented with this approach and discovered
that it results in complex interactions with the frame rule. We thus follow a simpler approach here.

3.2. Abstract Values and Abstract Object

Our separation logic formulae are parameterized over an abstract domain describing the base values
which variables and fields can contain. In line with the dynamic typing of JavaScript, we shall
consider an abstract domain containing both numerical values and locations. Hence, a variable may
contain both types of values depending on the flow of control, and the abstract domain has to be able
to join such values together.

In addition, when analyzing JavaScript’s heap, we must take into account expressions like f in 𝑒
whose result depends on the absence of a field. We thus have to track whether fields can be undefined.2
To this mean, we attach a boolean to the abstract values to indicate whether the concrete value can
be undefined, as illustrated before with the value ⊠. We use this boolean at two different places: to
indicate that a field is possibly undefined, but also to indicate that a variable is possibly undefined.

Suppose a lattice domain ℤ♯ carrying abstract properties of numeric, or basic, values (sign, parity,
intervals, …). Such a domain must store information about the different instances of values: basic
values, locations, the possibility of being the special location 𝑙0, and the possibility of being undefined.
We define abstract values to be tuples of the form (𝑛♯,nil?, 𝐿, 𝑑), where 𝑛♯ ∈ ℤ♯ denotes the possible
basic values which can be represented by this abstract value; nil? is a boolean stating whether the
value can be 𝑙0 (denoted by nil) or not (denoted by nil); 𝐿 ∈ 𝒫𝑓 (LLoc♯)⊤ denotes the possible location
values (𝒫𝑓 (LLoc♯)⊤ denotes the set of finite subsets of LLoc♯ augmented with a ⊤ element); and the
boolean 𝑑 ∈ {⊠,□} denotes whether the value can be undefined (denoted by ⊠) or can not (denoted
by □). Each part of these tuples carries the information about a kind of value.

For the sake of readability, we will identify the projections of an abstract value 𝑣♯ with 𝑣♯ itself if
all the other projections are bottoms elements of their respective lattice. For instance we will write 𝑛♯

to mean (𝑛♯,nil, ∅,□), nil to mean (⊥,nil, ∅,□), and ⊠ to mean (⊥,nil, ∅, ⊠). We will also identify 𝑙
with (⊥,nil, {𝑙} ,□). To avoid the cumbersome tuple notation, we will use the natural join operation
on this domain and write values such as 𝑙 ⊔ ⊠.

The order on the tuple is the usual product order: a tuple is less than another if all its projections
are less than the others. Sets of locations are ordered using the usual set lattice. The definition part

1This default field is sometimes called a summary node in the literature; we do not use this name as summary nodes
denote a different concept in this paper.

2This abstract value is different from the JavaScript value undefined.
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𝑑 is ordered by □ ⊑ ⊠ as □ forces the value to be defined while ⊠ allows (without forcing) it to be
undefined. We similarly define nil ⊑ nil. We use the symbol ⊑ to denote the order within a lattice,
that is over abstract values and abstract objects.

We can now define an order on abstract objects as follows: two objects are ordered, {𝑜1} ⊑ {𝑜2}
if all the fields of {𝑜1} are associated with a value which is smaller than the value of the same field in
{𝑜2}. To check the order relation between two objects, we rely on the default value for all fields not
explicitly mentioned in the object. With this value, we can rewrite the two objects so that they refer
to the same fields, using the following rewriting equality,

{f1 ∶ 𝑣♯1, … , f𝑛 ∶ 𝑣♯𝑛, _ ∶ 𝑣♯𝑟} = {f1 ∶ 𝑣♯1, … , f𝑛 ∶ 𝑣♯𝑛, g ∶ 𝑣♯𝑟, _ ∶ 𝑣♯𝑟}

which holds provided that g is not one of the f1, …, f𝑛. This order equips abstract objects with
a lattice structure, with ⊔ and ⊓ computing the abstract object whose fields are associated to the
results of the corresponding operator ⊔ or ⊓ applied on the corresponding fields of the two operands
(completed such that they have the same fields):

{f1 ∶ 𝑣♯1, … , f𝑛 ∶ 𝑣♯𝑛, _ ∶ 𝑣♯𝑟} ⊔ {f1 ∶ 𝑣′♯1, … , f𝑛 ∶ 𝑣′♯𝑛, _ ∶ 𝑣′♯𝑟}

= {f1 ∶ 𝑣♯1 ⊔ 𝑣′♯1, … , f𝑛 ∶ 𝑣♯𝑛 ⊔ 𝑣′♯𝑛, _ ∶ 𝑣♯𝑟 ⊔ 𝑣′♯𝑟}

4. The Frame Rule
Our main contribution deals with the interaction between formulae and the frame rule. In order to
introduce it, we first detail how this rule typically works. The frame rule defines how to extend Hoare
triples using the separation operator ⋆. A Hoare triple 𝜙1, 𝑡 ⇓♯ 𝜙2 states that the term 𝑡 changes any
heap that satisfies formula 𝜙1 in a heap that satisfies formula 𝜙2. In our setting, a heap satisfies a
formula if it belongs to its concretisation. A heap ℎ belongs to the concretisation of a formula 𝜙1 ⋆ 𝜙2
if it can be split in disjoint heaps ℎ1 and ℎ2 such that ℎ1 satisfies 𝜙1 and ℎ2 satisfies 𝜙2.

Frame
𝜙1, 𝑡 ⇓♯ 𝜙2

𝜙1 ⋆ 𝜙𝑐, 𝑡 ⇓♯ 𝜙2 ⋆ 𝜙𝑐

For the frame rule to be correct, it is crucial that if 𝜙1 ⋆ 𝜙𝑐 is defined (the set of concrete heaps
it denotes is not empty), then 𝜙2 ⋆ 𝜙𝑐 is defined. In our setting, this may not be the case when new
abstract locations are introduced in 𝜙2. For instance, consider the abstract rule NewObj, which
builds the Hoare triple emp, {} ⇓♯ 𝑙 ↦ {_ ∶ ⊠}. The result contains an additional location 𝑙 which we
would like to keep fresh from the initial abstract heap emp. However, the frame rule applied as-is can
add a new fact about 𝑙 and generate the Hoare triple 𝑙 ↦ {_ ∶ ⊠} , {} ⇓♯ 𝑙 ↦ {_ ∶ ⊠} ⋆ 𝑙 ↦ {_ ∶ ⊠},
which is wrong as the result formula has an empty concretisation (because 𝑙 is not separated) whilst
a concrete derivation tree can easily be derived. This problem also occurs when renaming abstract
locations, as is described in Section 5.

To ensure the soundness of the frame rule, we have to introduce scopes for identifiers in a formula.
For instance, the scope of a newly created location 𝑙 should be restricted to the result formula, as
in emp, {} ⇓♯ (𝜈𝑙 | 𝑙 ↦ {_ ∶ ⊠}): this states that any mention of 𝑙 outside the formula is actually a
different identifier. Since we not only need to restrict the scope of identifiers, but also relate names
inside a scope to names outside the scope, we introduce the notion of membrane. A membrane 𝑀
traces the links between these two scopes. Each context added by the frame rule has to be converted
when entering a membrane. Membranes behave like substitutions: we can compose them through ∘
and apply them to a formula 𝜙 to update its identifiers. Our version of the frame rule, defined in
below, relies on membranes for its soundness.
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4.1. Membranes

Membranes 𝑀 are defined as a set of scope changes 𝑚, which can be caused either because a location
has been renamed, or because a new location has been allocated. The abstraction Φ of heap and
environment is now a couple of a formula 𝜙 and a rewriting membrane 𝑀 , written (𝑀 | 𝜙). We call
the simple formulae 𝜙 inner formulae and the membraned formulae Φ formulae.

𝑚 ∈ 𝔐 ∶∶= 𝑙 → 𝑙′ | 𝜈𝑙 Φ ∶∶= (𝑀 | 𝜙) 𝑀 ∈ 𝒫𝑓 (𝔐)

We impose left-hand sides of scope changes to only appear once in a given membrane. We also impose
that in a formula Φ = (𝑀 |𝜙), any location 𝑙 in 𝜙 is present on the right-hand side of a scope change
or as a new name 𝜈𝑙 in 𝑀 . We define the domain dom (𝑀) of a membrane 𝑀 as the set of left-
hand sides of its rewritings, and the codomain codom (𝑀) as the union of the set of right-hand sides
of its rewritings and the set of newly allocated locations. The interface interface (Φ) of a formula
Φ = (𝑀 |𝜙) is the domain of its membrane dom (𝑀): these locations are accessible from the outside
of the formula. The substitution 𝑀 (𝜙) applied to inner formulae works as expected: it renames every
abstract locations either as values or as memory cells. Trivial rewritings such as 𝑙 → 𝑙 are allowed and
sometimes required: an abstract location 𝑙 may be unchanged by the membrane, but it still has to be
in the interface; the domain names of the inner and scope scopes are independent.

Let us consider a simple example: Φ = (𝑙0 → 𝑙| x =̇ 𝑙 ⋆ 𝑙 ↦ {f ∶ 𝑙, _ ∶ ⊠}). The membrane {𝑙0 → 𝑙}
renames the outer location identifier 𝑙0 to the inner location 𝑙. If the frame rule introduces a context
𝜙𝑐 = 𝑙1 ↦ {f ∶ 𝑙0, _ ∶ ⊠} referring to 𝑙0, the integration of 𝜙𝑐 in the membrane leads to the
renaming of 𝑙0 into 𝑙 for a final formula (𝑙0 → 𝑙| x =̇ 𝑙 ⋆ 𝑙 ↦ {f ∶ 𝑙, _ ∶ ⊠} ⋆ 𝑙1 ↦ {f ∶ 𝑙, _ ∶ ⊠}). On
the other hand, if the frame rule introduces a context with a 𝑙 such as 𝜙𝑐 = 𝑙1 ↦ {f ∶ 𝑙, _ ∶ ⊠},
this 𝑙 is actually different from the one in Φ. In this case, Φ is 𝛼-renamed, for instance to
Φ = (𝑙0 → 𝑙′ ∣ x =̇ 𝑙′ ⋆ 𝑙′ ↦ {f ∶ 𝑙′, _ ∶ ⊠}), to avoid the capture of 𝑙 when 𝜙𝑐 enters the membrane.
Note that 𝛼-renaming does not change the interface of a formula: only its codomain is modified.

Formulae are used to abstract states (environment and heap), but there are places in our semantics
where additional values are carried. In pretty-big-step, we use intermediate terms along the execution,
which require to carry additional values. For example, the assignment x ∶= 𝑒 involves two steps
(evaluating the expression and updating the state) so we introduce an intermediate term x ∶=1 whose
semantic context consists of a state and a value to assign to x and whose result is the update state.
These values can contain locations and must be placed inside membranes: we shall thus sometimes
manipulate formulae of the form (𝑀 ∣ 𝑙 ↦ {𝑜} , 𝑙 ⊔ 𝑙′) where the value 𝑙 ⊔ 𝑙′ represents the value of the
intermediate semantic context. All operations defined on usual formulae can be extended to extended
formulae. We do not show the details here for space reasons.

4.2. Separating Formulae

To express the frame rule in our formalism, the frame has to manipulate membranes; we define the
operator ⋆ (read “in frame”) taking two formulae Φ𝑜 = (𝑀𝑜 | 𝜙𝑜) and Φ𝑖 = (𝑀𝑖 | 𝜙𝑖)—𝑖 stands
for “inner” and 𝑜 for “outer”—which intuitively builds (𝑀𝑜 | 𝜙𝑜 ⋆ (𝜙𝑖 |𝑀𝑖)) (this formula does not
fit the grammar of formulae as-is): the inner formula is considered in the context of the outer
one. This operation is associative, but not commutative. It performs an 𝛼-renaming of the inner
identifiers of 𝜙𝑖 to prevent conflicts with 𝑀𝑖, then pushes 𝜙𝑜 through the membrane 𝑀𝑖. For instance
for Φ𝑜 = (𝑙0 → 𝑙, 𝑘0 → 𝑘| 𝑘 ↦ {g ∶ 𝑘, h ∶ 𝑙, _ ∶ ⊠}) and Φ𝑖 = (𝑙 → 𝑘 | 𝑘 ↦ {f ∶ 𝑘 ⊔ nil, _ ∶ ⊠}), the
identifier 𝑘 is used both in 𝜙𝑖 and in 𝜙𝑜, but because of the membranes, it represent a different set of
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concrete locations in both formulae. We thus 𝛼-rename 𝑘 into 𝑘′ to avoid name conflict:

(𝑙0 → 𝑙, 𝑘0 → 𝑘| 𝑘 ↦ {g ∶ 𝑘, h ∶ 𝑙, _ ∶ ⊠}) ⋆ (𝑙 → 𝑘 | 𝑘 ↦ {f ∶ 𝑘 ⊔ nil, _ ∶ ⊠})
= (𝑙0 → 𝑙, 𝑘0 → 𝑘| 𝑘 ↦ {g ∶ 𝑘, h ∶ 𝑙, _ ∶ ⊠}) ⋆ (𝑙 → 𝑘′ ∣ 𝑘′ ↦ {f ∶ 𝑘′ ⊔ nil, _ ∶ ⊠})
= (𝑙0 → 𝑘′, 𝑘0 → 𝑘∣ 𝑘 ↦ {g ∶ 𝑘, h ∶ 𝑘′, _ ∶ ⊠} ⋆ 𝑘′ ↦ {f ∶ 𝑘′ ⊔ nil, _ ∶ ⊠})

Because of the composition of membranes, 𝑙, which was an identifier introduced by 𝑀𝑜 but substituted
by 𝑀𝑖, was removed. Membranes are meant to be composed by the ⋆ operator, and the domain of
the inner membrane should thus be in the codomain of the outer one: dom (𝑀𝑖) ⊆ codom (𝑀𝑜).

We define ⋆ as follows. Given and Φ𝑜 = (𝑀𝑜 | 𝜙𝑜) Φ𝑖 = (𝑀𝑖 | 𝜙𝑖) such that dom (𝑀𝑖) ⊆
codom (𝑀𝑜), we 𝛼-rename Φ𝑖 into Φ′

𝑖 = (𝑀′
𝑖 ∣ 𝜙′

𝑖) such that codom (𝑀′
𝑖) ∩ codom (𝑀𝑜) = ∅. We

then make the formula 𝜙𝑜 enter the membrane 𝑀𝑖:

Φ𝑜 ⋆ Φ𝑖 = Φ𝑜 ⋆ Φ′
𝑖 = (𝑀′

𝑖 ∘ 𝑀𝑜 ∣𝑀′
𝑖 (𝜙𝑜) ⋆ 𝜙′

𝑖)

We are now ready to state our frame rule.

Frame
Φ, 𝑡 ⇓♯ Φ′

Φ𝑐 ⋆ Φ, 𝑡 ⇓♯ Φ𝑐 ⋆ Φ′

Although our program logic is not introduced until Section 6, here is an example of how the frame
rule can be used. Consider the program if ? skip (x ∶= ?) where the branch is chosen randomly, one
branch does nothing while the other assigns a random value to x. The empty branch of the if can be
given the Hoare triple emp, skip ⇓♯ emp, and the other branch the Hoare triple x =̇ ⊠, x ∶= ? ⇓♯ x =̇ ⊤ℤ.
The first branch can then be extended using the frame rule to the triple x =̇ ⊠, skip ⇓♯ x =̇ ⊠. Since
both branches now have the same assumption, they may be merged together for the whole conditional:
x =̇ ⊠, if ? skip (x ∶= ?) ⇓♯ x =̇ ⊠ ⊔ ⊤ℤ.

5. Adding Summary Nodes
Up to this point, the formulae which we have defined reflect precisely the structure of the concrete
heap. However, this approach is not viable in the presence of loops. We need a way to forget about
some information of the structure, in particular its size. To this end, we reuse the idea of summary
nodes from shape analysis, by adding a new kind of abstract locations 𝑘 ∈ KLoc♯ which represent a
set (finite and possibly empty) of concrete locations. We call them summary locations. As with LLoc♯,
this new set of abstract locations KLoc♯ is supposed to be a new, infinite, set of identifiers. We note
abstract locations as ℎ ∈ KLoc♯ ⊎ LLoc♯.

Abstract values have been defined in Section 3.2 as tuples (𝑛♯,nil?, 𝐿, 𝑑), where 𝐿 ∈ 𝒫𝑓 (LLoc♯)⊤.
We update them to track summary nodes by changing their projection 𝐿 to 𝐿 ∈ 𝒫𝑓 (LLoc♯ ⊎ KLoc♯)⊤.
Values are thus abstracted by Val♯ = ℤ♯ × {nil,nil} × 𝒫𝑓 (LLoc♯ ⊎ KLoc♯)⊤ × {□, ⊠}.

In formulae, summary locations may occur on the left-hand side of heaps 𝑘 ↦ {𝑜}, denoting heaps
where every concrete location in the concretion of 𝑘 maps to a concretion of 𝑜. When 𝑘 occurs as a
value, its concretion is any single location denoted by 𝑘. Note the asymmetry in 𝑘 ↦ {f ∶ 𝑘, _ ∶ ⊠},
which means that every concrete location represented by 𝑘 has a field f pointing to a concrete location
in the set represented by 𝑘, but there is no relation between these two concrete locations. In particular,
they need not be the same.

The set of formulae with summary nodes is defined as follows.
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𝑘1 𝑘2

{𝑜1} {𝑜2}

𝑘

{𝑜1} ⊔ {𝑜2}

⇝

(a) Summarizing two summary nodes

•𝑙

{𝑜}

𝑘

{𝑜}

⇝

(b) Summarizing an ab-
stract location

𝑘

•𝑙

{𝑜}
f

𝑘

•𝑙

{𝑜}
f⇝ •𝑙

′

(c) Materialisation

Figure 2: Picturisation of membrane operations

𝜙 ∶∶= emp | 𝜙1 ⋆ 𝜙2
| x =̇ 𝑣♯
| ℎ ↦ {𝑜}

ℎ ∶∶= 𝑙 | 𝑘
𝑜 ∶∶= f ∶ 𝑣♯, 𝑜

| _ ∶ 𝑣♯

𝑚 ∈ 𝔐 ∶∶= ℎ → ℎ1 +…+ ℎ𝑛
| 𝜈ℎ

Φ ∶∶= (𝑀 | 𝜙) 𝑀 ∈ 𝒫𝑓 (𝔐)

Abstract values 𝑣♯ can now contain basic values, abstract locations ℎ (which can be summary
nodes 𝑘 or precise abstract locations 𝑙), the special nil, and the special abstraction ⊠. We update the
definition of domain and codomain of membranes as expected:

dom (ℎ → ℎ1 +…+ ℎ𝑛) = {ℎ} codom (ℎ → ℎ1 +…+ ℎ𝑛) = {ℎ1,… , ℎ𝑛}
dom (𝜈ℎ) = ∅ codom (𝜈ℎ) = {ℎ}
dom (𝑀) = ⋃

𝑚∈𝑀
dom (𝑚) codom (𝑀) = ⋃

𝑚∈𝑀
codom (𝑚)

As renamings can now map an abstract location to several abstract locations, substitutions 𝑀 (𝜙) can
now duplicate memory cells: {𝑘 → 𝑘1 + 𝑘2} (𝑘 ↦ {𝑜}) = 𝑘1 ↦ {𝑜 [𝑘1 ⊔ 𝑘2/𝑘]}⋆ 𝑘2 ↦ {𝑜 [𝑘1 ⊔ 𝑘2/𝑘]}.

There are two basic operations on summary locations: summarizations and materializations. These
two operations rename abstract locations, thus changing the scope of formulae: membranes are a
crucial point for their soundness in accordance to their interaction with the frame rule. Let us first
only consider an inner formula 𝜙.

The summarization consists in merging abstract locations ℎ1, …, ℎ𝑛 into a single new summary
node 𝑘. Figures 2a and 2b picture two examples of summarizations, respectively of two summary
nodes, and of an abstract location. It allows to loose information about the structure of ℎ1, …,
ℎ𝑛; typically to get a loop invariant. In order to perform a summarization, we need to have in the
considered inner formula 𝜙 the explicit definition of all these abstract locations: it is not possible
to summarize 𝑙 and 𝑙′ in the formula 𝑙 ↦ {f ∶ 𝑙′, _ ∶ ⊠} as we do not have access to the resource
𝑙′. Let us thus suppose that the formula 𝜙 is of the form ℎ1 ↦ {𝑜1} ⋆ … ⋆ ℎ𝑛 ↦ {𝑜𝑛} ⋆ 𝜙′. The
summarization of ℎ1, …, ℎ𝑛 into 𝑘, provided that 𝑘 does not appear in 𝜙, is the following formula.

(ℎ1 → 𝑘,… , ℎ𝑛 → 𝑘∣ (𝑘 ↦ {𝑜1} ⊔ … ⊔ {𝑜𝑛} ⋆ 𝜙′) [𝑘/ℎ1]… [𝑘/ℎ𝑛])

We have merged all the statements about ℎ1, …, ℎ𝑛, replaced in the current context 𝜙′ and the
merged abstract object these abstract locations by 𝑘, and left a notice in the form of a membrane for
additionnal contexts added by the frame rule about the operation which took place.

The materialization follows the same scheme, pictured in figure 2c. Given an entry point to a
summary node 𝑘—either on the form of a variable x =̇ 𝑘 or a location 𝑙 ↦ {f ∶ 𝑘, …}—we can
rewrite a summary location into a single location (pointed by the entry point) and another summary
node, representing the rest of the concrete locations previously present. Indeed, we know that 𝑘
cannot represent an empty set of locations, and we would like to split it into the exact location
𝑙′ accessed by our entry point, and the rest 𝑘′ of the other locations. This operation allows to
perform strong updates on these precise values. The materialization of 𝑘 into 𝑙′ and 𝑘′ through
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𝑙.f (or a variable x) transforms an inner formula of the form 𝑘 ↦ {𝑜} ⋆ 𝑙 ↦ {f ∶ 𝑘, …} ⋆ 𝜙′ into the
formula (𝑘 → 𝑙′ + 𝑘′ ∣ (𝑙′ ↦ {𝑜} ⋆ 𝑘′ ↦ {𝑜} ⋆ 𝑙 ↦ {f ∶ 𝑙′, …} ⋆ 𝜙′) [𝑙′ ⊔ 𝑘′/𝑘]): the entry point have
been replaced by the precise location 𝑙′ at the cost of replacing every occurence of 𝑘 by 𝑙′ ⊔ 𝑘′.
The membrane is for now only partial as there might be uncaught locations in 𝜙′ or in {𝑜}. The
materialization can only be performed if the entry point is precise: to perform a materialization over
x =̇ 𝑙 ⊔ 𝑘 for instance, we would have to first summarize 𝑙 and 𝑘 into the same summary node. Note
that materialization can always be reversed using a well-chosen summarization.

These two processes of summarization and materialization have been shown on inner formulae.
For formulae, we have to merge the new rewriting to the membrane. For instance, let us consider a
summarization of 𝑙 and 𝑘 to 𝑘′ on the following formula:

Φ = (𝑘0 → 𝑘, 𝑙0 → 𝑙| x =̇ 𝑙 ⋆ 𝑙 ↦ {f ∶ 𝑘, _ ∶ ⊠} ⋆ 𝑘 ↦ {g ∶ 𝑘, _ ∶ ⊠})
We first forget about the membrane and perform the summarization on its inner formula, getting a new
inner formula and the partial membrane {𝑘 → 𝑘′, 𝑙 → 𝑘′}; we then compose this partial membrane
with the old membrane to get Φ′: {𝑘 → 𝑘′, 𝑙 → 𝑘′} ∘ {𝑘0 → 𝑘, 𝑙0 → 𝑙} = {𝑘0 → 𝑘′, 𝑙0 → 𝑘′}.

Φ′ = (𝑘0 → 𝑘′, 𝑙0 → 𝑘′ ∣ x =̇ 𝑘′ ⋆ 𝑘′ ↦ {f ∶ 𝑘′ ⊔ ⊠, g ∶ 𝑘′ ⊔ ⊠, _ ∶ ⊠})

For the sake of example, let us continue by materializing 𝑘′ in Φ′ through x. As before, we focus
on the inner formula, then compose the generated rewriting 𝑘′ → 𝑙″+𝑘″ to the membrane to get Φ″:
{𝑘′ → 𝑙″ + 𝑘″} ∘ {𝑘0 → 𝑘′, 𝑙0 → 𝑘′} = {𝑘0 → 𝑙″ + 𝑘″, 𝑙0 → 𝑙″ + 𝑘″}.

Φ″ = (𝑘0 → 𝑙″ + 𝑘″, 𝑙0 → 𝑙″ + 𝑘″ ∣ x =̇ 𝑙″ ⋆ 𝑙″ ↦ {f ∶ 𝑙″ ⊔ 𝑘″ ⊔ ⊠, g ∶ 𝑙″ ⊔ 𝑘″ ⊔ ⊠, _ ∶ ⊠}
⋆ 𝑘″ ↦ {f ∶ 𝑙″ ⊔ 𝑘″ ⊔ ⊠, g ∶ 𝑙″ ⊔ 𝑘″ ⊔ ⊠, _ ∶ ⊠})

These transformations are permitted by a relation ≼ compatible with them: if Φ becomes Φ′

through one of these transformations, then Φ ≼ Φ′. Intuitively, Φ ≼ Φ′ means that Φ is more precise
than Φ′. The soundness of these transformations is then implied by the soundness of ≼. In contrary
to usual abstract interpretation, the relation ≼ is not required to form a lattice, but only to be sound
with respect to the concretisation in any context, as shown in Section 6.3. The pre-order ≼ is defined
in Appendix B, but understanding its heavy definition is not needed to follow the rest of this paper.

Materializations and summarizations are the usual manipulations defined in shape analysis, but
our formalism allows to define other similar operations. For instance, we could define a filtering op-
eration which partitions locations depending on the values of their fields: the filtering of 𝑘 relative
to field f and the values 𝑙1 and 𝑙2 in the formula (𝑘0 → 𝑘 + 𝑙1 + 𝑙2 | 𝑘 → {f ∶ 𝑙1 ⊔ 𝑙2, _ ∶ ⊠} ⋆ x =̇ 𝑘)
is (𝑘0 → 𝑘1 + 𝑘2 + 𝑙1 + 𝑙2 | 𝑘1 → {f ∶ 𝑙1, _ ∶ ⊠} ⋆ 𝑘2 → {f ∶ 𝑙2, _ ∶ ⊠} ⋆ x =̇ 𝑘1 ⊔ 𝑘2); we have sepa-
rated the summary node 𝑘 into two nodes depending on the value of f. To add this operation into
the formalism, the relation ≼ would have to be updated, as well as its correctness proof.

6. A Program Logic for OWhile
Given the abstract domain of formulae defined in the previous sections, we define a program logic
for OWhile to reason about these. We shall derive the program logic in a systematic fashion from
the concrete semantics, extending an abstraction technique developed by the authors [3] to cover
spatial conjunctions and the frame rule. We explain this technique in Section 6.1, then present how
to abstract rules in Section 6.2. Section 6.3 presents the changes to accommodate the frame rule.

6.1. Abstract Interpretation of Pretty-big-step Semantics
Motivated by the JSCert operational semantics for JavaScript, we have defined an abstract
interpretation framework for semantics written in pretty-big-step style [3]. Pretty-big-step semantics [6]
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is a particular form of big-step semantics where intermediate evaluation steps are brought out explicitly
via intermediate terms that mix syntax and semantics. Following a proposal by Schmidt [14] for
abstract interpretation of big-step semantics, we have shown how the inference rules in JSCert can
each be interpreted over an abstract domain such that the ensuing derivations are correct analyses of
the original program. More precisely, we have exactly one abstract rule for each concrete rule, and
the correctness proof is simplified to proving that each concrete and abstract rules are related in a
one-to-one manner. For example, the abstract versions of the rules Add2 and If (𝑒, 𝑠1, 𝑠2) follow.

Add2

(𝑣♯1, val♯ 𝑣♯2),+2 ⇓♯ add♯ (𝑣♯1, 𝑣♯2)

If(𝑒, 𝑠1, 𝑠2)
Φ, 𝑒 ⇓♯ Φ′ Φ′, if1 𝑠1 𝑠2 ⇓♯ Φ″

Φ, if 𝑒 𝑠1 𝑠2 ⇓♯ Φ″

However, as explained in [3], this approach implies that the abstract rules can no longer be
interpreted inductively. Each rule describes how to build a new Hoare triple Φ, 𝑡 ⇓♯ Φ′ given a semantic
relation ⇓♯

0 but such a triple is not correct by itself. Instead, we must consider all the applicable rules,
i.e., rules 𝑖 that match the term (𝑡 = 𝔩𝑖) and may be applied according to the semantic context
(cond♯

𝑖 (Φ) holds), and merge their results in order to obtain a valid result. Formally, the abstract
evaluation relation ⇓♯ is defined as in Schmidt as the greatest fixed point of the iterator ℱ♯; the relation
ℱ♯ (⇓♯

0) extends the relation ⇓♯
0 by adding the triples (Φ𝜎, 𝑡, Φ𝑟) valid for all applicable rules. It uses

the function glue♯𝑖 (⇓♯
0) which computes all triples obtainable from the application of the 𝑖th rule:

ℱ♯ (⇓♯
0) = {(Φ𝜎, 𝑡, Φ𝑟) ∣ ∀𝑖. 𝑡 = 𝔩𝑖 ⇒ cond♯

𝑖 (Φ𝜎) ⇒ (Φ𝜎, 𝑡, Φ𝑟) ∈ glue♯𝑖 (⇓
♯
0)}

Program logics usually include a rule to weaken a results. In our formalism, it would look like this:

Weaken
Φ′

𝜎 ≼ Φ𝜎 Φ𝜎, 𝑡 ⇓♯ Φ𝑟 Φ𝑟 ≼ Φ′
𝑟

Φ′
𝜎, 𝑡 ⇓♯ Φ′

𝑟

In our previous work [3], this rule is encoded in the above-mentioned glue♯ function. It allows the
analyser to perform some approximations before and after applying rules. The function glue♯𝑖 was
then defined as follows, where apply𝑖 (⇓

♯
0) is the set of all triples that can be directly derived from ⇓♯

0
by applying rule 𝑖 once.

glue♯𝑖 (⇓
♯
0) = {(Φ𝜎, 𝑡, Φ𝑟) ∣ ∃Φ′

𝜎, Φ′
𝑟. Φ𝜎 ≼ Φ′

𝜎 ∧ Φ′
𝑟 ≼ Φ𝑟 ∧ (Φ′

𝜎, 𝑡, Φ′
𝑟) ∈ apply𝑖 (⇓

♯
0)}

6.2. Abstract Rules
Rules give semantics to expressions, statements, and intermediate terms of the OWhile language.
Each concrete rule is translated into exactly one abstract rule. Due to this one-to-one concrete-abstract
rule correspondence, abstract and concrete rules share the same names.

In general, the rules fall into four informal categories, measuring the difficulty to abstract them:

• Administrative rules, which push states around; their abstract translation is straightforward.

• Condition rules, which are similar to administrative rules, but with non-trivial side conditions
(cond). When translating them into the abstract world, their side condition has to be updated
(cond♯). Such a translation usually do not give further difficulties.

• Error rules, like condition rules, have a non-trivial side condition. Their result is always an
error: they require in practise the same amount of work than condition rules to translate.
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• Computational rules, where results are produced. The language operations (summing numbers,
writing a variable, creating a field, etc.) take place in these rules and their abstract translations
are usually more complex.

Figure 5 in Appendix A classifies the different rules of OWhile. As can be seen, very few rules fall
into the computational category, which is the category yielding most of the abstraction effort. These
categories are arbitrary and debatable as they just serve as a rough estimate on the amount of work
needed to build the abstract semantics; for instance the third category of error rules has been added
because a lot of rule falls into it, but they require the same amount of work to abstract than the
condition rules. For instance, let us consider the two concrete rules for assignments:

Asgn(x, 𝑒)
𝑆, 𝑒 ⇓ 𝑟 𝑟, x ∶=1 ⇓ 𝑟′

𝑆, x ∶= 𝑒 ⇓ 𝑟′
Asgn1(x)

(𝑆, 𝑣), x ∶=1 ⇓ write (𝑆, 𝑥, 𝑣)

The first rule Asgn (x, 𝑒) is an administrative rule: its definition does not depend on the
implementation of states and its abstract version is identical. On the other hand, the rule Asgn1 (x)
uses the concrete write operation, which does not straightforwardly translate into the abstract world:
we do so by exhibiting its footprint. This leads to the following two abstract rules for assignment.
In contrary to [3], we only give a local version of the rules: the abstract rules work with the frame
rule (see next section). Note how compact the rule Asng1 (x) is, its context being implicit. Also note
that although the concrete rule Asng1 (x) applies even if x is not defined in the state, we require it
to be present in the abstract formula—eventually with the value ⊠. This solves the problem stated
by Reynolds [13, Section 3.5], as the frame rule can no longer interfere with the resource x.

Asgn(x, 𝑒)
Φ, 𝑒 ⇓♯ Φ′ Φ′, x ∶=1 ⇓♯ Φ″

Φ, x ∶= 𝑒 ⇓♯ Φ″

Asgn1(x)

(𝑀 ∣ x =̇ 𝑣♯0, 𝑣♯) , x ∶=1 ⇓♯ (𝑀 ∣ x =̇ 𝑣♯)

The only abstract rule of OWhile whose footprint updates the membrane is the rule NewObj,
whose concrete and abstract rules follow. The concrete rule exhibit a fresh concrete location which
has no associated reference 𝑙fresh(𝑆).f in the current state 𝑆. In the abstract rule, we create a new
location 𝑙 and declare it as fresh in the membrane: this ensures it to be different from anything present
in the context. We also claim that we have write permission over this new location 𝑙 by adding a
memory cell into the formula, leaving its fields undefined as in the concrete rule.

NewObj

𝑆, {} ⇓ (𝑆, 𝑙fresh(𝑆))
NewObj

(∅ | emp) , {} ⇓ (𝜈𝑙 | 𝑙 ↦ {_ ∶ ⊠} , 𝑙)

6.3. Interfering with the Frame Rule

The version of the frame rule which we use is recalled below.

Frame
Φ, 𝑡 ⇓♯ Φ′

Φ𝑐 ⋆ Φ, 𝑡 ⇓♯ Φ𝑐 ⋆ Φ′

To make sense, the abstract semantics has to keep interface (Φ) constant along the derivation. It
would otherwise be possible to exhibit a context Φ𝑐 with a different behaviour in both sides. For
instance, although Φ1 = (𝑙 → 𝑙 | 𝑙 ↦ {_ ∶ ⊠}) and Φ2 = (𝑙′ → 𝑙∣ 𝑙 ↦ {_ ∶ ⊠}) represent the same
concrete states (they have the same concretisation), in the context of Φ𝑐 = (𝑘 → 𝑙 + 𝑙′ ∣ 𝑙 ↦ {_ ∶ ⊠}),
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Φ𝑐 ⋆ Φ1 has an empty concretisation but not Φ𝑐 ⋆ Φ2. Because of the frame rule, we can no longer
replace a formula Φ by another Φ′ just because they represent the same concrete states.

In contrary to usual abstract interpretation, the subset ≼ of a pre-order which we consider is
requested to be sound in any context Φ𝑐. The fact that this pre-order does not form a lattice—or that
it is only a subset of a pre-order—can be surprising; but building a full-fledged lattice can be difficult.
Furthermore, we actually do not need such hypotheses to prove the soundness of our approach: we
have quotiented the formulae by the equivalent relation built from ≼, and we can complete the order
≼ by taking its transitive closure. The lattice usually requested by abstract interpretation only greatly
helps in building analysers, but we are here only interested in building an abstract semantics.

Φ1 ≼ Φ2 ⟹ ∀Φ𝑐. 𝛾 (Φ𝑐 ⋆ Φ1) ⊆ 𝛾 (Φ𝑐 ⋆ Φ2)

Following Schmidt [14], meta rules are not mixed with abstract rules. We thus force the frame rule
into the glue between rules by updating the function glue♯, as we did when adding the Weaken rule:

glue♯𝑖 (⇓♯
0) = {(Φ𝜎, 𝑡, Φ𝑟) ∣ ∃Φ′

𝜎, Φ𝑐, Φ′
𝑟. Φ𝜎 ≼ Φ𝑐 ⋆ Φ′

𝜎 ∧ Φ𝑐 ⋆ Φ′
𝑟 ≼ Φ𝑟 ∧ (Φ′

𝜎, 𝑡, Φ′
𝑟) ∈ apply𝑖 (⇓

♯
0)}

Given a semantic context Φ𝜎, we are allowed to approximate it, then split it into the formula Φ′
𝜎

which matches the rule application and a context Φ𝑐. We then run the rule on Φ′
𝜎 to get Φ′

𝑟, which
we consider in the frame Φ𝑐. We allow a final approximation to get Φ𝑟. The abstract states are not
always formulae, but can be extended formulae (see Section 4.1). Fortunately the operator ⋆ and the
pre-order ≼ can be adapted for extended formulae. We do not show the details here for space reasons.

Let us consider the example of Asng1 (x): it is the rule taking care of the assignment just after the
assigned expression has been computed; It takes an extended semantic context as argument, carrying
the computed expression. It requires the variable x to stand in the input formula:

Asgn1(x)

(𝑀 ∣ x =̇ 𝑣♯0, 𝑣♯) , x ∶=1 ⇓♯ (𝑀 ∣ x =̇ 𝑣♯)

Given a semantic context Φ = (𝑀 ∣𝜙, 𝑣♯), there are two cases, whether x appears in 𝜙. If it does not
appear, then the rule does not apply. Otherwise 𝜙 is on the form x =̇ 𝑣♯0 ⋆ 𝜙′: we isolate x into Φ =
(𝑀 ∣𝜙′) ⋆ (𝑀′ ∣ x =̇ 𝑣♯0, 𝑣♯), where 𝑀′ = {ℎ → ℎ|ℎ ∈ codom (𝑀)} is neutral with 𝑀 . The application
of the rule then returns after reapplying the context (𝑀 ∣ 𝜙′) ⋆ (𝑀′ ∣ x =̇ 𝑣♯) = 𝜙′ ⋆ (𝑀 ∣ x =̇ 𝑣♯).

Let us now consider the example of Delete1 (f). This extended rule receives a location and
updates its referenced object. Let us see how it behaves when received a summary node 𝑘 instead of
a precise abstract location 𝑙 by giving it the semantic context Φ = (𝑘 → 𝑘 | 𝑘 ↦ {f ∶ nil, _ ∶ ⊠} , 𝑘).

Delete1(f)

(𝑀 | 𝑙 ↦ {𝑜} , 𝑙) , delete1 .f ⇓♯ (𝑀 ∣ 𝑙 ↦ remove♯ (f, {𝑜}))
The abstract operation remove♯ writes ⊠ in the field f of the abstract object {𝑜}. Using a
materialization—the carried value being its entry point—we can build the following formula Φ′.

Φ ≼ Φ′ = (𝑘 → 𝑙′ + 𝑘′ ∣ 𝑙′ ↦ {f ∶ nil, _ ∶ ⊠} ⋆ 𝑘′ ↦ {f ∶ nil, _ ∶ ⊠} , 𝑙′)
= (𝑘 → 𝑙′ + 𝑘′ ∣ 𝑘′ ↦ {f ∶ nil, _ ∶ ⊠}) ⋆ (𝑙′ → 𝑙′ ∣ 𝑙′ ↦ {f ∶ nil, _ ∶ ⊠} , 𝑙′)

We can now apply the abstract rule Delete1 (f) on the first part to get the following.

Φ″ = (𝑘 → 𝑙′ + 𝑘′ ∣ 𝑘′ ↦ {f ∶ nil, _ ∶ ⊠}) ⋆ (𝑙′ → 𝑙′ ∣ 𝑙′ ↦ {_ ∶ ⊠} , 𝑙′)
= (𝑘 → 𝑙′ + 𝑘′ ∣ 𝑙′ ↦ {_ ∶ ⊠} ⋆ 𝑘′ ↦ {f ∶ nil, _ ∶ ⊠} , 𝑙′)

We can now either continue with this result, which is a strong update over a local location identifier
𝑙′. But we might want to diminish the size of the membrane: let us see what happen if we summarize
𝑙′ and 𝑘′ back to 𝑘: Φ″ ≼ (𝑘 → 𝑘 | 𝑘 ↦ {f ∶ nil ⊔ ⊠, _ ∶ ⊠} , 𝑘). We recognize a weak update over 𝑘.
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6.4. Correctness
The correctness relies on the concretisation 𝛾 of formulae. Concretisation of formula is defined
through a predicate ⊨ shown in Figure 3; this predicate is parametrized by a valuation 𝜌 ∶ LLoc♯ ⇀
Loc ∧ KLoc♯ ⇀ 𝒫(Loc) of abstract locations to concrete locations. The difficult part stands in the
concretisation of objects, where abstract values 𝑣♯ can represent an undefined concrete value if ⊠ ⊑ 𝑣♯.
We do not show the definition of the concretisation function of objects, but it comes with no surprise.
The set 𝑅 is used to store the reserved variables: x =̇ ⊠ states that the variable x is not in the
environment, but it still reserves the resource x to be sound with the frame rule; this fact is stored by
𝑅. The concretisation 𝛾 (Φ) of a formula Φ is then a projection of this predicate:

(𝐸,𝐻) ∈ 𝛾 ((𝑀 | 𝜙)) ⟺ ∃𝜌,𝑅. (𝐸,𝑅,𝐻) ⊨𝜌 𝜙

(𝐸,𝑅,𝐻) ⊨𝜌 emp ⟺ 𝐸 = 𝑅 = 𝐻 = ∅
(𝐸,𝑅,𝐻) ⊨𝜌 𝜙1 ⋆ 𝜙2 ⟺ ∃𝐸1, 𝑅1,𝐻1, 𝐸2, 𝑅2,𝐻2. 𝐸 = 𝐸1 ⊎ 𝐸2 ∧ 𝑅 = 𝑅1 ⊎ 𝑅2

∧ dom (𝐸1), dom (𝐸2), 𝑅1, and 𝑅2 are disjoint pairwise
∧𝐻 = 𝐻1 ⊎𝐻2 ∧ dom (𝐻1) ∩ dom (𝐻2) = ∅
∧ ∀𝑖. (𝐸𝑖, 𝑅𝑖, 𝐻𝑖) ⊨𝜌 𝜙𝑖

(𝐸,𝑅,𝐻) ⊨𝜌 x =̇ 𝑣♯ ⟺ 𝐻 = ∅ ∧ (⊠ ⊑ 𝑣♯ ∧ 𝐸 = ∅ ∧ 𝑅 = {x}
∨ ∃𝑣 ∈ 𝛾𝜌 (𝑣♯) ∧ 𝐸 = {(x, 𝑣)} ∧ 𝑅 = ∅)

(𝐸,𝑅,𝐻) ⊨𝜌 𝑙 ↦ {𝑜} ⟺ 𝐸 = 𝑅 = ∅ ∧ ∃𝑜0 ∈ 𝛾𝜌 ({𝑜}) . 𝐻 = {(𝜌 (𝑙) , f, 𝑜0)}
(𝐸,𝑅,𝐻) ⊨𝜌 𝑘 ↦ {𝑜} ⟺ 𝐸 = 𝑅 = ∅ ∧ ∃ (𝑜𝑖) ∈ (𝛾𝜌 ({𝑜}))𝜌(𝑘) . 𝐻 = ⋃

𝑙𝑖∈𝜌(𝑘)
{(𝜌 (𝑙) , f, 𝑜𝑖)}

Figure 3: Definition of the entailment predicate ⊨𝜌.

The approach for correctness is the same than in [3]: we require every abstract rule to be locally
correct, i.e., their transfer functions (noted for axioms ax and ax♯ in the respective concrete and
abstract semantics) and side conditions (noted cond and cond♯) follow the corresponding concrete
rules, taking into account a potential context. The local correctness conditions over transfer functions
and side conditions of axiom rules follow—the correctness of other types of rule is very similar. Because
of the context in the side condition, it is possible to have a rule whose side condition holds, but whose
semantic context does not match the transfer function: this amounts to say that the construction of
a derivation can be blocked if some resources are lacking in the original semantic context. We shall
not extend on this technical matter. We can infer from these local properties the global correctness.

∀𝑆,Φ,Φ𝑐. 𝑆 ∈ 𝛾 (Φ𝑐 ⋆ Φ) ⟹ ax (𝑆) ∈ 𝛾 (Φ𝑐 ⋆ ax♯ (Φ))
∀𝑖, 𝑆, Φ,Φ𝑐. 𝑆 ∈ 𝛾 (Φ𝑐 ⋆ Φ) ⟹ cond𝑖 (𝑆) ⟹ cond♯

𝑖 (Φ)

Property 1 (Global Correctness) Let 𝑡 be a term, 𝑆 and 𝑆′ be states, and Φ and Φ′ formulae.
Given the local correctness, if 𝑆 ∈ 𝛾 (Φ), 𝑆, 𝑡 ⇓ 𝑆′, and Φ, 𝑡 ⇓♯ Φ′ then 𝑆′ ∈ 𝛾 (Φ′).

In other words, abstract derivations can not miss concrete executions: our abstract semantics is sound.

7. Related Work
This work directly follows from [3], which only focussed on abstract interpretation and how to make
a Coq development scale up to big operational semantics such as JavaScript’s. This previous work
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came with a Coq development containing some generic analysers, while the current work only focuses
at building an abstract domain compatible with the frame rule. There have been works aiming at
providing formally verified analysers on languages other than JavaScript such as [11], but these
involve a lot of Coq development and we hope to get to a comparatively lighter development for
JavaScript. We aim at diving the work of [10] to a fully Coq-verified abstract interpreter.

There have been some work about mixing abstract interpretation and separation logic, such as [9]
or [1], but few provide an abstract semantics compatible with the frame rule able to express the
abstractions of shape analysis. The lattices constructed by these works are based on a disjunctive
completion of a formula order, which can easily explode in size. Our mechanism provides a protection
against these explosions through summarizations, with the cost of potentially big imprecision.

The logic of [8] is very close to this work; their domain is a disjunctive completion of formulae
separated at the field level of objects as we did. Locations and fields are both abstracted by either
singletons or summary nodes. However, the frame rule is not mentioned, which removes the need of
membranes. They carry a set of formulae storing information about the respective inclusion of the
concretisations of summary nodes. Their domain is ordered and equipped with a join and a widening
operator with an algorithm compatible with the concretisation function.

The same authors previously developped [5] based on separation logic; this work focusses on
inductively defined shapes and is able to express and analyse complex structures such as red-black
trees. To increase the efficiency of the analyse, they developed a way to change the point of view of
these shapes: for instance, a doubly linked list can be defined either by following next or previous
fields. As with this work, the order relation, are defined through an algorithm compatible with the
concretisation function, and they similarly defined joins and widenings by an algorithm.

Inductively defined structures have also been examined in [4], which uses abduction to determine
the weakest precondition wielding safety or termination of the analysed program. They provide
heuristics to infer how to generalize predicates, as well as a running tool. However, their heuristics
rely on the syntax of their toy language (comparable to OWhile): scaling such an analyser up to
JavaScript might require to look for much complex heuristics, and we think that an approach guided
directly by the language semantics can reduce the amount of work to get a certified analyser.

8. Conclusion and Future Works
We have presented a program logic for JavaScript heaps, based on separation logic and integrating
ideas from shape analysis. We have expressed this logic within a framework of certified abstract
interpretation. The goal is to scale up the logic to the size of JavaScript’s semantics, resulting
in an abstract semantics for JavaScript of reasonable size, and eventually certified analysers for
JavaScript. The particular problem addressed in this paper is that of integrating the frame rule to
existing abstract interpretation framework, which is known to be a difficult problem.

Our approach is precise enough to get interesting results on real-world programs, whilst being
simple enough to be able to scale it up to a certified abstract semantics of JavaScript. This work
is part of a larger project which aims at building certified static analyses based on the JSCert [2]
formal semantics of JavaScript.

We have focussed on how to build an abstract semantics, and not on how to build analysers.
The abstract domains that arise from our logic are less structured than usual abstract domains,
which means that an analyser will be less guided by the abstract interpretation framework. There
is thus room for further research into the construction of efficient join and widening operators for
abstract domains combining separation and summarization. Furthermore, the frame rule allows to
individually analyse functions or recurrent programs; it is thus natural to look for strategies to choose
and separately analyse these programs. We have observed that analysing a program without starting
from the right resources can lead to big approximations, or to the inability to analyse. Techniques

14



An Abstract Separation Logic for Interlinked Extensible Records

like bi-abduction may be relevant to build efficient oracles for our certified analysers.

Bibliographie
[1] J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. W. O’hearn, T. Wies, and H. Yang. Shape

analysis for composite data structures. In CAV, page 178–192. Springer, 2007.

[2] M. Bodin, A. Charguéraud, D. Filaretti, P. Gardner, S. Maffeis, D. Naudziuniene, A. Schmitt,
and G. Smith. Jscert: Certified javascript. http://jscert.org/, 2012.

[3] M. Bodin, T. Jensen, and A. Schmitt. Certified abstract interpretation with pretty-big-step
semantics. In CPP, page 29–40. ACM, 2015.

[4] J. Brotherston and N. Gorogiannis. Cyclic abduction of inductively defined safety and termination
preconditions. In M. Müller-Olm and H. Seidl, editors, Static Analysis, volume 8723 of Lecture
Notes in Computer Science, page 68–84. Springer International Publishing, 2014.

[5] B.-Y. E. Chang and X. Rival. Relational inductive shape analysis. In ACM SIGPLAN Notices,
volume 43, page 247–260. ACM, 2008.

[6] A. Charguéraud. Pretty-big-step semantics. In ESOP, page 41–60. Springer, 2013.

[7] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In POPL, page 238–252. ACM, 1977.

[8] A. Cox, B.-Y. E. Chang, and X. Rival. Automatic analysis of open objects in dynamic language
programs. In Static Analysis, page 134–150. Springer, 2014.

[9] D. Distefano, P. W. O’hearn, and H. Yang. A local shape analysis based on separation logic. In
TACAS, page 287–302. Springer, 2006.

[10] P. Gardner, S. Maffeis, and G. Smith. Towards a program logic for javascript. ACM SIGPLAN
Notices, 47(1):31–44, 2012.

[11] J.-H. Jourdan, V. Laporte, S. Blazy, X. Leroy, and D. Pichardie. A formally-verified c static
analyzer. In POPL, page 247–259. ACM, 2015.

[12] M. Parkinson, R. Bornat, and C. Calcagno. Variables as resource in hoare logics. In LICS, page
137–146. IEEE, 2006.

[13] J. C. Reynolds. An introduction to separation logic. Engineering Methods and Tools for Software
Safety and Security, page 285–310, 2008.

[14] D. A. Schmidt. Natural-semantics-based abstract interpretation (preliminary version). In SAS,
page 1–18. Springer LNCS vol. 983, 1995.

A. Concrete Semantics
Figure 4 presents the complete syntax of OWhile, which includes extended terms. These extended
terms carry intermediary results, and are thus associated with specific kinds of extended semantic
contexts, carrying additional values. The concrete rules follow. These rules makes use of functions
such as read and write which perform some semantic manipulation; their semantics is usual and we do
not explicit them. Section 6.2 categorizes rules into four different kinds of categories; Figure 5 shows
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𝑠 ∶∶= skip | 𝑠1; 𝑠2 | if 𝑒 𝑠1 𝑠2
| while 𝑒 𝑠 | throw | x ∶= 𝑒
| 𝑒1.f ∶= 𝑒2 | delete 𝑒.f

(a) Statements

𝑒 ∶∶= 𝑛 ∈ ℤ | ? | x ∈ Var | nil
| {} | 𝑒.f | f in 𝑒 | ¬ 𝑒
| = 𝑒1 𝑒2 | 1 𝑒1 𝑒2 (1 ∈ {>,+,−})

(b) Expressions

𝑠𝑒 ∶∶= ;1 𝑠2 | if1 𝑠1 𝑠2 | while1 𝑒𝑠
| while2 𝑒𝑠 | x ∶=1 | .f ∶=1 𝑒2
| .f ∶=2 | delete1 .f

(c) Extended statements

𝑒𝑒 ∶∶= .f | f in1 | 11 𝑒2
| 12 | ¬1 | =1 𝑒2
| =2

(d) Extended expressions

Figure 4: Complete syntax of the OWhile language

where all the rules of this semantics fall. As can be seen, the categories are more or less identical in
size, with the notable exception of the computational rules, which are the most difficult to abstract.

AbortExtExpr(𝑒𝑒)

𝜎, 𝑒𝑒 ⇓ Err
𝜎 = Err

AbortExtStat(𝑠𝑒)

𝜎, 𝑠𝑒 ⇓ Err
𝜎 = Err

Cst(𝑛)

𝑆, 𝑛 ⇓ (𝑆, 𝑛)
Random(𝑛)

𝑆, ? ⇓ (𝑆, 𝑛)
Var(x)

𝑆, x ⇓ (𝑆, read (𝑆, x)) x ∈ dom (𝑆)
VarUndef(x)

𝑆, x ⇓ Err
x∉dom (𝑆)

Nil

𝑆,nil ⇓ (𝑆, 𝑙0)
NewObj

𝑆, {} ⇓ (𝑆, 𝑙fresh(𝑆))

Property(𝑒, f)
𝑆, 𝑒 ⇓ 𝑟 𝑟, .f ⇓ 𝑟′

𝑆, 𝑒.f ⇓ 𝑟′

Property1(f)

(𝑆, 𝑙𝑖), .f ⇓ (𝑆, read (𝑆, 𝑙𝑖.f)) 𝑙𝑖.f ∈ dom (𝑆)
Property1NoLoc(f)

(𝑆, 𝑛), .f ⇓ Err

Property1Undef(f)

(𝑆, 𝑙𝑖), .f ⇓ Err
𝑙𝑖.f∉dom (𝑆)

In(f, 𝑒)
𝑆, 𝑒 ⇓ 𝑟 𝑟, f in1 ⇓ 𝑟′

𝑆, e in 𝑓 ⇓ 𝑟′

In1True(f)

(𝑆, 𝑙𝑖), f in1 ⇓ (𝑆, 1) 𝑙𝑖.f ∈ dom (𝑆)
In1NoLoc(f)

(𝑆, 𝑛), f in1 ⇓ Err

In1False(f)

(𝑆, 𝑙𝑖), f in1 ⇓ (𝑆, 0) 𝑙𝑖.f∉dom (𝑆)
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Op(1, 𝑒1, 𝑒2)
𝑆, 𝑒1 ⇓ 𝑟 𝑟,11 𝑒2 ⇓ 𝑟′

𝑆,1 𝑒1 𝑒2 ⇓ 𝑟′

Op1(1, 𝑒2)
𝑆, 𝑒2 ⇓ 𝑟 (𝑛1, 𝑟),12 ⇓ 𝑟′

(𝑆, 𝑛1),11 𝑒2 ⇓ 𝑟′
Op1Error(1, 𝑒2)

(𝑆, 𝑙𝑖),11 𝑒2 ⇓ Err

Op2Error(1)

(𝑛1, (𝑆, 𝑙𝑗)),12 ⇓ Err

Add2

(𝑛1, (𝑆, 𝑛2)),+2 ⇓ (𝑆, 𝑛1 + 𝑛2)
Sub2

(𝑛1, (𝑆, 𝑛2)),−2 ⇓ (𝑆, 𝑛1 − 𝑛2)

Greater2Greater

(𝑛1, (𝑆, 𝑛2)), >2 ⇓ (𝑆, 1) 𝑛1 > 𝑛2

Greater2LesserEq

(𝑛1, (𝑆, 𝑛2)),>2 ⇓ (𝑆, 0) 𝑛1 ≤ 𝑛2

Not(𝑒)
𝑆, 𝑒 ⇓ 𝑟 𝑟, ¬1 ⇓ 𝑟′

𝑆, ¬ 𝑒 ⇓ 𝑟′

Not1True

(𝑆, 𝑛), ¬1 ⇓ (𝑆, 0) 𝑛 ≠ 0
Not1False

(𝑆, 𝑛), ¬1 ⇓ (𝑆, 1) 𝑛 = 0
Not1Error

(𝑆, 𝑙), ¬1 ⇓ Err

Eq(𝑒1, 𝑒2)
𝑆, 𝑒1 ⇓ 𝑟 𝑟,=1 𝑒2 ⇓ 𝑟′

𝑆,= 𝑒1 𝑒2 ⇓ 𝑟′

Eq1(𝑒2)
𝑆, 𝑒2 ⇓ 𝑟 (𝑣1, 𝑟), =2 ⇓ 𝑟′

(𝑆, 𝑣1),=1 𝑒2 ⇓ 𝑟′
Eq2BasicValEq

(𝑛1, (𝑆, 𝑛2)),=2 ⇓ (𝑆, 1) 𝑛1 = 𝑛2

Eq2BasicValNeq

(𝑛1, (𝑆, 𝑛2)),=2 ⇓ (𝑆, 0) 𝑛1 ≠ 𝑛2

Eq2LocEq

(𝑙𝑖, (𝑆, 𝑙𝑗)),=2 ⇓ (𝑆, 1) 𝑙𝑖 = 𝑙𝑗

Eq2LocNeq

(𝑙𝑖, (𝑆, 𝑙𝑗)),=2 ⇓ (𝑆, 0) 𝑙𝑖 ≠ 𝑙𝑗
Eq2MistypeBasicValLoc

(𝑛1, (𝑆, 𝑙𝑗)),=2 ⇓ Err

Eq2MistypeLocBasicVal

(𝑙𝑖, (𝑆, 𝑛2)),=2 ⇓ Err

Skip

𝑆, skip ⇓ 𝑆

Seq(𝑠1, 𝑠2)
𝑆, 𝑠1 ⇓ 𝑟 𝑟, ;1 𝑠2 ⇓ 𝑟′

𝑆, 𝑠1; 𝑠2 ⇓ 𝑟′

Seq1(𝑠2)
𝑆, 𝑠2 ⇓ 𝑟

𝑆, ;1 𝑠2 ⇓ 𝑟
Throw

𝑆, throw ⇓ Err

If(𝑒, 𝑠1, 𝑠2)
𝑆, 𝑒 ⇓ 𝑟 𝑟, if1 𝑠1 𝑠2 ⇓ 𝑟′

𝑆, if 𝑒 𝑠1 𝑠2 ⇓ 𝑟′

If1True(𝑠1, 𝑠2)
𝑆, 𝑠1 ⇓ 𝑟

(𝑆, 𝑛), if1 𝑠1 𝑠2 ⇓ 𝑟 𝑛 ≠ 0
If1False(𝑠1, 𝑠2)

𝑆, 𝑠2 ⇓ 𝑟
(𝑆, 𝑛), if1 𝑠1 𝑠2 ⇓ 𝑟 𝑛 = 0

If1Error(𝑠1, 𝑠2)

(𝑆, 𝑙𝑖), if1 𝑠1 𝑠2 ⇓ Err

While(𝑒, 𝑠)
𝑆,while1 𝑒𝑠 ⇓ 𝑟
𝑆,while 𝑒 𝑠 ⇓ 𝑟

While1(𝑒, 𝑠)
𝑆, 𝑒 ⇓ 𝑟 𝑟,while1 𝑒𝑠 ⇓ 𝑟′

𝑆,while1 𝑒𝑠 ⇓ 𝑟′

While2True(𝑒, 𝑠)
𝑆, 𝑠 ⇓ 𝑟 𝑟,while1 𝑒𝑠 ⇓ 𝑟′

(𝑆, 𝑛),while2 𝑒𝑠 ⇓ 𝑟′ 𝑛 ≠ 0
While2False(𝑒, 𝑠)

(𝑆, 𝑛),while2 𝑒𝑠 ⇓ 𝑆 𝑛 = 0
While2Error(𝑒, 𝑠)

(𝑆, 𝑙𝑖),while2 𝑒𝑠 ⇓ Err
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Figure 5: Categories of rules

Administrative Conditions Error Computational

Property (𝑒, f)
In (f, 𝑒)

Op (1, 𝑒1, 𝑒2)
Op1 (1, 𝑒2)

Not (𝑒)
Eq (𝑒1, 𝑒2)
Eq1 (𝑒2)

Skip
Seq (𝑠1, 𝑠2)
Seq1 (𝑠2)

If (𝑒, 𝑠1, 𝑠2)
While (𝑒, 𝑠)
While1 (𝑒, 𝑠)
Asgn (x, 𝑒)

PropertyAsgn (𝑒1, f, 𝑒2)
Delete (𝑒, f)

AbortExtExpr (𝑒𝑒)
AbortExtStat (𝑠𝑒)

In1True (f)
In1False (f)

Greater2Greater
Greater2LesserEq

Not1True
Not1False

Eq2BasicValEq
Eq2BasicValNeq

Eq2LocEq
Eq2LocNeq

If1True (𝑠1, 𝑠2)
If1False (𝑠1, 𝑠2)

While2True (𝑒, 𝑠)
While2False (𝑒, 𝑠)

PropertyAsgn1 (f, 𝑒2)
Delete1Nil (f)

VarUndef (x)
Property1NoLoc (f)
Property1Undef (f)

In1NoLoc (f)
Op1Error (1, 𝑒2)

Op2Error (1)
Not1Error

Eq2MistypeBasicValLoc
Eq2MistypeLocBasicVal

If1Error (𝑠1, 𝑠2)
While2Error (𝑒, 𝑠)

Throw
PropertyAsgn1Error (f, 𝑒2)
PropertyAsgn1Nil (f, 𝑒2)

Delete1Error (f)

Cst (𝑛)
Random (𝑛)

Var (x)
Nil

NewObj
Property1 (f)

Add2
Sub2

Asgn1 (x)
PropertyAsgn2 (f)

Delete1 (f)

Asgn(x, 𝑒)
𝑆, 𝑒 ⇓ 𝑟 𝑟, x ∶=1 ⇓ 𝑟′

𝑆, x ∶= 𝑒 ⇓ 𝑟′
Asgn1(x)

(𝑆, 𝑣), x ∶=1 ⇓ write (𝑆, 𝑥, 𝑣)

PropertyAsgn(𝑒1, f, 𝑒2)
𝑆, 𝑒1 ⇓ 𝑟 𝑟, .f ∶=1 𝑒2 ⇓ 𝑟′

𝑆, 𝑒1.f ∶= 𝑒2 ⇓ 𝑟′

PropertyAsgn1(f, 𝑒2)
𝑆, 𝑒2 ⇓ 𝑟 (𝑙𝑖, 𝑟), .f ∶=2 ⇓ 𝑟′

(𝑆, 𝑙𝑖), .f ∶=1 𝑒2 ⇓ 𝑟′
PropertyAsgn1Error(f, 𝑒2)

(𝑆, 𝑛), .f ∶=1 𝑒2 ⇓ Err

PropertyAsgn1Nil(f, 𝑒2)

(𝑆, 𝑙0), .f ∶=1 𝑒2 ⇓ Err

PropertyAsgn2(f)

(𝑙𝑖, (𝑆, 𝑣)), .f ∶=2 ⇓ write (𝑆, 𝑙𝑖.f, 𝑣)

Delete(𝑒, f)
𝑆, 𝑒 ⇓ 𝑟 𝑟, delete1 .f ⇓ 𝑟′

𝑆, delete 𝑒.f ⇓ 𝑟′

Delete1(f)

(𝑆, 𝑙𝑖), delete1 .f ⇓ remove (𝑆, 𝑙𝑖.f)
Delete1Error(f)

(𝑆, 𝑛), delete1 .f ⇓ Err

Delete1Nil(f)

(𝑆, 𝑙0), delete1 .f ⇓ Err

B. Pre-order over Formulae
As said in Section 6.3, we are looking for a relation ≼ which respects the frame property:

Φ1 ≼ Φ2 ⟹ ∀Φ𝑐. 𝛾 (Φ𝑐 ⋆ Φ1) ⊆ 𝛾 (Φ𝑐 ⋆ Φ2)

The empty relation would be correct; however, it would not be useful as it allows no transformation
to the formulae: we would like to account for materializations and summarizations. We define our
relation ≼ by an algorithm taking two abstract heaps Φ1 = (𝑀1 | 𝜙1) and Φ2 = (𝑀2 | 𝜙2) and returning
true if it successfully proved the above property. However, the inclusion of the concretisations does
not necessarily yield the pre-order relation. We have not focused on the efficiency of this algorithm.
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B.1. Example
To illustrate our comparison algorithm, let us consider the following two formulae to get Φ1 ≼ Φ2.

Φ1 = (𝑘0 → 𝑘, 𝑙0 → 𝑙| x =̇ 𝑙 ⊔ 𝑘 ⋆ 𝑘 ↦ {f ∶ ⊥, g ∶ 𝑙, _ ∶ ⊠} ⋆ 𝑙 ↦ {f ∶ 𝑙, _ ∶ ⊠})
Φ2 = (𝑘0 → 𝑘′ + 𝑙′, 𝑙0 → 𝑙′ + 𝑘′ ∣ x =̇ 𝑙′ ⋆ 𝑘′ ↦ {_ ∶ ⊠} ⋆ 𝑙′ ↦ {f ∶ 𝑙′ ⊔ 𝑘′ ⊔ nil, _ ∶ ⊠})

Our algorithm starts by splitting Φ1 to remove disjunctions in the values of variables and abstract
locations 𝑙. In the example x =̇ 𝑙 ⊔ 𝑘 can be split into x =̇ 𝑙 and x =̇ 𝑘 to get the two formulae
Φ1,𝑎 and Φ1,𝑏 below. This is sound as the disjunction ⊔ we chose for values does not loose precision:
∀Φ𝑐. 𝛾 (Φ𝑐 ⋆ Φ1) = 𝛾 (Φ𝑐 ⋆ Φ1,𝑎) ∪ 𝛾 (Φ𝑐 ⋆ Φ1,𝑏).

Φ1,𝑎 = (𝑘0 → 𝑘, 𝑙0 → 𝑙| x =̇ 𝑙 ⋆ 𝑘 ↦ {f ∶ ⊥, g ∶ 𝑙, _ ∶ ⊠} ⋆ 𝑙 ↦ {f ∶ 𝑙 ⊔ 𝑘, _ ∶ ⊠})
Φ1,𝑏 = (𝑘0 → 𝑘, 𝑙0 → 𝑙| x =̇ 𝑘 ⋆ 𝑘 ↦ {f ∶ ⊥, g ∶ 𝑙, _ ∶ ⊠} ⋆ 𝑙 ↦ {f ∶ 𝑙 ⊔ 𝑘, _ ∶ ⊠})

Let us focus on Φ1,𝑎. We look for a function 𝜓 translating identifiers of the formula Φ1,𝑎 to those
of Φ2 in order to match Φ1,𝑎 with Φ2. Here the function 𝜓 mapping 𝑙 to 𝑙′ and 𝑘 to 𝑘′ is enough.
Applying the rewriting 𝜓 over Φ1,𝑎 follows the same rules as the 𝛼-renaming and the summarization
presented in Sections 4.2 and 5—which is why summarizations are compatible with this pre-order:

𝜓 (Φ1,𝑎) = (𝑘0 → 𝑘′, 𝑙0 → 𝑙′ ∣ x =̇ 𝑙′ ⋆ 𝑘′ ↦ {f ∶ ⊥, g ∶ 𝑙, _ ∶ ⊠} ⋆ 𝑙′ ↦ {f ∶ 𝑙′ ⊔ 𝑘′, _ ∶ ⊠})

The summary node 𝑘 has an incoherence: every concrete location represented by 𝑘 is supposed to
have a field f represented by ⊥, which is not possible: the only possible concretisation of 𝑘 is the
empty set. We can thus safely remove 𝑘 from the formula:

Φ′
1,𝑎 = (𝑘0 → ∅, 𝑙0 → 𝑙′ ∣ x =̇ 𝑙′ ⋆ 𝑙′ ↦ {f ∶ 𝑙′, _ ∶ ⊠})

At this point, we compare the inner scope of Φ′
1,𝑎 with the one of Φ2: the latter has

an additional summary node 𝑘′. We can easily ignore such a summary node as it can
represent an empty set of concrete locations; we thus rewrite 𝑘′ into ∅ in Φ2 to get Φ′

2 =
(𝑘0 → 𝑙′, 𝑙0 → 𝑙′ ∣ x =̇ 𝑙′ ⋆ 𝑙′ ↦ {f ∶ 𝑙′ ⊔ nil, _ ∶ ⊠}). We now compare the values in the membrane,
the variables, and the objects; which we can check are greater in Φ′

2 for any corresponding in Φ′
1,𝑎.

We have successfully found a 𝜓 leading to the conclusion ∀Φ𝑐. 𝛾 (Φ𝑐 ⋆ Φ1,𝑎) ⊆ 𝛾 (Φ𝑐 ⋆ Φ2).
In the case of Φ1,𝑏 we can perform a materialization, as the have an entry point to a summary node

x =̇ 𝑘. But this generates a subformula 𝑙′ ↦ {f ∶ ⊥, g ∶ 𝑙, _ ∶ ⊠}, which has an empty concretisation
as the reference 𝑙′.f should be ⊥. We can conclude that Φ1,𝑏 has an empty concretisation, and thus
Φ1,𝑏 ≼ Φ2. Overall, as both Φ1,𝑎 and Φ1,𝑏 are below Φ2 by the pre-order ≼, we have Φ1 ≼ Φ2.

B.2. General Procedure
As we want to be able to perform summarizations and materializations, our algorithm has to take
these operations into account. Algorithm 1 shows its pseudo-code; it proceeds through two nested
loops. The first one splits the first formula Φ1 into more precise formulae Φ′

1 through materializations.
The second tries to match the more precise Φ′

1 with Φ2 by performing summarizations. We then look
for incoherences, then compare the variables and the objects of the two formulae. The two loops
could be removed without causing problems for the final theorem; however they are necessary to make
materializations and summarizations hold. Formulae with different interfaces are rejected, even if they
have the same concretisation in every context: the relation ≼ does not have to be complete.

The first step consists in splitting the formula Φ1 to remove the presence of join operators ⊔ in
the abstract values; as for the formulae Φ1,𝑎 and Φ1,𝑏 of the example above. Because of the way we
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Data: Two abstract heaps Φ1 and Φ2.
Result: true iff Φ1 ≼ Φ2.
if interface (Φ1) ≠ interface (Φ2) then

return false; // Formulae with different interfaces are immediately rejected.
end
for Φ′

1 be a split/materialization of Φ1 do // Universal branching
for 𝜓 well-formed do // Existential choice

Φ″
1 ← 𝜓(Φ′

1);
Remove incoherent summary nodes from Φ″

1 ;
Let Φ′

2 be Φ2 where every summary node not present in Φ″
1 has been removed;

if Φ″
1 incoherent then
// The current 𝜓 is enough to show that Φ′

1 ≼ Φ2.
Continue on the next split Φ′

1 of Φ1;
end
if Φ′

2 incoherent then
Try another 𝜓;

end
for ℎ → ℎ1 +…+ ℎ𝑛 present in Φ′

2 and ℎ → ℎ′
1 +…+ ℎ′

𝑚 in Φ″
1 do

if {ℎ′
1,… , ℎ′

𝑚} ⊈ {ℎ1,… , ℎ𝑛} then
Try another 𝜓;

end
end
for x =̇ 𝑣♯2 present in Φ′

2 and x =̇ 𝑣♯1 present in Φ″
1 do

if 𝑣♯1⋢𝑣♯2 then
Try another 𝜓;

end
end
for ℎ ↦ {𝑜2} present in Φ′

2 and ℎ ↦ {𝑜1} present in Φ″
1 do

if {𝑜1} ⋢ {𝑜2} then
Try another 𝜓;

end
end
// The chosen 𝜓 succeeded in matching Φ′

1 with Φ′
2.

Continue on the next split Φ′
1 of Φ;

end
// No 𝜓 succeeded in matching Φ′

1 with Φ′
2.

return false;
end
// Φ2 correctly captures all the behaviours of Φ1.
return true;

Algorithm 1: Algorithm comparing formulae.
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defined abstract values, we can split values of the form 𝑛♯ ⊔ nil? ⊔ 𝑙1 ⊔ … ⊔ 𝑙𝑛 ⊔ 𝑑 to their different
components without missing any concrete value. This splitting can only be done if the considered
abstract value represents only one concrete value; which is neither the case of the default abstract
values of objects3, as in the object {_ ∶ nil ⊔ ⊠}, nor of a field value pointed by a summary node 𝑘.

The splitting part also takes into account the materializations in Φ1. This explodes the number of
considered formulae Φ′

1 as this amounts to look for all possible aliases of Φ1. These materializations
are performed for each entry point to a summary node and performed as described in Section 5.
Unfortunately, this part can loop. For instance, consider the inner formula x =̇ 𝑘⋆𝑘 ↦ {f ∶ 𝑘, _ ∶ ⊤}:
we can materialize x to get x =̇ 𝑙1 ⋆ 𝑙1 ↦ {f ∶ 𝑙1 ⊔ 𝑘, _ ∶ ⊤}⋆𝑘 ↦ {f ∶ 𝑙1 ⊔ 𝑘, _ ∶ ⊤}, which splits into
x =̇ 𝑙1 ⋆ 𝑙1 ↦ {f ∶ 𝑘, _ ∶ ⊤} ⋆ 𝑘 ↦ {f ∶ 𝑙1 ⊔ 𝑘, _ ∶ ⊤}, which keeps materializing/splitting. But do we
need to split it indefinitely? The only goal of this algorithm is to compare the current formula with
Φ2: unfolding up to the size of Φ2 is enough. Unfoldings can significantly increase the complexity of
this algorithm; however, its correction still holds if we limit this unfolding to a given depth—at the
cost of the transitivity of ≼. This is the reason we say that ≼ is only the subset of a pre-order: it is
possible to compute it completely and get a complete pre-order, with the cost of efficiency.

This first step makes us consider every possible shape structure. The next step is run on each of
these exploded formulae Φ′

1 and succeeds if it succeeded for all instances (universal search). This step
accepts a formula Φ′

1 if it can prove that ∀Φ𝑐. 𝛾 (Φ𝑐 ⋆ Φ′
1) ⊆ 𝛾 (Φ𝑐 ⋆ Φ2). As ∀Φ𝑐. 𝛾 (Φ𝑐 ⋆ Φ1) =

⋃𝛾 (Φ𝑐 ⋆ Φ′
1), an acceptance yields the requested property ∀Φ𝑐. 𝛾 (Φ𝑐 ⋆ Φ1) ⊆ 𝛾 (Φ𝑐 ⋆ Φ2).

For each of these exploded formulae Φ′
1, we look for two functions 𝜓𝑙 ∶ LLoc♯ ⇀ (LLoc♯ ∪ KLoc♯)

and 𝜓𝑘 ∶ KLoc♯ ⇀ KLoc♯ translating identifiers of the formula Φ′
1 to those of Φ2; which we shall note

both 𝜓. The goal is to find a translation matching Φ′
1 with Φ2. Some restrictions applies to 𝜓:

• Only identifiers present in Φ′
1 and Φ2 can appear in 𝜓. This makes this step a finite search.

• For an abstract location 𝑙, at most one 𝑙0 reaches 𝑙: ∀𝑙, 𝑙1, 𝑙2. 𝜓 (𝑙1) = 𝜓 (𝑙2) = 𝑙 ⟹ 𝑙1 = 𝑙2.

We rewrite Φ′
1 into the formula Φ″

1 = 𝜓 (Φ′
1) = (𝜓 | emp) ⋆ Φ′

1 where 𝜓 has been identified with
its graph. If two or more abstract locations are mapped through 𝜓 to the same summary node 𝑘,
then all their objects are merged; this step fails if one abstract location lacks a memory property in
Φ′

1. For instance, if 𝜓 (𝑙) = 𝜓 (𝑘) = 𝑘′ and that Φ′
1 = (𝑘0 → 𝑘, 𝑙0 → 𝑙| 𝑙 ↦ {𝑜1} ⋆ 𝑘 ↦ {𝑜2}), then

Φ″
1 = (𝑘0 → 𝑘′, 𝑙0 → 𝑘′ ∣ 𝑘′ ↦ {𝑜′1} ⊔ {𝑜′2}) where {𝑜′1} and {𝑜′2} received the renaming process of

𝜓. However, the same choice of 𝜓 fails if only 𝑙 ↦ {𝑜} appears in Φ′
1.

We execute the last step for all those 𝜓 and return true if at least one of these make the following
step returns true (existential choice). The research of a working 𝜓 can probably be performed more
efficiently, by only considering the possible ones in an iterative algorithm similar to the one of [5].
The last step consists at comparing the exploded and renamed formula Φ″

1 to Φ′
2, by checking for

incoherences, then comparing the membranes, variables, and objects defined.
We look for incoherences into the formula Φ″

1 . If any is found, then the concretisation of Φ″
1

is empty, and we immediately states that Φ″
1 ≼ Φ″

2 by returning true. There are two cases of
incoherences. First, spatial incoherences, when a location 𝑙 is referred several times in the formula in
a left-hand side; such as in 𝑙 ↦ {𝑜} ⋆ 𝑙 ↦ {𝑜}. Even if the two objects {𝑜} are identical, both sides
of the operator ⋆ refer to the same region of space, which is forbidden. Second, when a variable or
the field f of an abstract location 𝑙 has ⊥ as a value, which has an empty concretisation. Note that
⊥ found in summary nodes does not trigger incoherences for the whole abstract state. Consider for
instance the formula (𝑘0 → 𝑘| 𝑘 ↦ {f ∶ ⊥, _ ∶ ⊤}): 𝑘 can represent an empty set of location, which
solves the incoherence. Incoherent summary nodes are removed, which can lead to an incoherence

3The default abstract value of the objects can actually be split to make the fields appearing in Φ2 appear, then
perform nevertheless splittings and later on materializations. For readability reasons, we shall not go into details about
this as the subset of pre-order we get if we do not make this step is still enough to get a correct abstract semantics.

21



Bodin & Jensen & Schmitt

later on. For instance (𝑘0 → 𝑘| 𝑘 ↦ {f ∶ ⊥, _ ∶ ⊤} ⋆ x =̇ 𝑘) leads to (𝑘0 → ∅| x =̇ ⊥), which has an
empty concretisation. We also check for spatial incoherences in 𝜙2: if any, we stop and return false
(unless 𝜙1 already had an incoherence). At this stage, Φ2 may have more summary nodes than Φ″

1 ;
this is acceptable as summary nodes can represent empty sets of concrete locations. We thus remove
these additional summary nodes in Φ2 to get Φ′

2.
The last step is a direct comparison between the modified formulae Φ″

1 and Φ′
2. There are three

factors to take into account: membranes, environments (expressed through variables), and spatial
properties. For membranes, we check that every rewritings in Φ′

2 rewrites abstract locations to more
abstract locations than in Φ″

1 : these renamings represent the inner abstract locations under which
these outer abstract locations “hide”. For variables, we check that every variable has a lesser value in
Φ″

1 than in Φ′
2 in the lattice of abstract values. For spatial properties, we check that each abstract

locations ℎ of Φ″
1 is associated a lesser object than in Φ′

2. This step concludes the algorithm.
Note how we perform the splitting and materialization step of the formula Φ1 before trying to

match its locations with these of Φ2 through 𝜓. If we had reversed the order of these two operations,
the following comparison would not hold. In other words, we can choose in the following example
whether 𝑙′ represents 𝑙1 or 𝑙2 after choosing whether the reference 𝑙.f points to 𝑙1 or 𝑙2.

(𝑙0 → 𝑙, 𝑘 → 𝑙1 + 𝑙2 | 𝑙 ↦ {f ∶ 𝑙1 ⊔ 𝑙2, _ ∶ ⊠} ⋆ 𝑙1 ↦ {a ∶ nil, _ ∶ ⊠} ⋆ 𝑙2 ↦ {b ∶ nil, _ ∶ ⊠})
≼ (𝑙0 → 𝑙, 𝑘 → 𝑙′ + 𝑙″ ∣ 𝑙 ↦ {f ∶ 𝑙′, _ ∶ ⊠} ⋆ 𝑙′ ↦ {a ∶ nil ⊔ ⊠, b ∶ nil ⊔ ⊠, _ ∶ ⊠} ⋆ 𝑙″ ↦ {_ ∶ ⊤})

This comparison algorithm defines a relation ≼ with the property of being compatible with
the transformations we were looking for: 𝛼-conversion of inner locations, materializations, and
summarizations. Indeed, if Φ becomes Φ′ by one of these transformations, we get Φ ≼ Φ′, which
allows to rewrite from one to the other when passing through the glue♯𝑖 (⇓♯) function (see Section 6.3).
We now claim that this comparison algorithm can be used as a valid relation in this work.

Property 2 Algorithm 1 defines a suitable relation ≼:

∀Φ1, Φ2. Φ1 ≼ Φ2 ⟹ ∀Φ𝑐. 𝛾 (Φ𝑐 ⋆ Φ1) ⊆ 𝛾 (Φ𝑐 ⋆ Φ2)

This property takes as lemmae the similar results for the intermediate parts of the algorithm: it is
still valid if we remove the first or the second loop; this will just remove the ability we have to perform
materializations and summarizations.
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