
Projet Ajacs

Deliverable WP3

Formal definitions for main
security goals for JavaScript

applications

June 2016

This deliverable includes the following articles describing work done on WP3
for the first 18 months of the project.

• Mashic Compiler: Mashup Sandboxing using Inter-frame Com-
munication, by Zhengqin Luo, Jose Fragoso Santos, Ana Almeida Matos,
and Tamara Rezk

• BrowserAudit: Automated Testing of Browser Security Fea-
tures, by Charlie Hothersall-Thomas, Sergio Maffeis, and Chris Novakovic

• Hybrid Typing of Secure Information Flow in a JavaScript-like
Language, by Jos Fragoso Santos, Thomas Jensen, Tamara Rezk, and
Alan Schmitt

• Modular Monitor Extensions for Information Flow Security in
JavaScript, by Jos Fragoso Santos, Tamara Rezk, Ana Almeida Matos

• A Taxonomy of Information Flow Monitors, by Nataliia Bielova and
Tamara Rezk

• On access control, capabilities, their equivalence, and confused
deputy attacks, by Vineet Rajani, Deepak Garg, and Tamara Rezk

• Hybrid Monitoring of Attacker Knowledge, by Frdric Besson, Na-
taliia Bielova and Thomas Jensen

Journal of Computer Security 1 (2014) 1 1
IOS Press

Mashic Compiler: Mashup Sandboxing based
on Inter-frame Communication
Zhengqin Luo a José Fragoso Santos c Ana Almeida Matos b Tamara Rezk c

a Google
b IST
c INRIA

Abstract. Mashups are a prevailing kind of web applications integrating external gadget APIs often written in the JavaScript
programming language. Writing secure mashups is a challenging task due to the heterogeneity of existing gadget APIs, the
privileges granted to gadgets during mashup executions, and JavaScript’s highly dynamic environment. We propose a new com-
piler, called Mashic, for the automatic generation of secure JavaScript-based mashups from existing mashup code. The Mashic
compiler can effortlessly be applied to existing mashups based on a wide-range of gadget APIs. It offers security and correct-
ness guarantees. Security is achieved via the Same Origin Policy. Correctness is ensured in the presence of benign gadgets, that
satisfy confidentiality and integrity constrains with regard to the integrator code. The compiler has been successfully applied to
real world mashups based on Google maps, Bing maps, YouTube, and Zwibbler APIs.

1. Introduction

Mixing existing online libraries and data into new online applications in a rapid, inexpensive manner,
often referred to as mashups, has captured the way of designing web applications. ProgrammableWeb
mashup graphs currently report that over 6000 mashup-based web applications and over 11000 gadget
APIs currently exist (http://www.programmableweb.com/). Since the release of the first major
example, HousingMaps.com in early 2005, mashups are the de-facto applications in the web today.

In a mashup, the integrator code integrates gadgets from external code providers. Typically, code is
written in JavaScript (JS) and executes on the browser as embedded script nodes in the Document Object
Model (DOM) [17]. External gadget code in a mashup can be included in two ways:

– either by using the script tag and granting access to all the resources of the integrator;
– or by using the iframe tag, in which case the Same Origin Policy (SOP) applies. The SOP iso-

lates untrusted JavaScript external code, limiting the interaction of gadget and integrator to message
sending [3].

This work has been partially supported by the ANR project AJACS ANR-14-CE28-0008 and the EPSRC Grant Reference
EP/H008373/1.

0926-227X/14/$27.50 c© 2014 – IOS Press and the authors. All rights reserved

2

Fig. 1. Target Architecture Automatically Generated by Mashic

Static analysis to confine JavaScript programs is feasible for large-scale code consumers such as Face-
book.com or Google.com, since they can restrict the JavaScript subset in which developers can write
gadget code. Furthermore the size of those gadgets are relatively small. However, when it comes to small
code consumers and large gadget providers, such as Google Maps API, full-fledged static analysis is usu-
ally infeasible since code providers do not confine them to a certain subset of JavaScript, and the gadget
code size is usually large and difficult to be analyzed. Moreover, gadget code is subject to change from
time to time by the provider. Mashup programmers are challenged to provide flexible functionality even
if the code consumer is not willing to trust the gadgets that mashups utilize. Unfortunately, programmers
often choose to include gadgets using the script tag and resign to security in the name of functionality.

Recently, Smash [23], AdJail [25], and Postmash [2] proposed to use inter-frame communication be-
tween integrator and gadgets. Smash proposes a secure component model for mashups that generalizes
the security policies imposed by the SOP. The model is implemented via inter-frame communication and
offered as JavaScript libraries. However, integrators and gadgets code have to be adapted to this specific
way of communication. AdJail focuses on advertisement scripts by delegating limited DOM interfaces
from the integrator. PostMash targets interfaces to operate on gadgets and proposes an architecture for
mashups depicted in Figure 1. In the PostMash design there are stub libraries on both the integrator and
the gadget. On the integrator side, the stub library must provide an interface similar to the original gad-
get’s interface. The stubbed interface sends corresponding messages by means of the PostMessage API
in HTML5. On the gadget side, there is another stub library, listening and decoding incoming messages.
Barth et al. [2] evaluate the feasibility of the PostMash design via a case study using a version of a Google
Maps gadget by creating a stub library that mimicked GMap2 API. Regarding the libraries, the authors
argue that the stub library can either be provided by the integrator (one for each untrusted gadget), or by
the gadget in which case the library must be audited for security by the integrator.

In this work, we address the following questions about the PostMash design:

1. Can the stub libraries be made general (the same libraries for every gadget and integrator)?
2. Can PostMash mashups be automatically generated starting from potentially insecure mashups and

preserving only the good behavior of the original mashup?
3. Is it possible to precisely define the security guarantees offered by the architecture?

We have positively answered these questions.

3

We address questions 1 and 2 with a novel compiler called Mashic which inputs existing mashup
code, JavaScript code integrated to HTML, to generate reliable mashups using gadget isolation as shown
in Figure 1. In addition, for question 2, we formalize the notion of “benign gadget” that is useful to
prove precisely in which cases the generated mashup behaves as the original one. Notably, the answer to
question 3 corresponds to the first formalization as an observational semantics equivalence of the security
guarantees offered by the Same Origin Policy in a browser, that, we conjecture, coincides with a form of
declassification policy known as delimited release [34]. The Mashic compiler [30] offers the following
features:

Automation and generality: Inter-frame communication and sandboxing code is fully generated by
the compiler and can be used with any untrusted gadget without rewriting the gadget’s code. After sand-
boxing, gadget objects are not directly reached by the integrator when the SOP applies. Instead the in-
tegrator uses opaque handles [36] to interact with the gadget. Due to the asynchronous nature of the
PostMessage API, integrator’s code is transformed into Continuation Passing Style (CPS).

Correctness guarantees: We prove a correctness theorem that states that the behavior of the Mashic
compiled code is equivalent to the original mashup behavior under the hypotheses that the gadget is
benign and correctness of marshaling/unmarshaling for objects that are sent via postMessage.

The correctness notion of marshaling/unmarshaling allows us to identify, for example, that the im-
plementation of a secure mashup is not correct as soon as the integrator sends an object with a cyclic
structure to the gadget (if the implementation uses the json stringify for marshaling).

Precisely defining a benign gadget turned out to be a technical challenge in itself. For that, we instru-
ment the JavaScript semantics extended with HTML constructs by a generalization of colored brack-
ets [14] and resort to equivalences used in information flow security [33].

Security guarantees: We prove a security theorem that guarantees a delimited form of integrity and
confidentiality for the compiled mashup. Information sent from the integrator to the gadget, corresponds
to a declassification. We prove that the gadget cannot learn more than what the integrator sends. Analo-
gously, the influence that the gadget can have on the integrator is delimited to the actions that the inte-
grator performs with the messages that the gadget sends to the integrator. These guarantees are essential
for the success of the compiler since the programmer can rely on this precise notion of security for com-
piled mashups using untrusted gadgets without further hypotheses. Indeed, if the gadget is not benign in
the original mashup, malicious behavior is neutralized in the compiled mashup. This proof relies on the
browsers’ SOP, that we formalize by means of iframe DOM elements.

The proposed compiler is directly applicable to real world and widespread mashups. We present evi-
dence that our compiler is effective. We have compiled several mashups based on Google and Bing maps,
YouTube, and Zwibbler APIs.

In summary our contributions are:

1. The Mashic compiler, its design and implementation, that can effortlessly be applied to existing
mashups. The Mashic prototype and proofs are available online [30].

2. Security and correctness guarantees for Mashic compiled code and hence direct guarantees for the
mashup end consumer. To our knowledge, this is the first work to formalize and prove guarantees
of correctness and security for real world mashups.

3. A formalization of the SOP in browsers, related to frames and script tags, in a standard small-step
semantics style.

4. A decorated semantics for JS extended with HTML constructs. This semantics provides clarity, in
a highly dynamic language as JS, regarding ownership of properties in the heap and we prove it
useful by specifying confidentiality and integrity policies in our theorems.

4

5. Case studies based on existing widespread mashups that demonstrate the effectiveness of the com-
piler.

6. An optimization for reducing the cost of cross-domain operations between gadgets and integrator in
which an automatic batching mechanism groups together cross-domain operations in straight-line
code, supporting loops and branching instructions.

Limitations The current implementation of the Mashic compiler suffers from the following limitations:

– Unsupported Constructs: Our integrator transformer currently supports the full JavaScript language
[11] except for a few programming constructs. Specifically, the for-in construct and exception con-
struct are not supported. Some JavaScript features considered “dangerous” such as eval are not
supported either.

– Multiple gadgets inter-communication: The compiler is completely independent of gadget code, and
does not support inter-gadget communication (communication is always done via the integrator),
since this would imply transforming gadgets that want to use others’ interfaces. For simplicity, the
formal presentation of the Mashic compiler applies to one gadget but its implementation supports
multiple gadgets by generating unique ids for each iframe and using them in the proxy interface.
Authentication is ensured by the PostMessage mechanism [3].

– Symmetric Interface: The current Mashic architecture is restricted to mashups that employ only
one-way communication, i.e. only the integrator will invoke interfaces provided by the gadget. (Al-
though the gadget is not allowed to send requests to the integrator, it can certainly reply to those that
it receives as Mashic supports callbacks.) Certain types of mashups do not fall into this category, no-
tably mashups containing advertisement scripts. Louw et al. [25] addresses two-way communication
in AdJail where a subset of the DOM interface from the integrator is also provided to the gadget by
dynamically modifying the DOM interface in the sandboxed gadget. In Mashic, in order to enable
general interfaces to be exposed to gadgets, the gadget has to be CPS-transformed. At the cost of
losing gadget-code independence, it is straightforward to use the Mashic compiler (transformations
applied to integrator) for gadgets code, without loosing any of the correctness guarantees.

Remarks. This paper extends an earlier conference version [26]. We extend the conference version by
adding explanations, examples, and studying the performance of the Mashic compiler. We propose and
implement an optimization based on future batches by Bogle and Liskov [5] and on batching remote
procedure calls by Ibrahim et al. [18].

Related Work The closest works to Mashic are AdJail [25], Smash [23], and Postmash [2], and are de-
scribed above. We focus now in other related work. Nikiforakis et al. [31] crawl more than three million
pages over the top 10000 Alexa sites and show that many sites trust gadgets that could be successfully
compromised by determined attackers. Moreover, a study over 6,805 unique websites [38] reveal that
insecure JavaScript practices are common showing that at least 66.4% of mashups include gadgets into
the top-level documents of their webpages. Jang et al. [22] study on top of 50000 websites privacy vi-
olating information flows in JavaScript based web applications. Their survey shows that top-100 sites
present vulnerabilities related to cookie stealing, location hijacking, history sniffing and behavior track-
ing. Browser implementation vulnerabilities have also been shown to leak JavaScript capabilities be-
tween different origins [4]. Many mechanisms to prevent JavaScript based attacks have been deployed.
For example the Facebook JavaScript subset (FBJS) [19] was intended to prevent user-written gadgets
to attack trusted code but it did not really succeed in its goals [27]. Google Caja [20] is similar to FBJS,
transforming JavaScript programs to insert run-time checks to prevent malicious access. Yahoo AD-

5

safe [10] statically validates JavaScript programs. Maffeis et al. [29] resort to language-based techniques
to find out a subset of JavaScript that can be used to prove an isolation property for JavaScript code. For
that, they identify a capability-safe subset of JavaScript. They do not formalize the SOP and they focus
on pure isolation of gadgets in contrast to our confidentiality and integrity properties.

Static analysis is usually not applicable or not sound for large web applications due to the highly
dynamic nature of JavaScript programs and because gadgets in general cannot be restricted to subsets of
JavaScript. Static analysis for JavaScript subsets has been proposed by [32], providing a formal guarantee
of isolation for ADSafe subset. Relying on type-based invariants and applicative bisimilarity Fournet
et al. [13] show full abstraction of a translation from ML programs to JavaScript programs.

As a response to the increasing need to get flexible functionality without resigning to security guar-
antees, the research community has proposed several communication abstractions [37,9,21,23]. Specifi-
cally, Wang et al. [37] create an analogy between operating systems security [39,12] and mashups secu-
rity to develop communication abstractions. OMASH [8] proposes a refined SOP to enable mashup com-
munication.These abstractions usually require browser modifications and so far have not been adopted
in HTML standards [16]. There are other works [6,1] pursuing the direction of formalizing web appli-
cations, but none of them formally model the SOP as a security property using observational semantics
equivalences.

2. Running Example

In order to provide some background, we illustrate with a mashup different kinds of gadget inclusions
and inter-frame communication. We reuse this example throughout the rest of the sections. There are
two major types of gadgets in web mashups. The first type requires an interface from the integrator to
accomplish some tasks. For instance advertisement scripts, which necessarily need to gather information
of the integrator page through DOM APIs to implement the advertisement strategy. Another example of
the first type of gadgets are user-supplied gadgets in social network platforms such as facebook.com.
The second type provides a set of interfaces to the integrator. For instance the Google maps API, that
provides various interfaces to operate a map gadget, is of this kind. We focus on the second type, that is
gadget scripts that provide a set of interfaces to enable the integrator to manipulate the gadget.

In the example an integrator at i.com wants to include a gadget gadget.js provided by
untrusted.com. The integrator creates an empty div element to delegate part of the DOM tree. The
integrator includes the gadget by using a script tag:

1 <div id=gadget_canvas></div>
2 <script src=’http://untrusted.com/gadget.js’></script>

Listing 1: Code Snippet of http://i.com/integrator.html

We focus on gadget scripts that provide a set of interfaces to enable the integrator to manipulate the gad-
get. The integrator calls methods or functions as interfaces to change the state of the gadget. For example,
the following is a code snippet (in the integrator) to manipulate the untrusted gadget via interfaces:

1 var mydiv = document.getElementById("gadget_canvas")
2 var instance = new gadget.newInstance(
3 mydiv, gadget.Type.SIMPLE);

6

4 instance.setLevel(9);

Listing 2: Code Snippet of http://i.com/integrator.html

The gadget defines a global variable gadget to provide interfaces to the integrator.
The gadget.newInstance is used to create a new gadget instance that binds to the div; and

instance.setLevel is a method used to change state at the gadget instance. Let us assume that
the integrator stores a secret in global variable secret and a global variable price holding certain
information with an important integrity requirement:

1 var secret = document.getElementById("secret_input");
2 var price = 42;

Listing 3: Code Snippet of http://i.com/integrator.html

The secret flows to an untrusted source, and the price is modified at the gadget’s will if the gadget
contains the following code:

1 var steal;
2 steal = secret;
3 price = 0;

Listing 4: Non-benign Gadget

If the gadget is isolated using the iframe tag with a different origin, variables secret and price
cannot be directly accessed by the gadget. We can modify the example in the following way:

1 <iframe src=’http://u-i.com/gadget.html’></iframe>

Listing 5: Code Snippet of http://i.com/integrator-msg.html

1 <div id=gadget_canvas></div>
2 <script src=’http://untrusted.com/gadget-msg.js’>
3 </script>

Listing 6: Code Snippet of http://u-i.com/gadget.html

Instead of directly including the script, the integrator invents a new origin u-i.com to be used as
an untrusted gadget container, and puts the gadget code in a frame belonging to this origin. By do-
ing this, the JavaScript execution environment between integrator and gadget is isolated, as guaranteed
by the browser’s SOP. Limited communication between frames and integrator is possible through the
PostMessage API in the browser 1 if there is an event listener for the ‘message’ event. To register a
listener one provides a callback function as parameter and treats messages in a waiting queue, asyn-
chronously. Only strings can be sent as messages with PostMessage. However, it is possible to marshal
objects without cyclical references (as e.g. the global object) via a marshaling method, such as the stan-

1Inter-frame communication is also possible via e.g navigation policies [3] but this kind of communication is now obsolete.

7

dard JSON stringify. Code in gadget-msg.js and integrator-msg.html needs to adapt to the
asynchronous behavior. Instead of calling methods or functions, the integrator must send messages to
manipulate the untrusted gadget as shown in the following example:

1 PostMessage(stringify({action : "newInstance",
2 container : "gadget_div",
3 type : "SIMPLE"}),
4 "http://u-i.com");
5 PostMessage(stringify({action : "setLevel",
6 container : "gadget_div"}),
7 "http://u-i.com");

Listing 7: PostMessage Example

Compilation with Mashic will not preserve the malicious behavior of Listing 4 but will only preserve
behavior that does not represent a confidentiality or integrity violation to the integrator.

The compiler relieves the programmer from rewriting code. Instead of rewriting gadget’s code, our
compiler inserts a proxy and a listener library that implement a communication protocol for manipulating
gadgets independently of untrusted gadgets sandboxed in frames. Instead of rewriting integrator code,
our compiler implements a CPS transformation to overcome the asynchronous nature of PostMessage.
After compilation of code in Listing 1 and 2 the gadget is modified in the following way:

1 <html>
2 <script src="listener.js"></script>
3 <script src="untrusted.com/gadget.js"></script>
4 </html>

Listing 8: Compiled Gadget at http://u-i.com/gadget.html

The integrator is modified in the following way:

1 <html>
2 <script src="proxy.js"></script>
3 <iframe src="http://u-i.com/gadget.html"></iframe>
4 <script src="integrator_cps.js"></script>
5 </html>

Listing 9: Compiled Integrator

Notice that the gadget code used in the compiled gadget is not modified from the original one. The proxy
library and the listener library provide general ways to encode gadget operations, and the programmer
does not need to manually write the stub library to operate on confined gadgets. The integrator code, as
we mentioned above, is transformed to CPS code integrator_cps.js to perform the same task as
in the code shown in Listing 2.

3. Decorated Semantics

We propose a decorated semantics to partition a JavaScript heap at the granularity of object properties.
In order to prove security policies in a mashup, it is essential to distinguish at each execution step proper-

8

ties corresponding to different principals. Note that static decorations assigned to variables, traditionally
used in information flow security policies [33], are not enough to specify security in JS programs due
to two reasons: the dynamic nature of JS does not always allow us to syntactically determine the set of
properties modified by a program (c.f. [27]), and existing native properties in the heap may either be
changed by programs or its decoration may depend on the context due to the SOP.

The following example shows some dynamic features of JavaScript.

1 // integrator.js
2 var o = {}
3 o.secret = 43
4 o.[’more’ + ’secret’] = 52
5 ...
6 // gadget.js
7 steal = o.["sec"+"ret"] + o.moresecret
8 o.y = "some additional information"

Listing 10: Dynamic features of JS

First, the minimal container in JavaScript is property rather than object (or variable in other languages),
so two properties of the same object could belong to different principals. Second, properties can be
created dynamically, so static decoration is not possible.

Hence, we have resorted to ideas from colored brackets [14] and adapt them to a semantics modeling
the SOP in the browsers. When decorations are erased, our JavaScript decorated rules are compliant
with JavaScript semantics (Maffeis et al. [28]). For the sake of simplicity in the presentation, we limit
this section to the inclusion of only one gadget as a frame, although the JavaScript semantics (and the
Mashic compiler) is not limited in the number of gadgets included in a mashup. Thus, in this presentation,
we need to distinguish three different colors. The ♠ color for the Integrator Principal, the ♥ color for
the Gadget Principal, and the ♦ color to denote a neutral principal. We use 2 or 4 to denote any of
them. For the sake of brevity, we do not include an origin parameter in the primitive PostMessage since
there are only two possibilities: either the integrator communicates with the frame or vice-versa. We also
simplify AddListener for the formal presentation: we assume that the only events it listens to is the event
“message”.

3.1. Decorated Objects

An object o is a tuple
{
i1{2} : v1, . . . in{4} : vn

}
associating decorated properties i{2} (internal iden-

tifiers or strings) to values. We use i instead of i{2} whenever the decoration is not important. We distin-
guish internal properties that cannot be changed by programs with the symbol “@” in front of an identi-
fier. We do not model attributes of properties that may indicate access controls as for example “do-not-
delete” attributes [28]. We present a series of auxiliary definitions used in the operational semantics. For
an object o and a property i, we use i{2} ∈ o to denote that o has property i with decoration 2, and use
i 6∈ o to denote that o does not have property i.

3.2. Heaps

Objects are stored in heaps. A heap h is a partial mapping from locations in a set L to objects. We
use the notation h(`) = o, to retrieve the object o stored in location `; and the notation o.i{2} = v to
retrieve the value stored in property i{2}. We also use a shortcut h(`).i{2} whenever possible. To update

9

(or create) a property i{2} of an object at location ` in the heap, we use the notation h(`.i{2} = v) = h′,
where h′ is the updated heap. We also use Alloc(h, o) = h′, `′, where `′ 6∈ dom(h), for allocating a fresh
location for an object in the heap. After adding the location, the new heap is h′. JavaScript heaps contain
two important chains of objects. The scope chain keeps track of the dynamic chains of function calls
via the @scope property. To resolve a scope of a variable name, one starts from the bottom of the chain,
until reaching a scope object which contains the searched variable name. The scope look-up process is
modeled by the Scope(h, `,m) function2 It takes 3 parameters: a current heap, a heap location for a
scope object (as the bottom of the scope chain), and a variable name as string to look up.

SCOPE-NULL

Scope(h,null ,m) = null

SCOPE-REF
m ∈ h(`)

Scope(h, `,m) = `

SCOPE-LOOKUP
m 6∈ h(`) Scope(h, h(`).@scope,m) = `n

Scope(h, `,m) = `n

Example 1. To lookup for name x from scope object ` in h, we use Scope(h, `, “x”).
Similarly, the prototype chain represents the hierarchy between objects. A property that is not present

in the current object, will be searched in the prototype chain, via the @prototype property. The helper
function Prototype(h, `,m) looks for the m property of the object h(`) via the prototype chain.

PROTOTYPE-NULL

Prototype(h,null ,m) = null

PROTOTYPE-REF
m ∈ h(`)

Prototype(h, `,m) = `

PROTOTYPE-LOOKUP
m 6∈ h(`) Prototype(h, h(`).@prototype,m) = `n

Prototype(h, `,m) = `n

On top of a scope chain, there is a distinguished object, namely the global object.

Integrator and Gadgets Global Objects We define a (simplified) initial integrator global object below
(we use the form #addr to represent an unique heap location):

global i =



@this{♦} : #global i
@scope{♦} : null
“Stringify”{♦} : #stringifyi
“Parse”{♦} : #parsei
“PostMessage”{♦} : #postmessagei
“Addlistener”{♦} : #addlisteneri
“window”{♦} : #global i


Global variables are defined as properties in the global object. For example window is a global variable
holding the location #global i of the initial global object. Notice that properties in the initial global object
are decorated with ♦, which are not considered as heap locations created neither by the integrator nor
the gadget.

2.

10

Since by SOP the integrator and the frame do not share objects in the heap, we define similarly an initial
global object global f for the frame, in which the properties hold locations #global f , #stringifyf ,. . . ,
and #addlistenerf .

globalf =



@this{♦} : #globalf
@scope{♦} : null
“Stringify”{♦} : #stringifyf
“Parse”{♦} : #parsef
“PostMessage”{♦} : #postmessagef
“Addlistener”{♦} : #addlistenerf
“window”{♦} : #globalf


Heap locations of the form #addrf with a subscript f , as in #global f , denote native objects that reside
in the frame reserved part of the heap, as described by the semantics rules shown later.

Native functions in a heap are represented by locations (e.g. #postmessagei) as abstract function
objects. We use NativeFuns to denote the set of locations of native functions. We give definition for
pre-defined native objects existing in an initial heap when initializing an integrator or a frame. These
native objects are defined below:

OBJECT PROTOTYPE

objprot = {@prototype : null}
FUNCTION PROTOTYPE

funprot = {@prototype : null}

STRINGIFY FUNCTION

stringify =

{
@prototype : #funprot
@call : true

} PARSE FUNCTION

parse =

{
@prototype : #funprot
@call : true

}
POSTMESSAGE FUNCTION

postmessage =

{
@prototype : #funprot
@call : true

} ADDLISTENER FUNCTION

addlistener =

{
@prototype : #funprot
@call : true

}
The prototype objects of object and function are used as default prototypes. We model four native func-
tions defined for marshaling/unmarshaling objects to strings, posting messages, and setting event listen-
ers. We assume that Alloc(h, o) never allocates those pre-defined heap locations mentioned above. We
also use ⊕ to denote the union of two disjoint heaps (with non-overlapping addresses).

It is useful to define an initial heap. An initial heap for the integrator (resp. for the frame), denoted by
hin (resp. hfin), is one that contains an element in its domain such that hin(#global i) = global i (for the
case of frame hfin(#global f) = #global f). We give the definition of the initial heaps below:

hin =



#global 7→ global ,
#objprot 7→ objprot ,
#funprot 7→ funprot ,
#stringify 7→ stringify ,
#parse 7→ parse,
#postmessage 7→ postmessage,
#addlistener 7→ addlistener


hfin =



#global f 7→ global ,
#objprot f 7→ objprot ,
#funprot f 7→ funprot ,
#stringify f 7→ stringify ,
#parse f 7→ parse,
#postmessage f 7→ postmessage,
#addlistener f 7→ addlistener



11

global
object

Fig. 2. Example: Uniformly Colored Heap

We say that a decorated object o is single-colored if and only if all properties of o are decorated with
the same color. We say that a decorated heap h is uniformly colored if and only if for all ` ∈ dom(h)

such that h(`) is not a global object, then h(`) is a single-colored object (see Figure 2, where solid black
dots are ♠-colored objects, hollow red dots are ♥-colored objects). We say that a decorated object o is
single-colored if and only if all properties of o are decorated with the same color. The projection o�2 for
a decorated object o is defined by eliminating non-2 colored properties of o. If there is no property in o
with color 2 then the projection is undefined and denoted by ⊥. We define heap projections in order to
reason about the portion of the heap owned by a given principal.

Projection h�2 is either undefined if there is no property of color 2 in h or it is a heap h′ such that:
∀` ∈ dom(h), h(`)�2 6= ⊥ ⇔ ` ∈ dom(h′) & h′(`) = h(`)�2.

Remark 1. If h is a uniformly colored heap, and h′ = h�2, then for all ` ∈ dom(h) such that ` 6= #global

or ` 6= #global f , h′(`) = h(`).

We define h = h′ as equality on heaps. We denote h′ =2 h for h′�2 = h�2. We also denote h′ ⊆2 h

for h′�2 ⊆ h�2.

3.3. Syntax

We present in Figure 3 a simplified syntax of the extension of JavaScript with HTML constructs. We
assume that u ∈ Url where Url is a set of URLs or origins. A program in the language is an HTML page
M with embedded scripts and frames. Frames are important to reason about the SOP and untrusted code.
For simplicity, we choose to restrict the language with at most one frame in HTML pages. Inclusion of
many frames adds confusion and does not add any insights to the technical results. (This restriction does
not apply to the Mashic compiler.) We assume that there is an implicit environment Web : Url 7→ J that
maps URLs to gadgets code. In the frame rule, we model with Web(u) a gadget from a different origin
u ∈ Url . In the syntax, scripts are decorated with a color to denote the principal owner of the script.
Statements and expressions ranged over by P , s, and e are standard (see e.g. [28]).

Before a JavaScript program in a script node is executed, or before a body of a function is evaluated,
all variable declarations are added to the current scope object in the heap. To that end, we use a function
VD that returns a heap and takes as parameters a heap h, a location ` of the current scope object, a
statement s, and a color 2 to bind variables declared by var x with proper decorations to the scope object
`. Function VD is presented in Figure 4.

12

M ::= <html> F J </html> HTML page
F ::= <iframe src=u></iframe> | ε a frame or empty
J ::= <script2> s </script> J | ε sequence of scripts

P, s ::= e expression
| s; s block
| var x variable declaration
| if (e) s else s conditional
| while (e) s while loop
| return e return

e ::= this special property
| x identifier
| f native functions
| pv primitive values
| {m0 : e0, . . . ,mn : en} object literal
| e0[e1] member selector
| new e0(e1) constructor invocation
| e0(e1) function invocation
| function(~x){s} function expressions
| e0 bin e1 binary operations
| typeof e typeof expression

f ::= PostMessage | AddListener native functions
Stringify | Parse

pv ::=m string
| n number
| b boolean
| null null

bin ::= + | - | < | > | === | = binary operators

Fig. 3. JavaScript Syntax with Decorations

VD(h, `, s,2) =



h if s = e

VD(VD(h, `, s0,2), `, s1,2) if s = s0; s1

h(`.x{2} = undefined) if s = var x

VD(h, `, s0; s1,2) if s = if (e) s0 else s1

VD(h, `, s,2) if s = while (e) s

VD(h, `, s,2) if s = return e

Fig. 4. Variable Declaration Function

Finally we define a helper function GetType(v), to return a string as the type of a primitive value.

GetType(h, v) =



“number” if v = n

“string” if v = m

“boolean” if v = b

“undefined” if v = null or v = undefined

“object” if v = l and @call 6∈ h(`)
“function” if v = l and @call ∈ h(`)

13

3.4. Configurations

Instrumented global configurations feature a decoration component that denotes the owner principal
of the program being executed. Decorations are propagated via semantics rules and, importantly, do not
affect the normal semantics of JavaScript programs (they can be erased without further changes in the
state). A global configuration is a 5-tuple 〈2, h, `, R,Q〉x that features:

– A subscript x identifying the execution context of current code, I denotes that the current context is
the integrator, and F denotes that the current context is the frame. We use the subscript x to denote
a wildcard symbol for both I or F .

– A decoration 2 that denotes the principal of the current program in the configuration.
– A heap h.
– A location ` ∈ L pointing to the current scope object (or null only for the initial configuration).
– A run-time program R currently being executed (see Section 3.6).
– A waiting queue Q in order to give semantics to the PostMessage mechanism.

A waiting queue is of the form 〈`i,mqi〉 ‖ 〈`f ,mqf 〉, where `i and `f are locations for event listeners
and mqi and mqf are message queues for both, the integrator and the frame, respectively. The syntax for
defining a message queue is :

mq ::=mmq | ε

where m is a string. We use mq1 +mq2 to denote the concatenation of two message queues.
An initial configuration is of the form 〈2, ε,null ,M,Qinit〉I where Qinit = 〈null , ε〉 ‖ 〈null , ε〉.
We also define a configuration for the core JavaScript semantics

(2, h, `, s)

to be a 4-tuple featuring:

– A decoration 2 that denotes the principal of the current program in the configuration;
– A heap h;
– A location ` of the current scope object;
– A current statement s being evaluated.

Transitions between core JavaScript configurations are featured with a label `mq : (h, `, s)
`mq−−→(h′, `, s′).

The label `mq carries the side-effect of PostMessage and event listeners added by the native function
addlistener, and is defined by the following syntax:

`mq ::=mq | `+mq

where mq is a message queue and ` is a mark that denotes that an event listener is added and holds in

location ` of the heap. Let
`mq−−→

∗
be the transitive closure of the transition relation, where `mq denotes

the accumulated side-effect. A trace of transitions is valid only if there is at most one side-effect for
addlistener.

14

3.5. Semantics Rules

We use a transition system to define the semantics of our language, via the −→ relation between global
configurations. We denote by −→∗ the reflexive and transitive closure of −→. Figure 5 presents rules on
the HTML extensions and the SOP property (see frame rules and DSCRIPT). The semantics rules of core
JavaScript are defined in a context-redex style in Figure 6,7, and 8.

3.6. DOM Semantics Rules

We extend the syntax with run-time expressions:

R ::=M | F J | FRT J | J | s J run-time programs
FRT ::= <iframe> J </iframe> run-time frames

| <iframe> s J </iframe>
e ::= . . . | @FunExe(`, s,2) | @NewExe(`o, `, s,2) run-time expressions
v ::= pv | ` | undefined run-time values
i ::= @x | m properties of objects

In the run-time syntax,R denotes run-time programs being executed, extended by run-time frame FRT .
Run-time expressions e are extended with two types of functions @FunExe(`, s,2) and @NewExe(`o, `, s,2),
v denotes run-time values which consist of primitive values pv, heap locations `, and undefined value
undefined .

We define semantics rules for the DOM, i.e. the global transitions, in Figure 5. Now we comment on
the semantics rules.

DINIT A mashup execution initializes the heap of the configuration to the initial heap of the integrator
hin . The scope object is set to the global object #global .

DSCRIPT A 4-decorated script starts by VD(h, `, s,4) to initialize variables defined in s to the
current scope object ` in h. The new configuration has color4.

DSCRIPTFINI When an execution of a statement terminates, we continue with the rest of the compu-
tation.

DSCRIPT-I-1 This is a contextual rule: if the core JavaScript configuration can advance by 1 step with
label mq as the integrator, then the global configuration will accordingly update the message queue
mqf for the frame. If the listener for the frame `f is not null , then we append mq to mqf , otherwise
we do nothing since no listener will respond to incoming messages.

DSCRIPT-I-2 This rule is similar to DSCRIPTFINI except that it sets the listener of the integrator to
`′ (see the label of core JavaScript transition).

DSCRIPT-F-1, DSCRIPT-F-2 Similar to rule DSCRIPT-I-1 and DSCRIPT-I-2.
DFRAMEINIT, DFRAMEEXEC, DFRAMEFINI These rules are for execution of a frame. A frame

fetches the content Web(u) and joins the initial frame heap hfin to the current heap. Addresses in h
do not overlap with addresses in hfin by the SOP. Notice that the current scope object is set to the
frame’s global object.

DCALLBACK-I When no program is executing, we can apply the event listeners to pending messages
in the queues (this rule and rule DCALLBACK-F). For example, if the integrator’s event listener `i is
not null and the message queuemqi is not empty, then we can apply the listener to the first message
in the queue. Note that the only non-determinism comes from these two rules for event listeners.

DCALLBACK-F See explanation above.

15

DINIT
〈2, ε,null ,<html> FJ </html>, Qinit〉I−→〈2, hin ,#global , FJ,Qinit〉I

DSCRIPT
VD(h, `, s,4) = h′

〈2, h, `,<script4> s </script>J,Q〉x−→〈4, h′, `, s J,Q〉x

DSCRIPTFINI

〈2, h, `, v J,Q〉x−→〈2, h, `, J,Q〉x

DSCRIPT-I-1

(2, h, `, s)
mq−−→(2, h′, `, s′) mq′f =

{
mqf if `f = null

mqf +mq otherwise

〈2, h, `, s J, 〈`i,mqi〉 ‖ 〈`f ,mqf 〉〉I−→〈2, h′, `, s′ J, 〈`i,mqi〉 ‖ 〈`f ,mq′f 〉〉I

DSCRIPT-I-2

(2, h, `, s)
`′+mq−−−−→(2, h′, `, s′) mq′f =

{
mqf if `f = null

mqf +mq otherwise

〈2, h, `, s J, 〈null , ε〉 ‖ 〈`f ,mqf 〉〉I−→〈2, h′, `, s′ J, 〈`′, ε〉 ‖ 〈`f ,mq′f 〉〉I

DSCRIPT-F-1

(2, h, `, s)
mq−−→(2, h′, `, s′) mq′i =

{
mqi if `i = null

mqi +mq otherwise

〈2, h, `, s J, 〈`i,mqi〉 ‖ 〈`f ,mqf 〉〉F−→〈2, h′, `, s′ J, 〈`i,mq′i〉 ‖ 〈`f ,mqf 〉〉F

DSCRIPT-F-2

(2, h, `, s)
`′+mq−−−−→(2, h′, `, s′) mq′i =

{
mqi if `i = null

mqi +mq otherwise

〈2, h, `, s J, 〈`i,mqi〉 ‖ 〈null , ε〉〉F−→〈2, h′, `, s′ J, 〈`i,mq′i〉 ‖ 〈`′, ε〉〉F

DFRAMEINIT
Web(u) = J ′ J ′ 6= ε

〈2, h,#global ,<iframe src=u></iframe> J,Q〉I−→〈2, h⊕ hf ,#global f ,<iframe> J
′ </iframe> J,Q〉F

DFRAMEFINI
〈2, h,#global f ,<iframe> v </iframe> J,Q〉F−→〈2, h,#global , J,Q〉I

DFRAMEEXEC
〈2, h,#global f , P,Q〉F−→〈4, h′,#global f , P

′, Q′〉F
〈2, h,#global f ,<iframe> P </iframe> J,Q〉F−→〈4, h′,#global f ,<iframe> P

′ </iframe> J,Q′〉F

DCALLBACK-I
`i 6= null

〈2, h, `, ε, 〈`i,m+mqi〉 ‖ 〈`f ,mqf 〉〉x−→〈2, h,#global , `i(m), 〈`i,mqi〉 ‖ 〈`f ,mqf 〉〉I

DCALLBACK-F
`f 6= null

〈2, h, `, ε, 〈`i,mqi〉 ‖ 〈`f ,m+mqf 〉〉x−→〈2, h,#global f , `f (m), 〈`i,mqi〉 ‖ 〈`f ,mqf 〉〉F

Fig. 5. Decorated Semantics Rules (DOM)

16

3.7. Core Semantics Rules

The semantics rules of core JavaScript are defined in a context-redex style in Figure 6,7, and 8. The
evaluation contexts of the core JavaScript are defined below, where op ∈ {<,>,+,-,===}:

C ::= _ | Ci[C] | C=e
Ci ::=Cv | _(e)
Cv ::= _[e] | l[_] | new _(e) | new l(_)
| l(_) | l[m](_) | _ op e | v op _
| typeof _ | x = _ | l[m] = _

We need to define a special evaluation context Ci to evaluate redexes that contain an identifier x. For
example, in the expression x = 3, x should not be evaluated to a value. Therefore _=e is not a Ci context.
Evaluation context Cv is special for a redex in the form of `[m] (a property accessor) to be evaluated to
a value. For example, in the expression `[m](e), `[m] should not be evaluated into a value since it is a
method invocation. Therefore _(e) is not a Cv context.

Now we explain the transition rules in detail.

DTHIS To resolve the this keyword, we return the @this property of the current scope object ` in h.
DOBJ-LITERAL We first allocate a new empty object in h, represented by `o. Then we evaluate each
ei separately, adding the results vi as properties mi of the object in `o3. The result is the location `o
of created object. The properties of the created object is all decorated with 2.

DCALLFUNC To invoke a function, we create a new scope object `s as current scope object in which
the @scope property is set to the function’s closure scope h1(`1).@fscope. Furthermore, the @this
property of `s is set to `g, the global scope object of the current scope chain. VD(h1, `s, s,4) initial-
izes local variables defined in the body of the function in `1 with the decoration of the function object
rather than the current decoration in the configuration. The resulting expression @FunExe(`, s,2)
keeps record of the scope object ` to return, and the decoration 2 to recover when the function ex-
ecution finishes.For simplicity, we present functions with one parameter only. Function GetGlobal
look up in the scope chain to get the address of the global object via the window property.

DCALLMETHOD This rule is similar to DCALLFUNC, the different is that we look up thought the
prototype chain to obtain the function object `3 from `1[m], and we set the @this property of `s is
set to `1, since it is a method call rather than a function call.

DCALLCONTEXT This is a contextual rule for evaluating a body of a function.
DCALLFINI When a function invocation is finished and no value is returned, we restore the scope to
` and return undefined as result.

DCALLRET When a function invocation is finished and value v is returned, we restore the scope to `
and return v as result.

DNEW The new construct uses a function as a constructor to initialize an object. It behaves method
invocation. We first creates an empty object `o in which the internal @prototype property is set to
the “prototype" property of the function h`1. Then we proceed as in method invocation. The result
expression @NewExe(`o, `, s,2) keep records of both `o and `.

DNEWCONTEXT This is a contextual rule for evaluating a body of a function as object initialization.

3We do not explicitely mention the heap h when there is no ambiguity.

17

DTHIS
h(`).@this = v

(2, h, `,C[this])
ε−→(2, h, `,C[v])

DOBJ-LITERAL
o =

{
@prototype{2} : #objprot

}
Alloc(h, o) = h1, `o

(2, hi, `, ei)
mqi−−→

∗
(2, h′i, `, v1) h′i(`o.mi{2} = vi) = hi+1 mq = mq1 +mq2 + · · ·mqn
(2, h, `,C[{m1 : e1, . . . ,mn : en}])

mq−−→(2, hn+1, `,C[`o])

DCALLFUNC
`1 6∈ NativeFuns h(`1).@body{4} = function(x){s} `g = GetGlobal(h, `)

os =


@scope{4} : h(l1).@fscope
@prototype{4} : null
@this{4} : `g
“x”{4} : v

 Alloc(h, os) = h1, `s VD(h1, `s, s,4) = h2

(2, h, `,C[`1(v)])−→(4, h2, `s,C[@FunExe(`, s,2)])

DCALLMETHOD
Prototype(h, `1,m) = `2 6= null

h(`2).m = `3 `3 6∈ NativeFuns h(`3).@body{4} = function(x){s}

os =


@scope{4} : h(`3).@fscope
@prototype{4} : null
@this{4} : `1
“x”{4} : v

 Alloc(h, os) = h1, `s VD(h1, `s, s,4) = h2

(2, h, `,C[`1[m](v)])−→(4, h2, `s,C[@FunExe(`, s,2)])

DCALLCONTEXT
(2, h, `s, s)−→(2, h′, `′s, s

′)

(2, h, `s,C[@FunExe(`, s,4)])−→(2, h′, `′s,C[@FunExe(`, s′,4)])

DCALLFINI
(2, h, `s,C[@FunExe(`, v,4)])−→(4, h, `,C[undefined])

DCALLRET
(2, h, `s,C[@FunExe(`, return v,4)])−→(4, h, `,C[v])

DNEW
o =

{
@prototype{4} : h(`1).“prototype”

}
Alloc(h, o) = h1, `o `1 6∈ NativeFuns h1(`1).@body{4} = function(x){s}

os =


@scope{4} : h1(`1).@fscope
@prototype{4} : null
@this{4} : lo
“x”{4} : v

 Alloc(h1, os) = h2, `s VD(h2, `s, s,4) = h3

(2, h, `,C[new `1(v)])−→(4, h3, `s,C[@NewExe(`o, `, s,2)])

DNEWCONTEXT
(2, h, `s, s)−→(2, h′, `′s, s

′)

(2, h, `s,C[@NewExe(`o, `, s,4)])−→(2, h′, `′s,C[@NewExe(`o, `, s
′,4)])

DNEWFINI
(2, h, `s,C[@NewExe(`o, `, v,4)])−→(4, h, `,C[`o])

Fig. 6. Decorated Semantics Rules (Core JavaScript)

18

DFUN
p =

{
@prototype{2} : #objprot

}
Alloc(h, p) = h1, `1

o =


“prototype”{2} : `1
@prototype{2} : #funprot
@call{2} : true
@fscope{2} : `
@body{2} : function(x){s}

 Alloc(h1, o) = h′, `′

(2, h, `,C[function(x){s}]) ε−→(2, h′, `,C[`′])

DTYPEOF
GetType(h, v) = m

(2, h, `,C[typeof v])
ε−→(2, h, `,C[m])

DOP
v1 op v2 = v

(2, h, `,C[v1 op v2])
ε−→(2, h, `,C[v])

DASGNIDENT
Scope(h, `, “x”) = `n `g = GetGlobal(h, `)

h1 =

{
h(`g.“x”{2} = v) if `n = null

h(`n.“x” = v) otherwise

(2, h, `,C[x = v])
ε−→(2, h1, `,C[v])

DASGN-NEW-PROPERTY
m 6∈ h(`1) h(`1.m{2} = v) = h1

(2, h, `, `1[m] = v,Q)
ε−→(2, h1, `, v,Q)

DMODIFY-PROPERTY
m{2} ∈ h(`1) h(`1.m{2} = v) = h′

(4, h, `, `1[m] = v,Q)
ε−→(4, h′, `, v,Q)

DGETVPROP
Prototype(h, `,m) = `2

v =

{
undefined if `2 = null

h(`2).“x” otherwise

(2, h, `,C[Cv[`1[m]]])
ε−→(2, h, `,C[Cv[v]])

DGETVIDENT
Scope(h, `, “x”) = `1 6= null v = h(`1).“x”

(2, h, `,C[Ci[x]])
ε−→(2, h, `,C[Ci[v]])

DPARSE
`1 = #Parse or `1 = #Parsef o = parse(m) Alloc(h, o) = h1, `o

(2, h, `,C[`1(m)])
ε−→(2, h, `,C[`o])

DSTRINGIFY
`1 = #Stringify or `1 = #Stringify f

m = stringify(h, v)

(2, h, `,C[`1(v)])
ε−→(2, h, `,C[m])

DPOSTMSG
`1 = #Postmessage or `1 = #Postmessagef

(2, h, `,C[`1(m)])
m−→(2, h, `,C[undefined])

DADDLISTENER
`1 = #Addlistener or `1 = #Addlistener f

(2, h, `,C[`1(`i)])
`i−→(2, h1, `,C[undefined])

Fig. 7. Decorated Semantics Rules (Core JavaScript , continued)

19

DVAR

(2, h, `, var x)
ε−→(2, h, `, undefined)

DBLOCKNEXT

(2, h, `, v s∗) ε−→(2, h, `, s∗)

DBLOCKCONTEXT

(2, h, `, s0)
lmq−−→(2, h′, `, s1)

(2, h, `, s0; s)
lmq−−→(2, h, `, s1; s)

DIFTRUE

(2, h, `, e)
lmq−−→

∗
(2, h′, `, true)

(2, h, `, if (e) s0 else s1)
lmq−−→(2, h′, `, s0)

DIFFALSE

(2, h, `, e)
lmq−−→

∗
(2, h′, `, false)

(2, h, `, if (e) s0 else s1)
lmq−−→

∗
(2, h, `, s1)

DWHILETRUE

(2, h, `, e)
lmq−−→(2, h′, `, true)

(2, h, `,while (e) s)
lmq−−→(2, h′, `, s while (e) s)

DWHILEFALSE

(2, h, `, e)
lmq−−→(2, h′, l, false)

(2, h, `,while (e) s)
lmq−−→(2, h′, `, undefined)

DRETURN

(2, h, `, e)
lmq−−→(2, h′, `, v)

(2, h, `, return e; s)
ε−→(2, h′, `, return v)

Fig. 8. Decorated Semantics Rules (Core JavaScript, continued)

DNEWFINI When an execution of @NewExe(`o, `, v) finished, we restore the scope object to ` and
return `o as the result of creating an object.

DFUN To create a new function, we first create an empty prototype object `p, then we create `′ as the
function object, where the “prototype" property is set to `p. We keep the current scope object ` in
the @fscope property of `′ as the closure captured by the function definition. We finally return`′ as
result. The function object is decorated with 2, keeping track the owner of the function.

DTYPEOF We use the GetTypeh, v to obtain a string representing the type of v.
DOP We use a conventional interpretation of op.
DASGNIDENT We first look up through the scope chain to check if x is defined in the chain. If it exist

in scope object `n , then we update the property of “x” in `n, otherwise we create a property “x” in
the global object `g.

DASGN-NEW-PROPERTY To create a propertym of `1, we directly update `1 in hwithout following the
prototype chain. A decoration is created only when a new property is created and cannot be changed
afterward.

Example 2 (Decoration of a new property). Suppose a location ` stored in variable x represents the
object o in the heap. A program, with decoration ♥, x[“b”] = 3 results in the decorated object on
the right side:

o =

{
a{♥} : 2
c{♠} : 4

}
⇒


a{♥} : 2
b{♥} : 3
c{♠} : 4


DMODIFY-PROPERTY It is similar to DASGN-NEW-PROPERTY. The color of the property in the heap is

not changed.

20

DGETVPROP To access a property of an object, we look up through the prototype chain. The value v
could possibly be an location. When the property m does not exist we return undefined .

DGETVIDENT To resolve a variable name, we look up through the scope chain.
DPARSE To de-arshal an object we use parse(m) to reconstruct an object o. Note that it is a special

rule for a native function.
DSTRINGIFY To marshal an object we use stringify(o) to return the string (in JSON format) repre-

sentation of the object.
DPOSTMSG To post a message m, we use a label m to indicate the side-effect.
DADDLISTENER To set a event listener `i, we use a label `i to indicate the side-effect.
DVAR Since var x has already been treated by VD before statement execution, we just skip this

statement.
DBLOCKNEXT When a statement evaluates to a value, we continue with the next one.
DBLOCKCONTEXT It is a contextual rule for evaluating sequential composition of statements (block).
DIFTRUE If the condition expression e evaluates to true then we execute the “then" branch.
DIFFALSE If the condition expression e evaluates to false then we execute the “else" branch.
DWHILETRUE If the condition expression e evaluates to true then we unfold the while body s once.
DWHILEFALSE If the condition expression e evaluates to true then we skip the while body.
DRETURN For return statement, we skip all the rest of the statement s.

Example 3 (Decorated Global Object). Recall variables secret and steal in Listing 4 and 3 of
Section 2. Assuming that the secret input is “yes”, by semantics (after execution of the non-benign
gadget) the shared global object has the following form:

h(#global i) =


...

“price”{♠} : 0
“secret”{♠} : “yes”
“steal”{♥} : “yes”


If the gadget is sandboxed as in Listing 5, the gadget code gets stuck by the semantics when trying to read
“secret” since the variable has not been defined. (In practice, however, the program raises an exception
that we do not model in the semantics.)

4. Compilation Overview

In this section we describe in detail how proxy and listener libraries work. For that, we need to define
opaque object handles.

4.1. Opaque Object Handle

According to the SOP policy, the integrator and the framed gadget cannot exchange JavaScript refer-
ences to objects. Our libraries provide a way for the integrator to refer to objects that are defined inside
the gadget, called opaque object handles [2].

An opaque object handle is essentially an abstract representation of a JavaScript object. In our libraries
it is a unique number associated with an object in the frame.

The following code excerpt demonstrates the data type for an opaque object handle:

21

1 function OHandle(id){
2 if (id == undefined) id = handle_id_gen();
3 this._id = id;
4 this._is_ohandle = true;}

In practice, an opaque object handle is an object with a field _is_ohandle being true and a field
_id being the corresponding id. The handle_id_gen function generates a unique id. Since the data
structure for handles only contains primitive values, they can be exchanged via PostMessage and standard
marshaling methods.

On the listener library side, we keep a list for associating handles and objects:

1 var handle_list = {};
2 function add_handle_obj(ohandle,obj){
3 handle_list[ohandle._id] = obj;}
4 function get_obj_by_handle(ohandle){
5 return handle_list[ohandle._id];}

Since an object could possibly be an opaque object handle, it is necessary to dynamically check whether
the object being operated is an opaque object handle or a local object existing in the integrator. If it is
an opaque object handle, we need to proxy the operation to the sandbox; if it is a local object, we can
directly operate on this object. We define an isOpaque function to do the dynamic check:

1 function isOpaque(obj){
2 if ((obj != null) && obj._is_ohandle) return true;
3 return false;
4 }

Listing 11: isOpaque Function

Bootstrapping We model the interface provided by a given gadget as a set V of global variables in the
gadget.
Example 4. For instance in our running example, V = {gadget}, since gadget is the only global
variable defined by the gadget. Another example is the interface provided by Google Maps API, that
contains only the global variable google.

The Mashic compiler inserts bootstrapping scripts on both sides, integrator and gadget. The bootstrap-
ping script for the integrator takes a set of variables V = {x1, . . . , xn} and generates opaque object
handles for each of them:

1 var xi = new OHandle(i);

Listing 12: Integrator Bootstrapping

The bootstrapping script for the gadget also generates opaque object handles and adds them to a list.

1 add_handle_object(new OHandle(i),xi);

Listing 13: Gadget Bootstrapping

In the rest of the paper we let BootstrapVi and BootstrapVg be the bootstrapping scripts for variable set
V for the integrator and the gadget respectively.

22

Proxy and Listener Interface In the rest of the paper we let Pp denote the proxy library, and Pl the
listener library. On the proxy library side, we provide a series of interfaces to obtain an opaque object
handle, or operate on it.

To obtain an opaque object handle from a global variable in the gadget, we use the GET_GLOBAL_REF
interface.

1 function GET_GLOBAL_REF(global_name,cont){
2 var m_id = gen_id();
3 var msg = {msg_id : m_id,
4 msg_type : ’GET_GLOBAL_REF’,
5 global_name : global_name};
6 PostMessage(stringify(msg));
7 set_cont(m_id,cont);}

Listing 14: Code Snippet of the Proxy Library

The GET_GLOBAL_REF interface takes two parameters, the global_name, and a function cont to
be used as continuation.

The GET_GLOBAL_REF function, upon invocation on the proxy side, composes a message with a
fresh message id and sends it to the gadget in iframe. Because of the asynchronous nature of the PostMes-
sage communication, the listener library on the gadget side cannot respond to this message immediately.
Hence, we register a continuation cont with the message id m_id.

There are other interfaces that are supported for operating on opaque objects handles:

– GET_PROPERTY: to obtain an opaque object handle or the primitive value of a property of a given
object (opaque object handle);

– OBJ_PROP_ASSIGN: to assign a primitive value or an object or an opaque object handle to a
property of a given object;

– CALL_FUNCTION: to call a function (opaque object handle) with all parameters being primitive
values, objects or opaque object handles;

– CALL_METHOD: to call a method of an object (opaque object handle) with all parameters being
primitive values or objects or opaque object handles;

– NEW_OBJECT: to instantiate a function object (that is, an opaque object handle) with all parameters
being primitive values or objects or opaque object handles.

Example 5. Recall the mashup from Section 2. The interface to obtain an opaque object handle in the
integrator is:

GET_GLOBAL_REF("gadget", function(val){...});

where “gadget” is the interface provided by the gadget and the second parameter is a callback function.
Once the integrator obtains an opaque object handle, it can use other interfaces from the integrator to
operate on the opaque object handle. If opq_inst corresponds to an instance object inside the gadget,
to mimic the code of line 4 in Listing 2 we use:

CALL_METHOD(opq_inst, "setlevel", function(val){...},9);

The interface CALL_METHOD sends a message via PostMessage, and waits for a response from the
gadget. Once the response arrives, the callback function(val){...} is invoked on the returned
result. Note that the result might be an opaque object handle as well.

23

In the listener library, there are interfaces to generate a response as the following function:

1 function GET_GLOBAL_REF_L(recv){
2 var obj = window[recv.global_name];
3 return make_resp_msg(recv,obj);
4 }
5 function make_resp_msg(recv,obj){
6 var ohandle, msg;
7 if (obj != null &&
8 (typeof(obj) == "object" ||
9 typeof(obj) == "function"))

10 {ohandle = new OHandle();
11 add_handle_obj(ohandle,obj);
12 msg = {msg_id : recv.msg_id,
13 msg_type:’EXE_CONT’,
14 return_val : ohandle};}
15 else {msg = {msg_id: recv.msg_id,
16 msg_type:’EXE_CONT’,
17 return_val : obj};}
18 return msg;
19 }

The function GET_GLOBAL_REF_L gets the real object by the global name, and generates an opaque
object handle if the object is not a primitive value. Then the opaque object handle is sent back to the inte-
grator via PostMessage as a response for the previous sent message. Finally, the associated continuation
cont will be applied on the response (possibly an opaque object handle).

Here we give details on how interface CALL_METHOD works.

1. The integrator invokes CALL_METHOD(opq_obj,method,cont,args), where opq_obj
stands for the object inside the iframe on which we want to invoke the method;cont is the con-
tinuation; the args is possibly a list of arguments.

2. The proxy sends the following message to the listener in iframe:

1 { msg_id : m_id,
2 msg_type: ’CALL_METHOD’,
3 object : opq_obj,
4 method_name: method,
5 arguments : args }

3. The proxy library associates m_id with the continuation cont.
4. When the listener receives the message, it first obtains the real object corresponding to the handle

obj; and then it converts the opaque object handles in arguments to corresponding objects; and
finally it invokes object[method_name] on the arguments.

5. Once the invocation is finished, it sends back a message:

1 { msg_id: m_id,
2 msg_type:’EXE_CONT’,
3 return_val : val}

where val is either a primitive value or an opaque object handle.
6. Upon receiving the response, the proxy library applies the continuation cont with the received

result val.

24

4.2. Integrator Code Transformation

JavaScript does not support Scheme-style call/cc (Call-with-Current-Continuation) for suspending and
resuming an execution. Demanding the programmer to write in CPS would render the proposal imprac-
tical.

Example 6. Recall the example in Section 2. In order to obtain the property gadget.Type.SIMPLE,
the programmer should write the following code (using the proxy interface):

1 GET_GLOBAL_REF("gadget",
2 function(opq_gadget){
3 GET_PROPERTY(opq_gadget,"Type",
4 function(opq_Type){
5 GET_PROPERTY(opq_Type,"SIMPLE",
6 function(val_SIMPLE){...});});});

This style is similar to CPS, where one needs to explicitly specify continuations for the rest of a
computation. In order to reuse the legacy code that operates on a gadget, we propose an automated
transformation of legacy code in such a way that programmers do not need to rewrite their code. Legacy
code in the integrator will be CPS-transformed, and inserted with dynamic checks for opaque object
handles when necessary.

We formally define the CPS transformation of an integrator code s, denoted C〈s〉. The function C : s 7→
s transforms JavaScript code into CPS. CPS-transformed programs are functions that take as parameter
another function as an explicit continuation of the computation. The transformation rules for statements
are shown in Figure 9. The CPS transformation rules shown in Figure 10 are standard with respect to the
call-by-value lambda calculus. The transformation rules defined in Figure 11 represent interesting and
non-standard cases where the proxy library and dynamic checks are inserted into the CPS transformed
code. We give explanations for important cases while other rules are similar. For each operation, the
compilation inserts dynamic checks to verify whether the object is an opaque object handle or not.

We transform e0[e1] to a function taking a parameter _k as continuation. In the body of this function,
we apply the transformed code of e0 to a continuation where the transformed code of e1 is applied to an
inner-most continuation. In the inner-most continuation _x0 and _x1 bind to the results of evaluating e0
and e1 respectively. We dynamically check if _x0 is an opaque object handle to decide whether to use
the proxy interface or to apply _k to _x0[_x1] directly. Notice that _x1 can only hold a string, otherwise
the execution blocks since in our simplified JavaScript semantics we do not consider type-casting. The
transformation of the expression new e0(e1) is trickier. This is due to the semantics of new and its
return value. Its semantics is similar to calling a function except that the return value is not the result of
evaluating the function but the newly created object. Directly supplying the continuation _k to evaluation
_x0 of e0, as in the case for e0[e1] will not work since the returned value must be a reference and not
the result of the function. In the inner-most continuation, we first create a dummy function _x3 with the
same prototype as the object obtained from e0 in order to simulate the return value of an object reference.
Then we create an empty object _x2 with this dummy function. Next we create a continuation _x4 with
parameter _v where _k is always applied to _x2, no matter what is the parameter _v. Finally, we apply
_x0 to _x1, to simulate function e0 execution, using _x4 as continuation and binding _x2 to this keyword
(to initialize properties in _x2) via _x4. Notice that the continuation will be always applied to _x2, and
as in new e0(e1), will return the created object rather than the result of the function invocation.

25

C〈s0; s1〉 :
function(_k){
C〈s0〉(function(_v){C〈s1〉(_k); });
}

C〈if (e) s0 else s1〉 :
function(_k){
C〈e〉(function(_b){

if (_b) C〈s0〉(_k)
else C〈s1〉(_k);

});
}

C〈while (e) s〉 :
function(_k){
var _c;
_c = function(_v){

C〈e〉(function(_b){
if (_b) C〈s〉(_c)
else _k(undefined);

});
};

_c(undefined);
}

C〈return e〉 :
function(_k){C〈e〉(_fun_cont)}

Fig. 9. Transformation of Statements

C〈this〉 :
function(_k){_k(_this); }

C〈pv〉 :
function(_k){_k(pv); }

C〈x〉 :
function(_k){_k(x); }

x = e
function(_k){
C〈e0〉(function(_x0){

_k(x = _x0);
});
}

e0 op e1
function(_k){
C〈e0〉(function(_x0){
C〈e1〉(function(_x1){

_k(_x0 op _x1);
});
});
}

typeof e
function(_k){
C〈e0〉(function(_x0){

_k(typeof _x0);
});
}

{m0 : e0,m1 : e1}
function(_k){
C〈e0〉(function(_x0){
C〈e1〉(function(_x1){

_k({m0 : _x0,m1 : _x1});
});
});
}

function(x){s}
function(_k){

_k(function(_fun_cont , x){
var _this;
_this = this;
C〈s〉(_fun_cont);
});
}

Fig. 10. Transformation of Expressions, Non-Message-Passing part

4.3. Overall Picture

In order to state the theorem, we define decorations for original and compiled mashups. In the original
mashup we decorate the integrator as ♠ and the gadget as ♥.

Definition 1 (Decorated Original Mashup). Let Pi be an integrator script and Pg be a gadget script. We
define the original mashup M̃(Pi, Pg) to be:

<html>
<script♥> Pg </script>
<script♠> Pi </script>

</html>

In the compiled mashup we decorate the run-time libraries as ♦. The run-time libraries are marked as
neutral color ♦ since we show with the correctness theorem that the integrator’s heap is preserved in the
original and compiled version. The runtime libraries do not appear in the original heap.

26

C〈e0[e1]〉 :
function(_k){
C〈e0〉(function(_x0){
C〈e1〉(function(_x1){
if (isOpaque(_x0)){
GET_PROPERTY(_x0, _x1, _k);
} else {

_k(_x0[_x1]);
}
}); }); }

C〈new e0(e1)〉 :
function(_k){
C〈e0〉(function(_x0){
C〈e1〉(function(_x1){
if (isOpaque(_x0)){
NEW_OBJECT(_x0, _x1, _k);
} else {
var _x2, _x3, _x4;
_x3 = function(x){};
_x3[“prototype”] = _x0[“prototype”];
_x2 = new _x3();
_x4 = function(_v){_k(_x2); };
_x2[“_fun”] = _x0;
_x2[“_fun”](_x4, _x1);
}
}); }); }

C〈e0(e1)〉 :
function(_k){
C〈e0〉(function(_x0){
C〈e1〉(function(_x1){
if (isOpaque(_x0)){
CALL_FUNCTION(_x0, _x1, _k);
} else {

_x0(_k, _x1);
}
}); }); }

C〈e0[e1](e2)〉 :
function(_k){
C〈e0〉(function(_x0){
C〈e1〉(function(_x1){
C〈e2〉(function(_x2){
if (isOpaque(_x0[_x1])){
CALL_METHOD(_x0, _x1, _x2, _k);
} else {

_x0[_x1](_k, _x2);
}
}); }); }); }

e0[e1] = e2
function(_k){
C〈e0〉(function(_x0){
C〈e1〉(function(_x1){
C〈e2〉(function(_x2){
if (isOpaque(_x0[_x1])){
PROPERTY_ASSIGN(_x0, _x1, _x2, _k);
} else {

_k(_x0[_x1] = _x2);
}
}); }); }); }

Fig. 11. Transformation of Expressions, Message-Passing Part

Definition 2 (Mashic Compilation). Let Pi be an integrator script, Pg be a gadget script, V be a set
of variables denoting global names exported by the gadget script. We define the Mashic compilation
M̃c(Pi, Pg,V) to be:

<html>
<iframe src=u></iframe>
<script♦> Pp ;BootstrapVi </script>
<script♠> C〈Pi〉(function(_x){_x}) </script>

</html>

where

Web(u) =
<script♦> Pl </script>
<script♥> Pg </script>
<script♦> BootstrapVg </script>

We formally define the bootstrapping script that appears in Section 2.

27

Definition 3 (Bootstrapping Script). Given a set of variables V = {x0, . . . , xn}, the Mashic bootstrap-
ping script for an integrator BootstrapVi is defined, for i ∈ {0 . . . n}, as

var xi;xi = new OHandle(i);

and the bootstrapping script for a gadget BootstrapVg is:

add_handle_obj (new OHandle(i), xi);

5. Correctness Theorem

In this section we formally present the correctness theorem and its assumptions.

5.1. Preliminary definitions

Correct Marshaling We define the notion of correct marshal and unmarshal functions w.r.t. to a set of
objects S. Intuitively this definition states that the process of marshaling and then unmarshaling an object
preserves the structure of the object in the heap and preserves values that are not locations.

Definition 4 (Correct marshal/unmarshal for S). Let ∼ be defined as v ∼ v′ in h iff there exists a
bijection β such that v, v′ 6∈ L and v = v′ or v, v′ ∈ L and β(v) = v′ and for every property p in h(v),
h(v).p ∼ h(v′).p. Given two functions f and f−1, we say that they are correct for a set of objects S if
for all o ∈ S, heap h, and f−1(f(o)) = o′ we have o′ satisfies: for every property p in o, o.p ∼ o′.p in h.

Definition 4 is useful for the correctness theorem of the compiler. It captures the weakest hypothe-
sis possible for the correctness theorem to hold. Following this hypothesis, implementation of marshal-
ing/unmarshaling functions may vary. In the current prototype of the Mashic compiler we implement
these functions with JSON stringify and parse, which do not preserve the structure of the objects if the
structure contains a cycle. Thus, these functions are considered correct only if the set S of objects to
be marshaled does not contain objects with cyclic structures. We have chosen JSON stringify/parse for
efficiency reasons. However, it is straightforward to write correct marshaling/unmarshaling functions for
a set of objects that also contain cycles in their structures.

Benign Gadget Intuitively, a benign gadget Pg does not rely on the integrator’s portion (marked by ♠)
and the neutral portion (marked with ♦) of the heap. Furthermore the evaluation of Pg does not depend
on any part of the heap except for the initial heap.

In order to state the definition we first define a benign gadget heap as a heap that contains gadget
functions with confidentiality and integrity properties.

Definition 5 (Benign Gadget Heap). A heap hg is benign if and only if for any heaps h0, h1 such that
hj�♥ = hg (j ∈ {0, 1}), for any function located in ` ∈ dom(hg), for any `′ such that h0(`′) = h1(`

′) is
an object, and (♠, hj , `i, `(`′)) −→∗ (♠, h′j , `′j , v′j), the following conditions holds:

1. v′0 = v′1;
2. (integrity) hj =♠ h′j and hj =♦ h

′
j ;

3. (confidentiality) h′0�♥ = h′1�♥;

28

4. (preservation of benignity) h′1�♥ is benign

Example 7 (Benign Heap). Recall the integrator’s code in Listing 3 in Section 2. If the gadget contains
the following code, then the gadget will not produce a benign gadget heap:

1 var rungadget;
2 rungadget = function(x){
3 var steal;
4 steal = secret;
5 price = 0;
6 };

Listing 15: Non-benign Gadget Heap

The gadget defines a function in the heap which tries to read from the global variable secret and tries
to write into the global variable price. Calling the function from the integrator will violate the integrity
and confidentiality requirement.

Definition 6 (Benign Gadget). Program Pg is benign if and only if for any heaps hi (i ∈ {0, 1}) such
that hi�♥ = ∅ and (♥, hi, `, Pg) −→∗ (♥, h′i, `, vi), the following conditions hold:

1. (integrity) hi =♠ h′i and hi =♦ h
′
i;

2. (confidentiality) h′0 =♥ h
′
1;

3. h′0�♥ is benign.

Example 8 (Benign Gadget Example). Recall the example in Section 2, Listing 4. The gadget is not
benign since it tries to read from the global variable secret and tries to write into the global variable
price.

In the benign gadget definition we explicitly require that the initialization phase (adding functions to
the heap) and execution of all functions (that are defined in the heap) always terminate.

It is possible to relax this definition by not requiring termination of benign gadgets (by using indis-
tinguishability invariants for intermediate running expressions) but we consider more appropriate to see
non-terminating behavior in gadgets as non-benign behavior since the gadget will never let the integra-
tor execute. Hence if the gadget is non-terminating we do not offer any correctness guarantees (security
guarantees still apply).

Notice that the termination requirement on gadgets does not imply termination of the mashup. The
mashup might never terminate if gadget and integrator continuously run listener continuations and this
is independent of termination of functions in gadgets (see e.g. fair termination [7]).

Correct Integrator For correctness, we impose some reasonable restrictions on the integrator’s code.
Intuitively, a correct integrator does not modify directly a non-♦-colored property; and does not use
objects defined by gadgets in the prototype chain. This restriction is not limiting in practice since an
integrator usually operates on gadgets via the interfaces provided by it and not by directly modifying its
properties. Given marshal/unmarshal functions, we also require that a correct integrator only sends to
gadgets objects for which these functions are correct.

First, we give a notion of reachability of a location from a global variable in a given heap h.

Definition 7 (Reachability). A location l is reachable from a variable x in h if and only if either:

– h(@global).x = l; or

29

– ∃p such that l is reachable from h(h(@global).x).p.

Now we give the definition for correct integrator.

Definition 8 (Correct Integrator for f ,f−1,V). Program Pi is a correct integrator, if and only if, for any
benign heap hg such that (♠, hin ⊕ hg,#global , Pi) reaches a redex e and a heap h, then the following
conditions hold:

1. If e is of the form x = v and Scope(h, `, “x”) = `n, then either `n = null or “x” is a ♠-colored
property of h(`n).

2. If e is of the form `′[m] = v, then h(`′) is a ♠-single-colored object.
3. For any ` such that ` ∈ dom(h�♠) and h(`).@prototype = `n, either `n = null or h(`n) is a
♠-colored object.

4. If e is of the form `f (`
′) and h(`f) is a ♥-colored function, then h(`′) is an object correct for f and

f−1 and `f is reachable from V in h.

Example 9 (Correct integrator prototype chain). We illustrate why an integrator’s object cannot have a
gadget’s object as its prototype object (bullet 3). Assume that in the heap of the original mashup, h(`i)
is a ♠-colored object, and h(`g) is a ♥-colored object such that

h(`i) = {@prototype : `g} h(`i) = {a : 3}

By reading the property “a” of `i in the original mashup we get 3. The heap of the compiled code will
contain a pointer to a handle:

h(`i) = {@prototype : `o} h(`o) =

{
“_id” n
“_is_ohandle” true

}
Hence, by reading the property “a” of `i in the compiled mashup we do not get value 3.

5.2. Indistinguishability and Correctness

To define indistinguishability between the original heap and compiled heap, the structure of the scope
chain in the heap must be preserved. We start by defining the notion of scope object and scope chain. We
use #global as the address of the original global object.

Definition 9 (Scope Object). Let h be a heap, and ` be a location for a scope object. We say ` is a scope
object in h if one of the following conditions is satisfied:

1. ` = #global , and h(`).@scope = null ;
2. ` 6= #global , h(`).@scope = `′ 6= null , and `′ is also a scope object in h.

Definition 10 (Scope Chain). Let h be a heap, and `1 be a scope object in h. We say that `1`2 . . . `n is
the scope chain of `1 in h, if

1. For i < n, h(`i).@scope = `i+1;
2. h(ln).@scope = null

We use ` ∈ `1`2 . . . `n to denote that scope object ` is included in the scope chain `1`2 . . . `n w.r.t some
heap h.

We define the β-indistinguishability ∼β on values, objects, and scope chains, where β : L ⇀ L is a
partial injective function between heap locations.

30

Scope Object

Fig. 12. Example: Scope Indistinguishability

Definition 11 (Scope Chain Indistinguishability). Let `1 be a scope object in h and `′1 be a scope object
in h′, and β : L ⇀ L be a partial injective function. Let `1`2 . . . `n be the scope chain of `1 in h, let
`′1`
′
2 . . . `

′
m be the scope chain of `′1 in h′. We say that the two scope chains are indistinguishable, denoted

(h, `1)≈β(h′, `′1) if and only if:

1. β(`1)β(`2) . . . β(`n) is a sub-sequence of `′1`
′
2 . . . `

′
m;

2. for ` 6∈ β(`1)β(`2) . . . β(`n), and ` ∈ `′1`′2 . . . `′m, ∀i ∈ dom(h′(`)),
i ∈ {@scope,@prototype,@this, “_k”, “_l”, “_m”, “_xi”}

The intuition of scope indistinguishability is that the structure of scope chains is preserved by the
integrator transformation (even if scope chains do not have a one to one correspondence), as illustrated
in Fig. 12. In the figure, scope objects are represented by round points, and the solid arrows represent
the scope chain. The scope chain on the left is obtained by a normal execution of integrator code. The
scope chain on the right is obtained by execution of the corresponding transformed code, where there are
more CPS-administrative scope objects (gray-colored in the figure). The scope indistinguishability does
not take into consideration those CPS-administrative scope objects.

Two values are indistinguishable either if they are equal or if they are both locations related by β. Even
assuming a deterministic allocator, we need β to relate two heaps because objects created in the original
mashup and compiled mashup will be necessarily different. In particular, the compiled heap will contain
more objects.

Definition 12 (Value Indistinguishability). Let v1 and v2 be two values, and β : L ⇀ L be a partial
injective function. Value indistinguishability is defined as follows:

v 6∈ L
v ∼β v

v1, v2 ∈ L β(v1) = v2

v1 ∼β v2

Objects are related if they have the same properties with the same values. Exceptions to this are prop-
erties {@scope,@fscope,@this} and function objects. Properties {@scope,@fscope} are related via the
scope chain indistinguishability as explained above. Function objects are indistinguishable if the @body
property contains the same code in its original and compiled form.

Definition 13 (Object indistinguishability). Let o1 and o2 be two objects, and β : L ⇀ L be a partial
injective function. We say o1 'β o2, if for every i ∈ dom(o1) one of the following holds:

31

1. i ∈ {@scope,@fscope,@this};
2. i 6∈ {@body ,@scope,@fscope,@this} and if o1.i ∈ dom(β) then o1.i ∼β o2.i;
3. i = @this then o1.@this ∼β o2.“_this”;
4. i = @body then o1.@body = function(x){s}, then @body ∈ dom(o2) and o2.@body =

function(_fun_cont , x){s}, where

s= var _this;
_this = this;
(C′〈s〉)(_fun_cont)

We give an example illustrating object indistinguishability.
Example 10 (Object indistinguishability). Let o1, o2 o3 be:

o1 =


a : 2
b : `1
@scope : `2
@this : `3

 o2 =


a : 2
b : β(`1)
@scope : `′2
“_this” : β(`3)

 o3 =


a : 2
b : `′1
@scope : `′2
“_this” : β(`3)


If `′1 6= β(`1) and `2 6= `′2, then we have o1 'β o2 and o1 6'β o3. We do not compare the @scope
property between o1 and o2; but we do compare property b between o2 and o3.

Finally, heaps are indistinguishable if all objects are indistinguishable and respective scope chains are
indistinguishable.

Definition 14 (Heap indistinguishability). We say that (h1, `1) and (h2, `2), are indistinguishable with
respect to β : L⇀ L with dom(β) = dom(h1) and rng(β) ⊆ dom(h2), denoted (h1, `1) 'β (h2, `2), if
and only if:

1. h1(`) 'β h2(β(`)) for every ` ∈ dom(β)
2. if ` ∈ dom(β) and h1(`) has the @body property, then (h1, h1(`).@fscope) ≈β (h2, h2(β(`)).@fscope)
3. (h0, `0) ≈β (h1, `1).

The correctness theorem gives strong guarantees if the gadget is benign: behavior of original and
compiled mashup are equivalent in terms of the integrator’s heap. If the gadget is not benign there are
no correctness guarantees but only security guarantees described in the following section. We use in the
hypothesis that integrator and gadget do not declare the same variables var(Pi)∩var(Pg) = ∅, where var
is defined by:

var(s) =


∅ if s = e or s = return e

var(s0) ∪ var(s1) if s = s0; s1 or s = if (e) s0 else s1

var(s) if s = while (e) s

{x} if s = var x

Notice that this definition of var refers only to declared variables, and the hypothesis does not assume
that integrator and gadget do not share variables.

In the following, let M̃c be the Mashic compiler using f and f−1 for marshaling and unmarshaling.
Let V be a set of names used by the integrator as the gadget interface.

32

Theorem 1 (Correctness). Let Pi be a correct integrator for f ,f−1,V and Pg be a benign gadget such
that var(Pi) ∩ var(Pg) = ∅. If 〈♠, ε,null , M̃(Pi, Pg), Qinit〉I −→∗ 〈2, h0, `0, ε,Qinit〉x then,

〈♠, ε,null , M̃c(Pi, Pg,V), Qinit〉I −→∗ 〈2, h1, `1, ε,Q1〉x

where Q1 has no message waiting, and there exists β such that

(h1�♠, `1) 'β (h0�♠, `0)

The proof proceeds in two stages by means of an intermediate compilation and by structural induction
on programs. The behavior of the original mashup is indistinguishable from that of the intermediate
compilation; and the intermediate compilation behaves indistinguishably from the Mashic compilation.

5.3. Auxiliary Definitions and Lemmas

In this section we give some auxiliary definitions and some useful lemmas to prove the main theorem.
First we define the notion of intermediate compilation in which the gadget is not sandboxed by an iframe
and the integrator is compiled to CPS-only code without using the proxy and listener interface. The
intermediate compilation will be used in the proofs.

Definition 15 (Decorated Intermediate Compilation). We define decorated intermediate compilation
M̃i(Pi, Pg) as the follows:

<html>
<script♥> Pg </script>
<script♠> C′〈Pi〉(function(_x){_x}) </script>

</html>

where C′〈〉 is an intermediate CPS-transformation.

The intermediate CPS transformation is identical to the Mashic CPS transformation except for the
rules shown in Figure 13, where the proxy and the listener library are not used, since the gadget is not
sandboxed.

The following lemma shows that the Mashic compilation and the intermediate compilation preserve
correctness of the integrator, since they will not introduce more behavior.

Lemma 2. If Pi is a correct integrator, then C〈Pi〉 and C′〈Pi〉 are both correct integrators.

Proof. Straightforward by structural induction on definition of Pi.

We define the notion of strong object indistinguishability, denoted ∼β , where we have a stronger
condition in item 2 when comparing to object indistinguishability. The technical intuition for strong
object indistinguishability is that the execution of an intermediate compilation and a mashic compilation
of an integrator P do have a strong similarity due to the same structure in CPS transformed code, allowing
us to prove a stronger lemma for the intermediate compilation.

Definition 16 (Strong Object Indistinguishability). Let o1 and o2 be two objects, and β : L ⇀ L be a
partial injective function. We say o1 ∼β o2, if for every i ∈ dom(o1) one of the following holds:

33

new e0(e1)
function(_k){
C′〈e0〉(function(_x0){
C′〈e1〉(function(_x1){
if (_x0[“_is_cps”]){
var _x2, _x3, _x4;
_x3 = function(x){};
_x3[“prototype”] = _x0[“prototype”];
_x2 = new _x3();
_x4 = function(_v){_k(_x2); };
_x0[“apply”](_x2, _x4, _x1);
} else {

_k(new _x0(_x1));
}}); }); }

e0[e1](e2)
function(_k){
C′〈e0〉(function(_x0){
C′〈e1〉(function(_x1){
C′〈e2〉(function(_x2){
if (_x0[_x1][“_is_cps”]){

_x0[_x1](_k, _x2);
} else {

_k(_x0[_x1](_x2));
}}); }); }); }

e0[e1]
function(_k){
C′〈e0〉(function(_x0){
C′〈e1〉(function(_x1){

_k(_x0[_x1]);
}); }); }

e0(e1)
function(_k){
C′〈e0〉(function(_x0){
C′〈e1〉(function(_x1){
if (_x0[“_is_cps”]){

_x0(_k, _x1);
} else {

_k(_x0(_x1));
}}); }); }

e0[e1] = e2
function(_k){
C′〈e0〉(function(_x0){
C′〈e1〉(function(_x1){
C′〈e2〉(function(_x2){

_k(_x0[_x1] = _x2);
}); }); }); }

Fig. 13. CPS Transformation (Intermediate)

1. i ∈ {@scope,@fscope,@this};
2. i 6∈ {@body ,@scope,@fscope,@this} and if o1.i ∈ dom(β) then o1.i ∼β o2.i otherwise o1.i =
o2.i.

3. i = @this then o1.@this ∼β o2.“_this”;
4. i = @body then o1.@body = function(x){s}, then @body ∈ dom(o2) and o2.@body =

function(_fun_cont , x){scps}, where

scps = var _this;
_this = this;
(C′〈s〉)(_fun_cont)

Accordingly, we update the definition of strong heap indistinguishability.

Definition 17 (Strong Heap indistinguishability). Two pairs of heap and scope object (h1, `1) and
(h2, `2), are indistinguishable with respect to a partial injective function β : L ⇀ L such that
dom(β) = dom(h1) and rng(β) ⊆ dom(h2), denoted (h1, `1) ∼β (h2, `2), if and only if:

1. for every ` ∈ dom(β) with o1 = h1(`) and o2 = h2(β(`)):

(a) o1 ∼β o2
(b) if o1 has the @body property, then (h1, o1.@fscope) ≈β (h2, o2.@fscope)

2. (h1, `1) ≈β (h2, `2).

The following lemma shows that given two indistinguishable scope chains, the scope looking-up pro-
cess will return indistinguishable heap locations for any normal variable. By normal variable we mean
variables that do not start with a “_". Special case applies to resolving the @this identifier.

34

Lemma 3 (Scope look-up). Let h, g be two heaps, and `, j be two locations for scope objects. If h ∼β g
and (h, `) ∼β (g, j), then the following holds:

1. if i 6= @this , Scope(h, `, i) = `1 then Scope(g, j, i) = j1 and β(`1) = j1;
2. if Scope(h, `,@this) = `1 then Scope(g, j, “_this”) = j1 and β(`1) = j1;

Proof. Straightforward by Definition 11 and Definition of Scope(_, _, _) in semantics rules.

We formally define the shape of an opaque object handle.

Definition 18 (Opaque Object Handle). Let o be an object, o is an opaque object handle with id n if and
only if

o =

{
“_id” n
“_is_ohandle” true

}
We define a relation between two heaps up to a mapping from id of opaque object handles to heap

locations. The intuition is that if in one heap, a property points to an opaque object handle, then in the
other heap, it must point to a location corresponding to the opaque object handle by the mapping.

Definition 19. Let f : N 7→ L be a partial injective function from numbers to locations. We say that

hc
f
= hi if

1. hc =♥ hi;
2. dom(hc�♠) = dom(hi�♠);
3. ∀` ∈ dom(hc�♠), oc = hc(`) and oi = hi(`), such that

(a) if oc.i{♠} = `o, and hc(`o) is an opaque object handle with id n, then oi.i = f(n);
(b) otherwise oc.i{♠} = oi.i{♠}.

6. Security Theorem

In this section we present the security theorem. In Mashic compiled code, the integrator has complete
access to gadget resources but the gadget only has access to resources offered by the integrator in the
proxy library. After Mashic compilation, the malicious gadget cannot scan properties of the integrator,
as e.g. in Listing 4, because the SOP policy prevents the framed gadget from accessing the JavaScript
execution environment of the integrator as shown in the DFRAMEINIT rule in Figure 5.
Example 11 (Gadget modifies native functions). A native function that can commonly appear in the
integrator code is the setTimeout function. This function takes two parameters. The first one is a
function that will be executed when the time (in milliseconds) specified in the second parameter has
passed:

1 setTimeout("alert(timeout!!)",5);

In this example, after 5ms a pop-up window with caption “timeout!” appears.
This function, as all native JavaScript functions, is associated as a property of the global object. As

many native functions the code associated to the setTimeout function can be changed at execution
time, changing in this way the assumed behavior for setTimeout.

Suppose the untrusted gadget owned by the attacker writes a function of its own into the setTimeout
property:

35

1 setTimeout=function (x,y) { evil code here} ;

Then every call to setTimeout in the integrator’s code will be calling the attacker’s code with the
integrator privileges.

If instead the gadget is enclosed in a frame, the same code trying to affect the setTimeout property
of the global object will only affect the property of the global object of the frame, that is in a disjoint part
of the heap according to the SOP.

In order to state the security guarantee, we consider that all code coming from origin u is part of the
gadget principal ♥. In contrast to the decorations used for correctness, we now consider the listener
library and bootstrapping as gadget’s code. This should not be surprising since the gadget can modify
this code and the security theorem must be valid also in this case. We decorate all code residing in the
integrator with ♠. This is also different from the correctness theorem. Essentially, we are now interested
in asserting that the gadget cannot change the proxy library or bootstrapping in the integrator, whereas
for the correctness theorem we were interested in heap indistinguishability only for the integrator heap in
original and compiled mashups. Furthermore, we assume hin is decorated with ♠, and hfin is decorated
with ♥. (Notice that decorations do not affect the compiler or semantics of JavaScript code and are only
used as technical instrumentation for the theorems and their proofs.)

Definition 20 (Decorated Mashic Compilation (for security theorem)). Given an integrator script Pi, a
gadget script Pg, and a set of variable V denoting global names exported by the gadget script, we define
the Mashic compilation

.
Mc(Pi, Pg,V) to be:

<html>
<iframe src=u></iframe>
<script♠>
Pp;BootstrapVi ; C〈Pi〉(function(_x){_x})

</script>
</html>

where

Web(u) = <script♥> Pl;Pg;BootstrapVg </script>

Example 12 (Integrity violation). In the example referred just above, the initial heap contains the native
function setTimeout. Since the initial heap is decorated with ♠, the “timeout" property of the global
object is a property of the integrator.

h(#global) =


...

“timeout”{♠} : `
...


By using decoration of Definition 20 and semantics rules, we get that the projection h�♠ of the integrator
heap before execution of the gadget and projection h′�♠ after execution of the gadget do not coincide.
The setTimeout property of the integrator’s global object has been changed by the gadget execution.
This represents an integrity violation.

36

Example 13 (Confidentiality violation). Recall variable secret in the example of Section 2. Let us
assume that the gadget’s heap is h�♥.

After execution of the non-benign gadget in Listing 4 with an integrator’s global object containing
“secret”{♠} : “yes”

h(#global) =


...

“secret”{♠} : “yes”
...


the gadget heap has h �♥ (#global f).“steal” = “yes”. But starting with integrator’s global object con-
taining “secret”{♠} : “no”

h(#global) =


...

“secret”{♠} : “no”
...


the gadget heap is h �♥ (#global f).“steal” = “no”. This difference depends on the integrator’s heap
and represents a confidentiality violation.

We show that for any gadget code Pg, and any integrator code Pi, the Mashic compilation
.
Mc(Pi, Pg,V) provides integrity and confidentiality guarantees. Notice that even if iframes provide strict
heap separation, the theorem shows that this does not imply that the SOP provides strict isolation. Se-
curity provided by the SOP is not equivalent to a noninterference property or strict isolation but rather
equivalent to a declassification property (the queue component in the configuration is set to be the same
in the two executions). This is mainly due to inter-frame communication.

Theorem 2 (Security Guarantee of Integrator). Let Pg and Pi be gadget and integrator code respec-
tively, and let V be a set of variables. For any configuration reachable from a Mashic compilation
.
Mc(Pi, Pg,V):

〈♠, ε,null ,
.
Mc(Pi, Pg,V), Qinit〉I −→∗ 〈♥, h, `, s,Q〉F

if

〈♥, h, `, s,Q〉F−→〈♥, h′, `′, s′, Q′〉F

then we have

1. (integrity.) h�♠ = h′�♠ ;
2. (confidentiality.) For any h0 such that h0�♥ = h�♥, we have 〈♥, h0, `, s,Q〉F−→〈♥, h′0, `′, s′, Q′〉F ,

and h′0�♥ = h′�♥ .

The proof of security proceeds by induction on the length of the execution and is simpler than the one
of the correctness theorem.

37

7. Implementation and Case Studies

The Mashic compiler is written in Bigloo 4 (a dialect of Scheme) and JavaScript. It has 3.3k lines
of Bigloo code and 0.8k lines of JavaScript code. We now turn to discuss practical issues as well as an
optimization that we have designed and implemented based on batched futures. We also report on case
studies.

CPS in JavaScript Since JavaScript does not support any tail-recursive call optimization, CPS-
transformed code can easily run out of call stacks. In order to deal with this, we implement a trampoline
mechanism as proposed by Loitsch [24]. We define a global variable counter to count the depth of
current call stacks. If the counter exceeds a certain limit (in the following example it is 30) a tail call will
return a trampoline object instead of invoking the function.

This is shown in Listing 16.

1 if (counter > 30)
2 return new Trampoline(fun, arg);
3 return fun(arg);

Listing 16: Trampoline of Tail Call

A guard loop, on the top level, detects if a trampoline object is returned, as shown in Listing 17. If a
trampoline object is detected, the loop restarts the execution of the tail call.

1 res_or_tramp=fun(arg);
2 while (res_or_tramp instanceof Trampoline)
3 res_or_tramp = res_or_tramp.restart();

Listing 17: Guard Loop of Trampoline Execution

Event Handler In mashups, we also find demands for registering integrator-defined functions as event
handlers of gadgets’ DOM objects. For example, the Google Maps API provides an interface to set an
integrator’s function as a handler of the event of clicking on the map. Every time the map is clicked, the
corresponding function will be invoked, to notify the integrator of the event. By the SOP, the integrator
and the gadget in a Mashic compilation cannot exchange function references. Hence we design and
implement a mechanism called Opaque Function Handle to achieve the same functionality of an event
handler. Similar to the opaque object handle, we associate opaque function handles with function objects
on the integrator side. When an iframe-sandboxed gadget receives a function handle, it creates a wrapper
function by using the function shown in Listing 18.

1 function wrap_fun(fhandle){
2 return function(arg){
3 var msg = { fun : fhandle,
4 msg_type : ’CALLBACK’,
5 argument : arg};
6 PostMessage(stringify(msg));
7 return;};}

Listing 18: Wraping Function Handle

4http://www-sop.inria.fr/mimosa/fp/Bigloo/

38

(a) Map Directions (b) Youtube Player Controls

Fig. 14. Case Studies of Applying Mashic Compiler

Mashup Gadget API Description
Polyline Drawing (P) Google Maps Integrator uses the APIs to draw several ran-

dom lines on the displayed map.
Marker Drawing (P) Google Maps Integrator uses the APIs to place several ran-

dom markers on the displayed map.
Map Controls (O) Bing Maps Integrator implements several controls over

the map such as zooming, relocating, etc.
Player Controls (O) Youtube Integrator implements several controls over

the player such as forwarding, stop, etc.
Translator (O) Bing Translator Integrator uses the provided translating API

to do translation.
Polyline and Marker (O) Google Maps A mashup that contains multiple gadgets.

Fig. 15. Selected Case Studies

The wrapped function, upon each invocation, sends a message to notify the integrator to invoke the
function associated with the function handle.

Case Studies We have successfully applied our compiler to mashups using well-known gadget APIs,
such as Google Maps API, Bing Maps API, and Youtube API. Those examples involve non-trivial inter-
actions between the integrator and the gadget.

In Figure 14 we show two concrete examples. The first example is a mashup using the Google Maps
API to calculate driving directions between two cities. The map gadget is sandboxed by the Mashic
compiler in an iframe, as indicated by a black box in the figure. The compiled integrator, as in the original
integrator, permits to choose a starting point and an ending point to display a route in the map. The
gadget’s response displayed by the integrator, is the distance between the two points. The latter example
shows a sandboxed Youtube player, where one can control the behavior of the player through buttons in
the integrator.

We report a selected list of mashups in Fig. 15. In the first column of the figure, the mark ’P’ means
that the integrator’s code was obtained from publicly available code in the web, whereas mark ’O’ means
that the code is ours.

39

For the 25 examples of Google Maps API we have studied, we have successfully compiled 23 of them.
The other 2 examples are not supported by the Mashic compiler. They are overlay-remove and
overlay-simple. The example of overlay-remove uses the for-in construct which is not cur-
rently supported by our compiler. In the overlay-simple example, the integrator uses some gadget’s
object as the prototype of an integrator’s object, which is not allowed by Definition 8 (correct integrator).

Discussion on Performance and Optimization The Mashic compiler prototype does have a running
overhead on a compiled mashup compared to the original mashup. (This penalty is not perceptible for
the final consumer of the mashup, if the interaction with the gadget is not inside a loop, for example.)
The performance penalty in the Mashic compiler without optimizations [26] mainly comes from the
unoptimized CPS-transformation and message-passing. We have implemented an optimized version of
the compiler based on batched futures [5], [18] that we discuss here.

Batching Optimization Message-passing is the main cause of performance penalty, especially inside a
loop. For example in the marker drawing mashup we show in Figure 15, a loop inserts markers into the
map. For each marker, it requires two round-trips of messages. The total message-passing overhead is
proportional to the number of loop iterations. Although in practice, as in the above example, it is often
the case that the loop can be parallelized, parallelism is not yet available in JS. Another alternative is to
“batch” these messages to reduce the total message-passing overhead to constant time.

The key idea of our optimization is to transform programs in such a way that messages are only
exchanged when the result produced by the gadget is actually required for determining the control flow
in the integrator code. Consider, for instance, the program below in which the gadget is assumed to
implement three methods g1, g2, and g3, while the integrator is assumed to implement two functions i1
and i2:

1 x = gadget .g1() ; gadget .g2() ; y = gadget .g3() ;
2 if (x == y) {
3 i1 () ;
4 } else {
5 i2 () ;
6 }

During the execution of the program generated by the original mashic, three messages are exchanged
between the integrator and the gadget, each of them triggered by a single call to one of the gadget’s
methods. In contrast, the program generated by the optimised mashic only exchanges one message with
the gadget, just after the evaluation of the guard of the condition, as the outputs of previous calls are
required for determining the control flow in the integrator code.

The code generated by the original mashic compiler is such that every time the integrator code interacts
with an opaque object handle, the interface of the proxy library responsible for creating the corresponding
message and sending it to the gadget is invoked. For instance, when using an opaque object handle as
a function, the interface CALL_FUNCTION of the proxy library is invoked. This interface receives as
parameters the opaque object handle corresponding to the gadget’s function as well as the corresponding
arguments and the current continuation. It then creates a message that encapsulates the function call
request, sends it to the gadget along with the arguments, and registers the current continuation. Once the
gadget’s response arrives, the current continuation is invoked using the response value as its argument. In
contrast, the optimised proxy interfaces do not send any message to the gadget but rather create a batched
future that represents the future value returned by the gadget. Once the value of a batched future is needed
for determining the control flow in the integrator’s code (for instance, for deciding which branch of a

40

conditional to take), all the pending requests are batched together and sent to the gadget. To this end,
the proxy provides an interface GET_REAL_VALUE, whose code is given below, that receives as input a
value and a continuation.

1 function GET_REAL_VALUE(v, cont) {
2 if (isMashicObject(v)) {
3 _cont = function () { cont . call (null , v._value) ;};
4 FLUSH()
5 } else { cont . call (null , v) ; }
6 }

This interface checks whether its first argument is a mashic internal object (either a batched future or a
value envelope, which is explained later in this section) in which case it registers the current continuation
and dispatches all the pending requests to the gadget using a special proxy function called FLUSH.

Every time a batched future is created, it is registered in a special array bound to the global variable
_batched_futures. We distinguish two types of batched futures: those that represent a value to be
returned by the gadget – that we call simple batched futures – and those that represent a value to be
computed by the integrator using a value returned by the gadget – that we call complex batched futures.
Function FLUSH, whose code is given below, batches together and sends to the gadget all the requests
corresponding to the registered batched futures up to the first complex batched future. Additionally, the
global variable _current_batch_index is set to the index of the first complex batched future in the
array of registered batched futures.

1 function FLUSH() {
2 var i , requests ;
3
4 requests = [];
5 for (i=0; i<_batched_futures . length ; i++) {
6 if (isComplexBatchedFuture(batched_futures [i]) break;
7 requests [i] = createMsg(batched_futures [i]) ;
8 }
9

10 postMessage(requests) ;
11 _current_batch_index = i ;
12 }

When the gadget’s message arrives with the responses for all pending requests, the function
_message_handler is invoked. This function starts by transforming all the batched futures whose
value is sent by the gadget into value envelopes that encapsulate their corresponding values. A value
envelope is an object with a field _value that holds its corresponding value. After transforming the
batched futures into value envelopes, the complex batched futures that depended on these simple batched
futures are resolved, that is, their values are determined and they are transformed into value envelopes. If,
after this process, there are still registered batched futures to determine, the function FLUSH is invoked
again. Otherwise, the registered continuation is invoked.

1 function _message_handler(m) {
2 var responses ;
3
4 responses = parse (m);
5 for (i=0; i<responses . length ; i++) {
6 _build_simple_envelope (batched_futures [i], responses [i]) ;

41

7 }
8
9 for (i=responses . length ; i<_batched_futures . length ; i++) {

10 if (! isComplexBatchedFuture(batched_futures [i]) break;
11 _resolve_complex_batched_future (batched_futures [i]) ;
12 }
13
14 _batched_futures = _batched_futures . slice (i) ;
15 if (i < _batched_futures . length) {
16 FLUSH();
17 return;
18 } else { _cont () }
19 }

The proxy interfaces in the integrator’s side must be changed in order to handle the two kind of
batched futures and the value envelopes. In the original mashic runtimes the role of the proxy interfaces
GET_PROPERTY, OBJ_PROP_ASSIGN, CALL_FUNCTION, CALL_METHOD, and NEW_OBJECT is
to:

– Create the message containing the request to the gadget;
– Register the current continuation;
– Send the message to the gadget.

In the optimised version of mashic, the role of these interfaces is to determine whether the output of
the corresponding operations should yield a “real” value, a simple batched future, or a complex batched
future, generate the appropriate result, and immediately call the current continuation using it as its argu-
ment. The execution of GET_PROPERTY(g, prop, cont) calls the continuation cont with:

– a simple batched future, if g is bound to an opaque object handle or simple batched future and prop
to a string or a simple batched future;

– a complex batched future, if g is bound to an object belonging to the integrator or a complex batched
future and prop to a simple or complex batched future; ;

– a “real” value, if g is bound to an object belonging to the integrator and prop to a string.

Note that these proxy interfaces must also take into account value envelopes. Namely, they have to unnest
the real value they contain before applying the corresponding operation. Since binary operations may
be performed on both value envelopes and batched futures, we introduce an additional proxy interface
BINARY_OPERATION that takes care of all the possibly different cases.

Since messages are only dispatched to the gadget when the value it returns is required for determining
the control flow on the integrator’s side, the optimised version of mashic can use a partial-CPS transfor-
mation. Hence, continuations are only generated in program points where the control flow is at stake,
such as the guards of conditionals and loops, function calls, and method calls. The partial-CPS trans-
formation has to combine CPS terms with non-CPS terms. Therefore, it has to consider several cases
for each type of expression. However, to avoid cluttering the presentation, we assume in the rest of this
section a full CPS transformation.

In order for the batching mechanism to work, the CPS transformation performed by the mashic com-
piler must be slightly modified. We illustrate the difference between the original and the optimized trans-
formations using the examples of the rules for the conditional statement, the member selector, and the
binary operation given in Figure 16.

42

C〈e0[e1]〉 :
function(_k){
C〈e0〉(function(_x0){
C〈e1〉(function(_x1){

GET_PROPERTY(_x0, _x1, _k);
}); }); }

C〈e0 op e1〉
function(_k){
C〈e0〉(function(_x0){
C〈e1〉(function(_x1){
BINARY_OPERATION(“op′′, _x0, _x1, _k);
});
});
}

C〈if (e) s0 else s1〉 :
function(_k){
C〈e〉(function(_b){

GET_REAL_VALUE(_b,
function(_b){if (_b) C〈s0〉(_k) else C〈s1〉(_k); });

});
}

Fig. 16. Optimised Mashic-CPS Transformation

Given a member selector expression, the original mashic CPS transformation generates a condi-
tional expression that checks whether the inspected object is an opaque object handle, in which case
GET_PROPERTY is invoked in order to dispatch the corresponding request to the gadget. Contrastingly,
the code generated by the optimised mashic compiler always invokes GET_PROPERTY whose role is to
handle the property look-up, possibly generating a batched future. The compilation of a binary operation
generates a call to the proxy library function – BINARY_OPERATION. Observe that one can invoke a
binary operation on different types of batched futures, thus generating different types of batched futures.
For instance, while invoking a binary operator on two simple batched futures yields a simple batched
future, invoking a binary operator on a simple batched future and a complex batched future yields a
complex batched future. In order to determine which branch to take, the compilation of a conditional
statement must invoke GET_REAL_VALUE on the value to which the guard evaluates (since it can be a
batched future).

The greater the number of messages that can be batched together, the greater the impact on perfor-
mance of the optimised mashic compiler. In order to measure this impact, we wrote a simple mashup
using Google Maps that randomly generates map markers inside a loop and then adds them to a map as
shown in Figure 17. While the mashup compiled using the original mashic sends a message to the gadget
for each marker that is randomly generated, the mashup that is compiled using the optimised version
sends to the gadget a single message containing the requests for the creation of all markers. The chart
given in Figure 18 illustrates the impact on performance of the batching transformation depending on
the number of generated markers. Experimental results were obtained on Firefox 30.0 on a 2.4 GHz Intel
Core i5 running OS X Version 10.9.3.

8. Conclusion

We have proposed the Mashic compiler as an automatic process to secure existing real world mashups.
The Mashic compiler can offer a significant practical advantage to developers in order to effortlessly

43

Fig. 17. Map Markers

Fig. 18. Comparison between mashic optimised version and original version

write secure mashups without giving up on functionality. Compiled code is formally guaranteed to satisfy
precisely defined integrity and confidentiality properties of integrator’s sensitive resources.

We do not address in this paper analysis to prevent security vulnerabilities introduced by the integra-
tor’s code. Consider the following silly code:

1 CALL_METHOD(eval,opq_obj,"foo",{});

This integrator will eval the result from calling the foomethod of the opaque object handle opq_obj.
The gadget might return some string representing a malicious JavaScript program. Then the integrator

will execute the malicious code with its own privilege. To avoid this kind of vulnerabilities, analysis of

44

the integrator’s code is required. This is orthogonal to the current Mashic compilation: information flow
analyses for JavaScript can be found for example in [15,35].

Mashic offers correctness guarantees only if untrusted gadgets are benign. This is a goal of the compiler
and not a disadvantage: mashup behavior should not be the same if a gadget is malicious. If the gadget
is malicious the programmer does not get any alert that the compiled secured mashup does not behave as
the original mashup: an interesting future direction will be to provide JavaScript code analysis that will
conservatively detect non-benign gadgets in order to alert the programmer.

Acknowledgement We acknowledge anonymous reviewers for their useful comments on this article.

References

[1] Devdatta Akhawe, Adam Barth, Peifung E. Lam, John C. Mitchell, and Dawn Song. Towards a formal foundation of web
security. In CSF, pages 290–304, 2010.

[2] Adam Barth, Collin Jackson, and William Li. Attacks on JavaScript Mashup Communication. In W2SP2009, 2009.
[3] Adam Barth, Collin Jackson, and John C. Mitchell. Securing Frame Communication in Browsers. Commun. ACM, 52(6):

83–91, 2009.
[4] Adam Barth, Joel Weinberger, and Dawn Song. Cross-origin Javascript Capability Leaks: Detection, Exploitation, and

Defense. In USENIX security symposium, pages 187–198, 2009.
[5] P. Bogle and B. Liskov. Reducing cross domain call overhead using batched futures. In OOPSLA, 1994.
[6] Aaron Bohannon and Benjamin C. Pierce. Featherweight Firefox: Formalizing the core of a web browser. In Usenix

Conference on Web Application Development (WebApps), June 2010.
[7] Gérard Boudol. Typing termination in a higher-order concurrent imperative language. Inf. Comput., 208:716–736, 2010.
[8] Steven Crites, Francis Hsu, and Hao Chen. OMash: Enabling Secure Web Mashups via Object Abstractions. In CCS,

pages 99–108, 2008.
[9] Douglas Crockford. The <module> Tag , 2010. http://www.json.org.

[10] Douglas Crockford. ADsafe, 2011. http://www.adsafe.org/.
[11] ECMA. ECMAScript Language Specification. Technical report, ECMA, 2009. http://www.ecma-international.org/.
[12] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey, David Ziegler, Eddie Kohler, David Mazières,

Frans Kaashoek, and Robert Morris. Labels and event processes in the asbestos operating system. SIGOPS Oper. Syst.
Rev., 39(5), October 2005.

[13] Cédric Fournet, Nikhil Swamy, Juan Chen, Pierre-Évariste Dagand, Pierre-Yves Strub, and Benjamin Livshits. Fully
abstract compilation to javascript. In The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’13, 2013.

[14] Dan Grossman, J. Gregory Morrisett, and Steve Zdancewic. Syntactic type abstraction. TOPLAS, 22:1037–1080, 2000.
[15] Daniel Hedin and Andrei Sabelfeld. Information-flow security for a core of javascript. In IEEE Computer Security

Foundations Symposium, CSF 2012, 2012.
[16] Ian Hickson. HTML5. Technical report, W3C, May 2011.
[17] Arnaud Le Hors, Philippe Le Hegaret, Gavin Nicol, Jonathan Robie, Mike Champion, and Steve Byrne. Document Object

Model (DOM) level 2 Core Specification. Technical report, W3C, November 2000.
[18] Ali Ibrahim, Yang Jiao, Eli Tilevich, and William R. Cook. Remote batch invocation for compositional object services.

In ECOOP, 2009.
[19] Facebook Inc. Facebook Javascript Subset, 2011. https://developers.facebook.com/docs/fbjs/.
[20] Google Inc. Google Caja Project, 2011. http://code.google.com/p/google-caja/.
[21] Collin Jackson and Helen J. Wang. Subspace: Secure Cross-domain Communication for Web Mashups. In WWW, 2007.
[22] Dongseok Jang, Ranjit Jhala, Sorin Lerner, and Hovav Shacham. An Empirical Study of Privacy-violating Information

Flows in JavaScript Web Applications. In CCS, 2010.
[23] Frederik De Keukelaere, Sumeer Bhola, Michael Steiner, Suresh Chari, and Sachiko Yoshihama. Smash: Secure compo-

nent model for cross-domain mashups on unmodified browsers. In WWW, 2008.
[24] Florian Loitsch. Scheme to JavaScript Compilation. PhD thesis, Université de Nice - Sophia Antipolis, March 2009.
[25] Mike Ter Louw, Karthik Thotta Ganesh, and V. N. Venkatakrishnan. AdJail: Practical Enforcement of Confidentiality and

Integrity Policies on Web Advertisements. In USENIX Security Symposium, 2010.
[26] Zhengqin Luo and Tamara Rezk. Mashic compiler: Sandboxing using inter-frame communication. In IEEE Computer

Security Foundations Symposium, CSF 2012, 2012.
[27] S. Maffeis and A. Taly. Language-based Isolation of Untrusted Javascript. In CSF, pages 77–91. IEEE, 2009.

45

[28] S. Maffeis, J.C. Mitchell, and A. Taly. An operational semantics for JavaScript. In APLAS, volume 5356 of LNCS, pages
307–325, 2008.

[29] S. Maffeis, J.C. Mitchell, and A. Taly. Object capabilities and isolation of untrusted web applications. In IEEE Security
and Privacy, 2010.

[30] The Mashic Compiler Website. http://www-sop.inria.fr/indes/mashic/.
[31] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker, Wouter Joosen, Christopher Kruegel, Frank

Piessens, and Giovanni Vigna. You are what you include: Large-scale evaluation of remote javascript inclusions. In
Proceedings of the 2012 ACM Conference on Computer and Communications Security, CCS ’12, 2012.

[32] Joe Gibbs Politz, Arjun Guha, and Shriram Krishnamurthi. Typed-based verification of web sand-
boxes. Journal of Computer Security, 22(4):511–565, 2014. doi: 10.3233/JCS-140504. URL
http://dx.doi.org/10.3233/JCS-140504.

[33] A. Sabelfeld and A.C. Myers. Language-based information-flow security. IEEE Journal on Selected Areas in Communi-
cations, 21, 2003.

[34] Andrei Sabelfeld and Andrew C. Myers. A model for delimited information release. In Software Security - Theories
and Systems, Second Mext-NSF-JSPS International Symposium, ISSS 2003, Tokyo, Japan, November 4-6, 2003, Revised
Papers, Lecture Notes in Computer Science, pages 174–191, 2004.

[35] José Fragoso Santos and Tamara Rezk. An information flow monitor-inlining compiler for securing a core of javascript.
In Nora Cuppens-Boulahia, Frédéric Cuppens, Sushil Jajodia, Anas Abou El Kalam, and Thierry Sans, editors, SEC,
volume 428 of IFIP Advances in Information and Communication Technology, pages 278–292. Springer, 2014. ISBN
978-3-642-55414-8.

[36] S. Vinoski. Corba: Integrating diverse applications within distributed heterogeneous environments. Communications
Magazine, IEEE, 35(2):46–55, 1997.

[37] Helen J. Wang, Xiaofeng Fan, Jon Howell, and Collin Jackson. Protection and Communication Abstractions for Web
Browsers in MashupOS. In SOSP ’07, pages 1–16, 2007. ISBN 978-1-59593-591-5.

[38] Chuan Yue and Haining Wang. A measurement study of insecure javascript practices on the web. ACM Trans. Web, 7(2),
May 2013.

[39] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières. Making information flow explicit in histar.
In Proceedings of the 7th USENIX Symposium on Operating Systems Design and Implementation - Volume 7, OSDI ’06,
2006.

BrowserAudit: Automated Testing
of Browser Security Features

Charlie
Hothersall-Thomas

Netcraft Ltd, UK
me@charlie.ht

Sergio Maffeis
Department of Computing

Imperial College London, UK
maffeis@doc.ic.ac.uk

Chris Novakovic
Department of Computing

Imperial College London, UK
c.novakovic@imperial.ac.uk

ABSTRACT
The security of the client side of a web application relies on
browser features such as cookies, the same-origin policy and
HTTPS. As the client side grows increasingly powerful and
sophisticated, browser vendors have stepped up their offering
of security mechanisms which can be leveraged to protect
it. These are often introduced experimentally and informally
and, as adoption increases, gradually become standardised
(e.g., CSP, CORS and HSTS). Considering the diverse land-
scape of browser vendors, releases, and customised versions
for mobile and embedded devices, there is a compelling need
for a systematic assessment of browser security.

We present BrowserAudit, a tool for testing that a de-
ployed browser enforces the guarantees implied by the main
standardised and experimental security mechanisms. It in-
cludes more than 400 fully-automated tests that exercise
a broad range of security features, helping web users, ap-
plication developers and security researchers to make an
informed security assessment of a deployed browser. We
validate BrowserAudit by discovering both fresh and known
security-related bugs in major browsers.

Categories and Subject Descriptors
D.4.6 [Operating systems]: Security and Protection

Keywords
Web security, web browser testing, same-origin policy, Con-
tent Security Policy, Cross-Origin Resource Sharing, click-
jacking, cookies

1. INTRODUCTION
Personal data, business transactions, critical infrastruc-

ture and even cars, refrigerators and lightbulbs are exposed
through web interfaces to a wide variety of web browsers.
Hence, the browser plays a key role in the modern information
infrastructure, as the main gateway to access the information
and capabilities made available online.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’15 , July 12–17, 2015, Baltimore, MD, USA
Copyright 2015 ACM 978-1-4503-3620-8/15/07 ...$15.00.

As such, browsers need to offer a variety of standardised
security mechanisms which can be relied upon uniformly
by the client side of web applications, in order to deliver
security guarantees to their users. For example, the same-
origin policy (SOP) [34] is effective at preventing a range
of cross-site scripting (XSS) attacks [38] against users’ web
browsers and is an integral aspect of modern web-based se-
curity. On the other hand, it is sometimes excessively strict;
for instance, it forbids the sharing of information between
different subdomains, a common requirement of large web
sites. It is also coarse-grained, and several attempts have
been made to enforce finer-grained access control [41, 39]
and origins [22, 23, 29] in the browser. A variety of contem-
porary web browsers implement the Cross-Origin Resource
Sharing (CORS) [46] standard, which may be used to control
the flow of information between server-side resources and
client-side scripts that attempt to access those resources via
APIs. However, even fully-compliant implementations of the
SOP and CORS mechanisms in some cases do not regulate
access to other resources, such as images, embedded objects
and web fonts, that can leave web applications vulnerable
to cross-site request forgery (CSRF) attacks [20], clickjack-
ing [36], framebusting [43] and CSS-based attacks [33]. The
Content Security Policy (CSP) standard [45] enables much
finer-grained control over the loading of arbitrary resources
on a web page, mitigating several of these issues. These
are just some examples of established and emerging security
mechanisms offered by modern browsers.

Such mechanisms are often introduced experimentally and
informally. As adoption increases, they gradually become
standardised, and after numerous security reviews and bug
reports they can eventually be relied upon consistently across
browsers [19, 37, 20]. Reaching that stage is not easy. For
example, correctly implementing the CSP specification is non-
trivial: it is a lengthy document with many cross-references
to other standards and RFCs, many of which have been su-
perseded by newer (and conflicting) standards and RFCs. It
is possible that a browser vendor could incorrectly implement
some part of the CSP and thus fail to provide some of its
security guarantees to their users. There is therefore a need
for an automated tool that enables browser developers to
complement low-level unit tests targeted at isolated source
code modules with high-level testing of the effectiveness of
the implementation of the security features once the browser
is deployed.

In this paper we introduce BrowserAudit, a framework
for testing whether a deployed browser correctly enforces
the security guarantees implied by the main standardised

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

ISSTA’15, July 12–17, 2015, Baltimore, MD, USA
ACM. 978-1-4503-3620-8/15/07
http://dx.doi.org/10.1145/2771783.2771789

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt
oR

eu
se
* *

Evaluated

*
IS
S
TA
*
Ar

tifact *
A
E
C

37

security mechanisms. For practical purposes, we present
BrowserAudit as a standalone web application that auto-
matically tests the browser used to access it. BrowserAudit
has been designed with different sets of users in mind. A
casual web user can run the tests to gain a simple secur-
ity assessment of their browser: critically vulnerable, non-
critically vulnerable, or okay. With the recent surge of se-
curity breaches reported in the news, people are becoming
increasingly security-conscious and we believe there is an
increasing demand for tools that inform the public about se-
curity. A security researcher can benefit even more, viewing
a detailed breakdown of each test result, and seeing which
security features passed our tests and which had problems.
We display textual descriptions for each category of tests and
the client-side source code of the tests. Browser developers
can use BrowserAudit to debug their security features and
web developers can use it as a way to ascertain the secur-
ity capability of users’ browsers (Section 2). We chose to
implement a careful selection of tests that covers both the
most important browser security mechanisms that should be
implemented in any browser, and some of the most prom-
ising experimental ones that are not yet widely implemented.
Starting from the code of individual test cases, we identified
and generalised common patterns in order to automatically
generate hundreds of tests. BrowserAudit automatically tests
over 400 behaviours where a certain action should either be
allowed or blocked according to an implied browser security
policy (Section 3).

We designed BrowserAudit to be efficient and scalable,
and we evaluated its performance and its accuracy extens-
ively by running it on a number of browsers and platforms.
Using BrowserAudit, we have discovered several previously
unknown security bugs in recent versions of Mozilla Firefox,
which we have reported to the developers (Section 4.4).

Whilst there are well-understood methodologies for gen-
erating unit tests for a given code base, there is no general
solution to the problem of testing the end-to-end security be-
haviour of a family of applications (in our case web browsers)
that must respect precise interoperability constraints (web
standards) but can widely differ in implementation architec-
tures, languages and design. Hence, we faced a significant
challenge when developing our tests, carrying out a sub-
stantial amount of practical experimentation, guided by the
official RFCs, our formal and informal models of web security,
and a substantial body of academic and practical research
on browser and web security (surveyed in Section 5.1). Al-
though we believe that BrowserAudit is unique in its focus
and breadth, we were inspired by a number of related web
applications described in Section 5.2.

Contributions. Summarising, our main contributions are:

• We analysed the specifications of HTML5, CSP, CORS
and HTTP Strict Transport Security (HSTS), identifying
the concrete security guarantees implied by the proposed
mechanisms. This allowed us to formulate precise goals
for security test cases.

• We built a suite of more than 400 browser security tests,
which brings together a wealth of explicit and implicit
knowledge of the guarantees afforded by modern browser
security mechanisms. We made the tests available to
the community by open-sourcing the BrowserAudit code
base [32].

• We implemented the first fully-automated web application
that comprehensively tests browser security features and
provides detailed information to a variety of user bases.

• We used BrowserAudit to discover previously unknown
vulnerabilities in a major web browser.

2. DESIGN OVERVIEW
The goals underlying the design of BrowserAudit are the

following:

• Wide coverage: BrowserAudit should demonstrate that a
wide range of browser security mechanisms can be tested
automatically, reliably and efficiently. Complete test cov-
erage of any such mechanism is not practically feasible,
and beyond the scope of this project.1

• Extensibility : By its very nature, BrowserAudit will always
be a work in progress. As the browser threat landscape
evolves, more tests will be needed to cover new security
mechanisms, or to extend the coverage of existing ones.
Our design should ease the task of creating, debugging
and integrating additional test cases.

• Ease of use: BrowserAudit should be easily accessible on
any modern browser connected to the Internet, without
the need to install additional software. It should require
no interaction from the user, otherwise running hundreds
of tests would be impractical. Moreover, relying on user
interaction would prevent the desired aim of running the
tests transparently in the background.

• Broad audience: Our design should support a diverse
range of users. A report on the security effectively offered
by a deployed browser should benefit browser developers,
penetration testers, security researchers and web users.

• Scalability : Our design should be scalable on the server
side. Several users may be testing their browser at the
same time, and many security tests concern features that
involve communicating with the server.

We now sketch the architecture of BrowserAudit and high-
light the main design choices. We defer further implementa-
tion details to Sections 3 and 4.1.

2.1 User Experience
BrowserAudit is accessible by simply pointing the browser

to be tested to https://browseraudit.com/. This is a land-
ing page that briefly describes the aims of the project and
contains a“Test me”button to move the user to the actual
test page, hosted at https://browseraudit.com/test. This
intermediate step avoids surprising users by actively requir-
ing their consent to begin the testing phase. Once the user
clicks to start the tests, the main testing loop initiates.2

BrowserAudit is completely automated, and the user does
not need to interact with the browser whilst it is being tested.

1For example, an exhaustive test of the same-origin policy
would also need to demonstrate that, for any domains A and
B, a page from domain A cannot access certain properties
of a page from an incompatible domain B.
2Unless JavaScript is disabled, in which case we display a
warning to the user. Automated tests cannot be run without
JavaScript, and some security features need JavaScript in
order to be exercised.

38

https://browseraudit.com/
https://browseraudit.com/test

As the tests are running, the user can see a progress bar ad-
vancing, and four test counters being incremented, as shown
in Figure 1. For the benefit of typical web users, test runs

Figure 1: The test summary box part-way through
the execution of our tests.

are categorised using a simple Okay/Warning/Critical/Skipped
traffic light indicator. Okay denotes passed tests, Warning
and Critical denote failed tests, and Skipped denotes tests that
are skipped because the feature being tested is not supported
by the browser. Failures regarding SOP, cookies, and the
Referer header, which we consider the most crucial secur-
ity features, are reported as Critical; failures regarding CSP,
CORS, HSTS and the X-Frame-Options header are reported
as Warnings. This distinction is somewhat arbitrary, and will
change as these features become more broadly supported and
new ones are introduced.

After the test suite has finished running, the grey back-
ground of the summary box assumes the colour of the worst
failed test, or green if all tests passed. This traffic light indic-
ator provides a basic level of information about the current
level of security offered by the browser.

More sophisticated users, such as security researchers or
browser developers, need more information on the tests per-
formed and on their outcomes. Clicking on the“Show/Hide
Details”button displays a summary box that shows the vari-
ous categories of tests (reflecting the security mechanisms
that have been tested), and the number of failed tests for
each of them, as shown in Figure 2.

Figure 2: BrowserAudit summary box.

Each category can be expanded and collapsed to show a
description of the corresponding security mechanism, and a
list of sub-headers that in turn can be expanded to reveal
individual tests for a specific feature, as illustrated in Figure 3.
For each individual test we show a descriptive title that can

be clicked to show the client-side source code of the test itself.
Our design uses the Bootstrap front-end framework [1], which

Figure 3: Some sub-categories of CSP tests, with
expandable test titles and result indicators.

makes it easy to produce a layout that works consistently
across browsers and devices.

2.2 Architecture
The client side and server side of BrowserAudit work to-

gether in order to run tests in the browser: the server side
exercises browser security features, and the client side tests
that these features are implemented as expected.

When multiple concurrent users access BrowserAudit, we
need to avoid congestion on the server side, as testing each
browser causes a bursty interaction with the BrowserAudit
server in the form of hundreds of requests per user per minute.
For this reason, we adopt a standard three-tier server archi-
tecture, consisting of a public-facing Nginx [11] web server,
a Go [16] application server and a PostgreSQL [13] database
backend. The Nginx server is running as a reverse proxy
in front of the Go server, which is not publicly accessible.
When the Nginx server receives HTTP(S) requests for static
resources, such as our JavaScript tests, it responds by dir-
ectly fetching the resource from the local static/ directory.
Dynamic requests are instead proxied to the Go server, and
the responses are forwarded back to the client. Nginx also
handles SSL termination, caching, gzip compression, URL
rewriting, and keeps access and error logs. This architec-
ture reduces the load on the Go server, which can focus on
serving only dynamic requests that depend on the user’s
session, and limits security risks because the Go server can
run as a non-privileged user.

Certificates. In order to ensure good coverage of various
security features that involve the use of HSTS and cross-
origin testing, BrowserAudit makes use of four domains:
browseraudit.com, test.browseraudit.com, browseraudit.
org and test.browseraudit.org. The server presents a
single SSL certificate that is valid for all of these domains.

Sessions. We use sessions to keep track of intermediate test
results and other test-related data for each user whilst their
tests are in progress. Sessions are needed because in many of
our security tests, it is the server that makes the decision as
to whether or not the browser passed the test, not the test
framework running in the browser. In these cases, the client
must send an additional request asking the server what the
test result was, so that it can be displayed to the user.

Caching. In our tests, there are many cases in which a
request is first made to store a default result on the server,
and then a second request may be sent to overwrite this
result, depending on whether or not the browser correctly

39

implements a given security feature. If a user runs the tests
twice in short succession, and this second result was cached
and therefore did not reach our server, our application would
report an incorrect test result. We ensure that this cannot
happen by preventing HTTP responses from being cached.

2.3 Tests
A typical test of a security feature involves making multiple

AJAX or image requests to the server and checking if the
actual responses match the expected responses.

JavaScript and libraries. Our tests are written directly
in JavaScript, using the jQuery library [9] for convenience.
We deploy our tests using the Mocha framework for browser-
based JavaScript unit testing [10], with some custom modi-
fications to improve the output layout.

1 $.get("/del_httponly_cookie", function() {
2 expect($.cookie("httpOnlyCookie")).to.be.undefined;
3 $.get("/set_httponly_cookie", function() {
4 expect($.cookie("httpOnlyCookie")).to.be.undefined;
5 done();
6 });
7 });

Figure 4: The client side of a proof-of-concept
HttpOnly cookie test.

Figure 4 shows a proof-of-concept test to check that the
browser correctly implements HttpOnly cookies (see Sec-
tion 3.4). Line 1 loads a page to clear any leftover cookies
from previous test runs, line 2 checks that the cookie is not
defined, line 3 loads a second page that sets the cookie, and
line 4 checks that we are unable to read it via JavaScript. The
call to done() on line 5 informs Mocha that the asynchronous
test is complete. In order to make the source code of the
tests easier to understand and maintain, we also leverage the
Chai assertion library [7].

1 function ajaxSopTest(globalTestId, shouldBeBlocked,
sourcePrefix, destPrefix) {

2 // omitted code: variable initialisation
3

4 var test_template = function(done) {
5 $.get("/sop/"+defaultResult+"/"+id,
6 function() {$("<iframe>", { src: iframeSrc })
7 .css("visibility", "hidden")
8 .appendTo("body").load(function() {
9 $.get("/sop/result/"+id,function(result) {

10 expect(result).to.equal("pass");
11 done();
12 });
13 });
14 });
15 };
16

17 // omitted code: save source code for display
18

19 browserAuditTest(globalTestId, test_template);
20 }

Figure 5: Code to generate SOP tests for AJAX
calls.

Tests. In most cases, we automatically generate the Java-
Script code for tests that have a similar structure but depend
on different parameters. For example, in Figure 5 we show the
most interesting parts of the ajaxSopTest function, which

generates Mocha code for testing AJAX calls with respect
to the SOP. The choice of the right parameters for the re-
sources to load (defaultResults, iframeSrc) are crucial to
the correctness of each test instance. To favour modular-
ity and coverage, we instantiate a separate Mocha test for
each case to be tested, rather than bundling a large number
of cases in the same test. To ensure maximum portability,
we implement as much as possible on the client side using
standard, browser-independent features.

Whenever possible, we write asynchronous tests using
callback patterns rather than timeouts. We annotate the
titles of tests whose results depend on timeouts with a small
clock icon. We try to avoid using timeouts because, when
a timeout expires, it is not possible to distinguish a true
test failure from an anomalous delay in a browser event or
network connection. Moreover, it is difficult to estimate
appropriate timeout values for many events. For certain
tests, however, we cannot avoid using timeouts.

For example, to detect whether a CSP policy that denies
the use of JavaScript but allows the loading of fonts in an
iframe is enforced correctly, the BrowserAudit test framework
needs to give time for the iframe to try to load the font, and
then ask the server if the font was requested. We are not
allowed to run JavaScript in the iframe to inspect the page
and detect whether the font was loaded; likewise, we cannot
ask the user for confirmation, because our tests must run
without user interaction.

3. BROWSER SECURITY MECHANISMS
In this section, we describe the range of security mechan-

isms currently exercised by BrowserAudit. Each mechanism
induces — sometimes implicitly — a security policy. Our
emphasis is on testing representative instances of behaviours
that should be allowed or blocked according to the corres-
ponding security policy.

3.1 Same-Origin Policy
In the early days of the web, there was little incentive to

control the resources that could be included in a web page:
most web pages were static, and web developers were free to
include resources (e.g., images) from any source in their web
pages. As web sites became dynamic and interactive, thus
allowing web developers to include user-supplied content in
their pages, and requiring web browsers to execute scripts
supplied by the web server, browser vendors became more
security-aware: they recognised that permitting the execu-
tion of arbitrary code (e.g., JavaScript) from untrustworthy
sources was potentially dangerous, and began to impose re-
strictions on the execution of scripts from “foreign” locations.
In particular, “foreign” scripts were forbidden from access-
ing the Document Object Model (DOM) — the browser’s
internal hierarchical representation — of the web page in
which the script was included. These are the foundations of
the same-origin policy (SOP) [34], still implemented in con-
temporary web browsers: a script executing in the context of
a web page is only permitted to access the DOM of another
web page if the schemes, hostnames and port numbers in the
URIs of the two pages — their origins — match.

There are mechanisms for relaxing the SOP so that inform-
ation can be shared between DOMs with differing origins;
the easiest method of doing so is to set the same docu-

ment.domain property in each DOM, so that the web browser
considers the DOMs to have the same origin.

40

BrowserAudit comprehensively exercises a web browser’s
implementation of the SOP and the mechanisms for relaxing
it to ensure that inter-DOM access is permitted when both
DOMs are deemed to have the same origin, and is otherwise
forbidden. Our DOM SOP tests have a common structure:
scripts running on web pages loaded in nested iframes manip-
ulate the DOM’s document.domain property, and the script
from one iframe attempts to access the DOM of the other
iframe. Each test exercises a particular combination of the
following parameters:

• The domain from which the web page loaded by the parent
iframe is served (one of browseraudit.{com/org} or test.
browseraudit.{com/org});

• The domain from which the web page loaded by the child
iframe is served (also selected from the list above, and
potentially the same domain used by the parent iframe’s
web page);

• The value of document.domain to be set by a script running
in the parent iframe;

• The value of document.domain to be set by a script running
in the child iframe; and

• The direction in which the DOM access is attempted (par-
ent iframe to child, or child iframe to parent).

The client-side test framework checks whether the web browser
satisfies the SOP by selecting combinations of these para-
meters that should be allowed or blocked by the SOP and
verifying that the correct behaviour is observed.

For example, Figure 6 shows a diagram for a test in which a
parent iframe tries to access the DOM of its child iframe. The
parent is loaded from https://browseraudit.org whereas
the child is loaded from https://test.browseraudit.org.
We expect this access to be blocked since we are not set-
ting any document.domain values in this test, and the host-
names are not the same. To communicate test results
from the server to the client whilst avoiding the restrictions
imposed by the SOP itself, we use the established tech-
nique of loading images from specially-crafted addresses (i.e.,
https://browseraudit.com/sop/[pass|fail]/TEST_ID).

In general, if a script running in either iframe is able
to access the DOM of the other, the script notifies the
BrowserAudit server that access to the other iframe’s DOM
was granted; the test framework then queries the server for
whether this notification was sent. If the notification was
sent and DOM access was expected given the chosen test
parameters, or if the notification was not sent and DOM
access was not expected given the chosen test parameters,
the test framework considers the browser to have passed that
particular test; otherwise, the browser permitted insecure
DOM access and is considered to have failed the test.

The SOP applies not only to DOM access, but also to
cookies with differing paths and HTTP requests made to
other domains via the XMLHttpRequest API; BrowserAudit
also tests a browser’s implementation of the SOP for all of
these features, providing a total of 84 SOP tests, generated
by four JavaScript templates.

3.2 Cross-Origin Resource Sharing
Cross-Origin Resource Sharing (CORS) [46] is a flexible

standard for relaxing the SOP that selectively permits re-
sources to be shared across origins; it is implemented in APIs

capable of initiating cross-origin resource requests (e.g., XML-
HttpRequest) in a range of modern web browsers. It allows
a client to include a resource from a server with a different
origin only if the resource request is explicitly authorised
by the server. This is achieved via two additional HTTP
headers: an Origin header is sent by the client as part of the
request and specifies the origin of the resource attempting to
use the cross-origin resource, and an Access-Control-Allow-

Origin header is sent by the server as part of the response
and specifies the origins from which this resource may be
used, effectively ordering the client to uphold or relax the
SOP for this resource request.

The majority of cross-origin requests made using CORS
are “simple”, defined in the CORS specification [46] as an
HTTP request with one of GET, POST or HEAD as the re-
quest method and headers from a narrowly-defined whitel-
ist (Accept, language-related headers and a small number
of acceptable Content-Types). Other requests are deemed
“non-simple”; the CORS specification requires that the cli-
ent precedes such requests with a “preflight” request that
includes further detail so that the server can more accur-
ately decide whether or not to allow the cross-origin request
(although, in reality, some browsers misclassify simple and
non-simple requests). In response to the preflight request,
the server sends additional headers: Access-Control-Allow-
Methods, a comma-delimited list of HTTP methods per-
mitted to be used to access the resource; Access-Control-
Allow-Headers, a comma-delimited list of headers that may
be sent with the main CORS request; and Access-Control-

Expose-Headers, a list of headers that should be exposed
to the requester (e.g., a script accessing a resource using
XMLHttpRequest). If the main CORS request violates either
of the restrictions imposed by the Access-Control-Allow

headers, the main request is considered a violation of the
SOP and is aborted.

BrowserAudit exercises the browser’s implementation of
CORS by sending a series of cross-origin XMLHttpRequest
requests from the browser and verifying that the client ex-
hibits CORS-compliant behaviour when the BrowserAudit
server sends a response containing a range of CORS HTTP
headers. The testing methodology is similar to that for
the SOP, described in Section 3.1: the client attempts to
retrieve a file from the BrowserAudit server, and sends a
notification to the BrowserAudit server if this retrieval was
successful. The BrowserAudit test framework then queries
the server for whether the notification was sent. If the no-
tification was sent for CORS-compliant requests and not
sent for CORS-violating requests, the browser is deemed to
correctly implement the CORS standard; if a notification
was sent for CORS-violating requests, or if one was not sent
for CORS-compliant requests, the browser is considered to
lack full compliance.

We currently test 54 different CORS scenarios, automatic-
ally generated by four JavaScript test templates.

3.3 Content Security Policy
The Content Security Policy (CSP) standard3 [45] enables

much finer-grained control over the loading of arbitrary re-

3We concern ourselves only with version 1.0 of the Content
Security Policy standard, as its successor (version 1.1) is still
in Working Draft status at the time of writing; however, the
two versions are similar, and the latter can be viewed as an
extension of the former.

41

Figure 6: An example of an SOP test in which the parent frame tries to access the DOM of its child.

sources on a web page than the SOP and CORS. As with
CORS, a content security policy is delivered via an HTTP
header (or via a <meta> element in the HTML header); the
CSP specification states that the Content-Security-Policy

header should be used for this purpose.
The header allows servers to declare to CSP-compliant

clients the permitted origins of a range of resources: images,
stylesheets, scripts, web fonts, embedded objects and other
types of resource may all be controlled by a single policy.
Directives may be used to restrict the origins of these different
types of resource independently of each other, and a “default”
directive may be used to restrict the origins of all resources
that are not explicitly controlled elsewhere in the policy. For
example, a server at example.com serving web pages to CSP-
compliant browsers could restrict the loading of images to
those hosted on the same server and the loading of embedded
objects (such as Java applets) to those hosted on a trusted
server at applets.example.com (and thus forbid embedded
objects and images from being loaded from other origins)
by specifying the following value for the Content-Security-

Policy header:

image-src ‘self’; object-src http://applets.example.com

When served alongside a web page to a CSP-compliant web
browser, such policies can preempt many common web at-
tacks; e.g., using the script-src directive to control the
permissible origins of scripts mitigates the effects of CSRF,
clickjacking and framebusting (since they rely primarily on
successful JavaScript injection), and using the style-src

directive to control the permissible origins of stylesheets
defeats CSS-based attacks. Note that one cannot specify
which specific resources may be loaded from these other ori-
gins: permitting a particular Java applet to be loaded from
applets.example.com also permits any other embeddable

object to be loaded from applets.example.com, so whitelis-
ted origins should be trustworthy (particularly those granting
the power to execute arbitrary code, such as script-src).

The CSP standard also includes a mechanism for reporting
violations of a given policy via a special report-uri directive;
this directive defines a URL to which a violation report should
be sent.

BrowserAudit exercises a browser’s CSP implementation
by performing a battery of tests on each directive defined
in the CSP specification, as well as the violation-reporting
capabilities of the report-uri directive. Similarly to the
SOP tests (described in Section 3.1), each CSP test attempts
to load a resource inside an iframe using a particular com-
bination of the following parameters:

• The domain from which the web page loaded by the iframe
is served (one of browseraudit.com or test.browseraudit.
com);

• The domain from which the desired resource is requested
(also selected from the list above, and potentially the same
domain used by the iframe’s web page); and

• The CSP imposed on the iframe by the BrowserAudit
server via the Content-Security-Policy header.

We run 226 CSP tests, generated by three JavaScript tem-
plates, that in turn load approximately 280 iframes rep-
resenting particular behaviours to be tested. In each test,
the browser is expected to either allow or block access to
the given resource, and the act of requesting the resource
from the BrowserAudit server allows it to track violations of
the given policy. On the client side, the BrowserAudit test
framework queries the server after the iframe has loaded to
find whether the browser accessed the resource and there-
fore determine whether the browser exhibited the behaviour

42

expected of a CSP-compliant browser: allowing a request
permitted by the given policy or blocking a request restricted
by the policy is regarded as a correct implementation of the
CSP standard and thus a test success, whilst an attempt
to access the resource when given a restrictive policy or a
failure to request the resource when given a permissive policy
is regarded as an erroneous implementation of the standard
and thus a test failure.

1 $("<iframe>", { src: "/csp/serve/206/param-html?policy=‘
sandbox allow-same-origin allow-scripts’&defaultResult=
pass" })

2 .css("visibility", "hidden").appendTo("body")
3 .load(function() {
4 $.get("/csp/result/206", function(result) {
5 expect(result).to.equal("pass");
6 done();
7 });
8 });

Figure 7: A CSP test exercising the browser’s im-
plementation of the sandbox directive.

1 <html><body>
2 <iframe src="/csp/serve/206/param-htmlb?sessid=

sessionCookie"></iframe>
3 </body></html>

Figure 8: The HTML for the outer iframe loaded by
the test script shown in Figure 7.

Figure 7 shows the client-side code for a CSP test. The
code runs on the main BrowserAudit page and loads an outer
iframe from browseraudit.com with the CSP header sand-

box allow-same-origin allow-scripts. This outer iframe
is very simple (Figure 8), and its role is simply to load an inner
iframe from browseraudit.com that is subject to the given
policy: scripts can run, and have same-origin permissions.
The inner frame, whose code is shown in Figure 9, tries to per-
form an XMLHttpRequest to test.browseraudit.com, which
should be blocked. Note that since we cannot rely on user
credentials to be sent with synchronous XMLHttpRequests,
we pass the session cookie (abstracted for readability in Fig-
ure 9 as sessionCookie) as a parameter of the request. All
of this information is also visible to the BrowserAudit user by
clicking on the corresponding test title in the user interface.

1 <html><body>
2 <script>
3 var xhr = new XMLHttpRequest();
4 xhr.open("GET", "https://test.browseraudit.com/csp/serve

/206/oktext?sessid=sessionCookie&corsOrigin=
browseraudit.com&corsMethod=GET", false);

5 xhr.send(null);
6 if (xhr.status == 200) {
7 var img = document.createElement("img")
8 img.setAttribute("src", "/csp/fail/206/png");
9 document.body.appendChild(img);

10 }
11 </script>
12 </body></html>

Figure 9: The HTML for the inner iframe corres-
ponding to the outer iframe shown in Figure 8.

3.4 Cookies
In our SOP tests (Section 3.1) we explore the security

implications of setting the cookie scope through the Domain

and Path attributes. There are two other important aspects
of cookie security: the HttpOnly and Secure attributes. We
test the browser’s treatment of these attributes, expecting
the behaviour defined in RFC 6265 [17].

The HttpOnly attribute of a cookie instructs the browser
to reveal that cookie only through an HTTP request; i.e.,
it should not be made available to client-side scripts. The
benefit of this is that, even if an XSS vulnerability is exploited,
the cookie cannot be stolen. HttpOnly cookies are supported
by all major browsers, with the notable exception of Android
2.3’s stock browser. BrowserAudit includes tests that check
that an HttpOnly cookie sent from the server cannot then be
accessed by JavaScript, and that HttpOnly cookies cannot
be created by JavaScript.

When a cookie has the Secure attribute set, a compliant
browser will include the cookie in an HTTP request only
if the request is transmitted over a secure channel (i.e., in
an HTTPS request). This keeps the cookie confidential:
an attacker would not be able to read it even if he were
able to intercept the connection between the victim and the
destination server. The Secure attribute is supported by all
major browsers. BrowserAudit includes tests checking the
browser’s treatment of the Secure attribute both when the
cookies are set by the server and set by JavaScript.

3.5 Referer Header
The Referer header should not be included in a non-secure

request if the referring page was served via a secure protocol;
this behaviour is defined in RFC 2616 [31]. This requirement
exists because the referrer might disclose an otherwise private
information source. In BrowserAudit, we test this behaviour
by loading a web page over HTTPS containing an image
loaded over HTTP and checking that the Referer header
was not sent to the server with the request for the image.

3.6 Response Headers

3.6.1 X-Frame-Options
X-Frame-Options, defined in RFC 7034 [42], is a server-

side technique that can be used to prevent clickjacking at-
tacks. X-Frame-Options is a response header that specifies
whether or not the document being served is allowed to be
rendered in a frame; more specifically, the header specifies the
origin (scheme, hostname and port number) that is allowed
to render the document in a frame. BrowserAudit tests for
correct treatment of the DENY, SAMEORIGIN and ALLOW-FROM

directives. The tests try to load iframes served with differ-
ent headers; each iframe that loads reports its success to
the server, which assesses whether the browser behaved as
expected. Our tests currently only cover the <iframe> ele-
ment, although the header also applies to <frame>, <object>,
<applet> and <embed> elements.

X-Frame-Options is supported in all modern browsers,
although the implementations across browsers differ. Some
browsers behave differently when dealing with nested frames,
so we do not test these cases as there is no defined correct
behaviour. Note also that not all browsers support the
ALLOW-FROM directive.

43

3.6.2 Strict-Transport-Security
HTTP Strict Transport Security (HSTS) is a security mech-

anism that allows a server to instruct browsers only to com-
municate with it over a secure (HTTPS) connection for the
given domain. It exists primarily to defend against man-in-
the-middle attacks in which an attacker is able to intercept
his victim’s network connection [37]. The server sends this
instruction via the Strict-Transport-Security header, as
defined in RFC 6797 [35].

When HSTS is enabled on a domain, a compliant browser
must rewrite any plain HTTP requests to that domain to use
HTTPS. This includes both URLs entered into the navigation
bar by the user, and resources included on a web page. The
Strict-Transport-Security header should only be sent in
an HTTPS response. If the browser receives the header in a
response sent over plain HTTP, it should be ignored.

In BrowserAudit, we test the basic behaviour of HSTS and
its includeSubDomains directive. We also ensure that the
header is ignored when transferred via an insecure protocol,
and that the HSTS state correctly expires based on the max-

age value set in the header. All of these tests work by testing
whether a request for an image at http://browseraudit.

com/set_protocol is rewritten to use HTTPS or not.
Almost all current browsers support HSTS, with the not-

able exception of Internet Explorer 11 (the latest available
version at the time of writing).

4. EVALUATION

4.1 Performance
A primary concern of BrowserAudit is scalability, given

that a single invocation of the full test suite invokes approx-
imately 1,500 requests and transfers around 3MB of data
between the client and server. The server must handle all
of these requests quickly (ideally in under 300ms), given the
large number of tests in the BrowserAudit test suite and the
reliance of some of the tests on timeouts (see Section 2.3).

The BrowserAudit web and database servers are currently
hosted on a single virtualised server with two CPU cores
and 2GB of memory, running Ubuntu 14.04. We evalu-
ated BrowserAudit’s server-side performance by running
the BrowserAudit test suite in 15 web browsers repeatedly
and concurrently for 15 minutes. Over this period, the
BrowserAudit server handled around 225,000 requests and
served a total of 450MB of data. The 1- and 5-minute load
averages on the BrowserAudit server are shown in Figure 10;
the peak load averages over the 15-minute duration of the
performance test are 1.2 and 0.7 respectively, where a load
average of 1 indicates that a single CPU core is operating
at capacity. Based on these performance figures, we estim-
ate that a single BrowserAudit application server using this
configuration could comfortably support up to 25 concurrent
test suite executions.

As described in Section 2.2, our design is ready to be
scaled up as the BrowserAudit user base grows. Nginx can
be configured as a load balancer, passing requests to one of
many application servers. Deploying Go application server
instances is trivial thanks to Go’s ability to compile a program
to a single statically-linked binary, so there is no dependency
chain. In order to maintain session persistence, Nginx’s
ip_hash directive can be used to ensure that all requests
from the same IP address reach the same application server,
maintaining the integrity of a single suite execution.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15

L
o
a
d
av
er
ag

e

Time (minutes)

1-minute
5-minute

Figure 10: The 1- and 5-minute load averages on the
BrowserAudit server during the performance evalu-
ation.

Most client-side tests contain components that are loaded
synchronously inside dynamically-created iframes, which be-
come redundant as soon as the test result is reported in
the browser; over time, the DOM of the main BrowserAudit
window would therefore amass an overwhelming number of
iframes, slowing down the execution of tests as the browser
struggles to create and append additional iframes. We avoid
this problem by dynamically removing any iframes appended
to the DOM during each test’s tear-down phase (via Mocha’s
afterEach() routine). We ran 15 repetitions of 10 concur-
rent executions of the whole test suite on a 64-bit Windows
7 machine with a 6-core Intel i7 4930K CPU and 64GB of
memory, and Chromium 40.0.2205.0. Under these conditions,
the average execution time for the test suite is just over
a minute. By contrast, a single execution in Safari 8.0 on
an iPhone 5 with iOS 8.1 takes on average 1.35 minutes,
skipping 24 tests. The execution time varies broadly across
browsers and platforms, but we consider this an acceptable
cost for performing an in-depth browser security scan.

4.2 Correctness
Verifying the correctness of our tests is challenging, as

they need to convey in a final pass or fail result a whole
security-sensitive behaviour: a test containing a small bug
could still pass, which is generally the expected result for
browsers correctly implementing a given security mechanism.

Of course, no web browsers contain intentional security
flaws that would allow us to verify the correctness of tests.
Modifying the source code of existing open-source browsers
to break their security features in order to ensure that tests
fail when expected is possible but challenging given the
complexity of modern web browser code bases.

However, it is a matter of public record that some web
browsers either do not implement some of the security mech-
anisms tested by BrowserAudit, or only implement subsets
of those security mechanisms. We leverage the results of
browser-profiling projects such as Browserscope [3] and Can
I Use. . . [6] to broadly identify the security features im-
plemented by each web browser, and for those features we
manually verify that the BrowserAudit test suite results are
accurate.

Using BrowserStack [5], a web-based browser testing ser-
vice, we have evaluated BrowserAudit in a range of browsers
on a number of different operating systems, across both

44

desktop and mobile platforms. The full BrowserAudit test
suite runs reliably in Safari 6, Firefox 13 and Chrome 25 or
more recent versions, automatically skipping tests where a
feature is not supported. BrowserAudit also runs correctly
on Internet Explorer 11, but due to problems relating to
Mocha and IE’s limited call stack, it cannot execute the
whole test suite. In older versions of these browsers, it is
instead possible to run a subset of the test suite.

4.3 Test Coverage
We noted in Section 2 that full coverage for browser security

feature tests is unattainable. Here we discuss a number of
security features not covered by BrowserAudit, but that we
believe can be added to our framework.

We imply in Section 3 that there is no single same-origin
policy but rather a collection of related security mechanisms.
We currently test the same-origin policy for DOM access,
XMLHttpRequest and cookies. This could be expanded to
test the same-origin policies for Flash, Java, Silverlight, and
HTML5 web storage.

The postMessage API is used by many developers to com-
municate across origins [19]. Since the API allows the sender
of a message to specify the origins of the recipients that may
receive the message, there are lots of origin-related tests that
we could write for this feature in BrowserAudit.

Another security feature that could be tested is the X-

Content-Type-Options response header first introduced in
Internet Explorer 8 [40]. It is now also supported by Chro-
mium and Safari; the Firefox team is still debating its im-
plementation [26]. It is designed to prevent browser-sniffing
attacks where a resource (e.g., a HTML document) is sent
with an inappropriate MIME type (e.g., text/plain) but is
nonetheless erroneously rendered by the browser as if the
correct MIME type had been sent [18].

In Sections 3.1–3.4 we discussed how to extend coverage
of features for which we already have some tests. Summar-
ising, the main limitations are that: in many tests involving
origin mismatches, we only test origins that differ by host-
name rather than by scheme or port number; we do not
test CSP directives where a resource is loaded from a URL
that redirects; we do not test that cookies cannot be set
for top-level domains that include a country code, such as
co.uk (whereas, for example, they should be settable for
example.uk). We also do not test the Report-Only header
defined by the CSP standard, but this is not due to a lim-
itation of the BrowserAudit framework and a suitable test
could be added to the test suite.

Finally, cryptographic APIs such as the W3C WebCrypto
API and the OpenSSL library are important aspects of
browser security, but cryptographic testing is beyond the
scope of BrowserAudit and better left to dedicated projects
such as How’s My SSL? [8].

4.4 Uncovering Security Bugs
BrowserAudit’s test suite has uncovered two previously-

unknown bugs in Firefox’s implementation of the CSP stand-
ard; these bugs are present in all versions of Firefox that
implement the CSP standard up to version 32.0.3. The first
bug [24] allows the loading of same-origin stylesheets with
the policy

default-src ‘none’; style-src ‘unsafe-inline’;

similarly, the second bug [25] allows the loading of same-

origin Worker and SharedWorker objects in scripts with the
policy

default-src ‘none’; script-src ‘unsafe-inline’.

In both cases, the ‘unsafe-inline’ declaration in the policy
states that only inline stylesheets and scripts must be per-
mitted: external resources, even those from the same origin,
must be blocked. We reported both of these bugs to Mozilla
during the version 29 release cycle, and they were fixed in
version 33 of Firefox.

Firefox does not currently implement the sandbox CSP
directive; this optional feature of the CSP 1.0 specification
directs browsers to relax the given security controls on iframes
embedded in the page, as if they had been supplied in the
sandbox attribute of each <iframe> element. The sand-

box attribute is in fact a feature of the HTML5 specifica-
tion [34] and states that an iframe containing a sandbox

attribute should have all security controls enabled unless
specifically disabled by values inside the sandbox attribute.
Development work on the implementation of this directive
in Firefox is currently underway [27]. However, the current
implementation does not correctly handle the case where
an empty value is given for the sandbox CSP directive; the
CSP 1.0 specification implies that the browser should apply
a sandbox attribute with an empty value (and thus enforce
a highly-restrictive sandboxing policy — a view also taken
by developers of other browsers, such as Chromium), but
Firefox’s implementation does not apply a sandbox attribute
at all in this scenario (thus failing to enforce any sandboxing
policy). This flaw was uncovered by the current set of CSP
tests in BrowserAudit, and we are in discussions with Firefox
developers to address it before their sandbox implementation
lands in a stable version of the browser.

5. RELATED WORK
In this section we discuss some related work on browser

security, which influenced the design of our tests, and review
some web applications that perform security-relevant tests,
which served as a source of inspiration for BrowserAudit.

5.1 Browser Security
The authoritative sources of information on upcoming

browser security mechanisms are of course the W3C RFCs
and Drafts such as [34, 45, 21, 46, 35]. Most security meas-
ures are the result of a lot of practical experimentation and
academic research that led to proposals that gradually gained
adoption and became more robust through security reviews
and public scrutiny. Paradigmatic examples are the early
contributions of Barth, Jackson et al. to postMessage, the
Origin header and HTTPS [19, 37, 20].

The standards themselves provide a lot of detail about the
intended security behaviour, but additional research is needed
to interpret the consequences for deployed web applications.
For example, De Ryck et al. perform a security analysis of
some of the upcoming standards in [28], finding them to be be
of high quality but also highlighting potential security risks.
Singh et al. [44] discover potentially dangerous incoherencies
amongst different browser access control policies.

A broad, in-depth analysis of browser security can be
found in Zalewski’s Browser Security Handbook [47] and
the companion book The Tangled Web [48]; they gather
a wealth of information on browser security features, their
shortcomings and the peculiar differences in browser support.

45

5.2 Web Sites
Panopticlick [12] is an experiment to investigate how

unique — and therefore trackable — modern web browsers
are, by fingerprinting their version and configuration inform-
ation. Some of this information can be gleaned directly
from browser requests, whereas other information is made
available by the presence of JavaScript and browser plugins.
Visitors click a“Test Me”button and are then provided with
their browser’s uniqueness score and a breakdown of the
measurements used to obtain the result. These data are then
anonymously stored in the project database to make future
uniqueness scores more accurate, and to allow for analysis of
the data, as discussed in [30]. Although focussed on privacy
rather than security, Panopticlick was the main inspiration
for BrowserAudit.

BrowserSpy [4] is another web site that reports how much
information can be retrieved from a browser by visiting a
test page. Its focus is on privacy, yet some of its tests are
security-related, although not presented as such; for example,
one test checks that JavaScript cannot read HttpOnly cookies.
Each of BrowserSpy ’s 75 current tests has to be run indi-
vidually, since the output is rather verbose, and the output
does not show implementation details that could be useful
for a technical audience. In contrast, our 400+ tests run
automatically, and advanced users can view the client-side
code driving each individual test.
How’s My SSL? [8] is a recent project that advises the

user on the security of their TLS client (web browsers act
as TLS clients when engaged in HTTPS communication).
It works by running a TLS server that has been modified
so that the client-server handshake is exposed to the web
application, allowing it to inspect the cipher suites that the
client supports and perform a security assessment. The
results are reported clearly, with“Learn More” links for more
technical background which also inspired our design. The
test results can be accessed via a JSON API, and could be
potentially integrated into BrowserAudit to complement our
tests. Qualys SSL Labs [14] also offers browser-based tests
for SSL clients that display a concise report of their TLS
capabilities, intended for the expert user. In BrowserAudit
we instead strived to produce reports that can be interpreted
by users at different levels of technical competence.

The Can I Use. . . test suite [15] gathers browser com-
patibility data for a wide variety of browser features such
as support for HTML5 and CSS3. Some of these tests are
automatic and others require visual confirmation or interac-
tion from the user. A few tests check for support for security
features; for example, one (interactive) test detects support
for the CSP. In contrast, BrowserAudit runs 226 automated
tests to assess the security of the CSP implementation.

The Browser DOM access checker [2] is a web page also
included in the Chromium browser source code that uses
JavaScript to test the enforcement of some domain-related
security policies such as cross-domain DOM access, Java-
Script cookie access, XMLHttpRequest calls, and event and
transition handling; for example, it runs hundreds of tests to
ensure that read or write attempts to the visible properties
of the document object are blocked cross-domain. In con-
trast, we are satisfied with testing cross-domain access for
one representative property of the document object: if such
access is blocked, we conclude that the policy is effective. We
could programmatically extend our tests to try accessing all
properties, but that goes beyond the scope of BrowserAudit:

DOM-based cross-domain access is only one of the hundreds
of qualitatively different behaviours that we consider.

Finally, Browserscope [3] is a community-driven project
for profiling web browsers; it detects the browser version
and runs tests that cover a broad range of features such
as network performance, CSS support, and JavaScript op-
timisations. Test results are aggregated and made publicly
available, making it easy for web developers to keep track of
functionality across all browsers that have been tested.

Currently, Browserscope also includes 17 tests which auto-
matically check whether the browser supports a number of
standard features relevant to security and displays a list of
which tests passed or failed. In contrast, BrowserAudit is
engineered to run hundreds of tests that ascertain whether
security features are implemented correctly, and provides an
interface that allows different types of users to access detailed
descriptions of each test case, including client-side test code.

6. CONCLUSIONS
We introduced BrowserAudit, a web application to test

the implementation of browser security features. It comple-
ments the unit testing used by browser vendors to debug
their implementations by checking that deployed browsers
effectively deliver the security behaviours entailed by the
specifications of browser security mechanisms.

All of our tests run automatically without interaction
from the user, and provide detailed information for each
test category, including the source code of each individual
test. This makes BrowserAudit useful for a broad audience,
from the casual user to the web developer and the security
researcher. No other publicly-accessible web application tests
such a breadth of browser security mechanisms as ours, either
established or experimental.

In Section 4.3 we highlighted aspects of browser secur-
ity mechanisms that are currently not covered by our tests.
BrowserAudit is designed to be modular and extensible;
adding variants of existing tests with different combinations
of parameters, or new client-side-only tests (e.g., to test
different features of the SOP) is straightforward. We are cur-
rently investigating the more challenging problem of allowing
similar extensibility of the server-side components of tests.

BrowserAudit is an open-source project [32], and we hope
that the web security community will help us extend it with
even more test cases.

7. ACKNOWLEDGMENTS
We would like to thank the reviewers of ISSTA’15 for their

comments and suggestions. This work began as Hothersall-
Thomas’s final year project at Imperial College London.
Maffeis is supported by EPSRC grant EP/I004246/1 and
Novakovic is supported by EPSRC grant EP/K032089/1.

8. REFERENCES
[1] Bootstrap. http://getbootstrap.com/.

[2] Browser DOM access checker.
http://lcamtuf.coredump.cx/dom_checker/.

[3] Browserscope. http://www.browserscope.org/.

[4] BrowserSpy. http://browserspy.dk/.

[5] BrowserStack. http://www.browserstack.com/.

[6] Can I Use. . . . http://caniuse.com/.

[7] Chai. http://chaijs.com/.

46

http://getbootstrap.com/
http://lcamtuf.coredump.cx/dom_checker/
http://www.browserscope.org/
http://browserspy.dk/
http://www.browserstack.com/
http://caniuse.com/
http://chaijs.com/

[8] How’s My SSL? https://www.howsmyssl.com/.

[9] jQuery. http://jquery.com/.

[10] Mocha. http://mochajs.org/.

[11] Nginx. http://nginx.org/.

[12] Panopticlick. https://panopticlick.eff.org/.

[13] PostgreSQL. http://www.postgresql.org/.

[14] Qualys SSL Labs. https://www.ssllabs.com/.

[15] The Can I Use. . . test suite.
http://tests.caniuse.com/.

[16] The Go Programming Language.
https://golang.org/.

[17] A. Barth. HTTP State Management Mechanism. RFC
6265 (Proposed Standard), Apr. 2011.

[18] A. Barth, J. Caballero, and D. Song. Secure content
sniffing for web browsers, or how to stop papers from
reviewing themselves. In Proceedings of S&P 2009,
pages 360–371, 2009.

[19] A. Barth, C. Jackson, and J. Mitchell. Securing Frame
Communication in Browsers. In Proceedings of
USENIX Security 2008, pages 17–30, 2008.

[20] A. Barth, C. Jackson, and J. C. Mitchell. Robust
Defenses for Cross-site Request Forgery. In Proceedings
of CCS’08, pages 75–88, 2008.

[21] A. Barth and M. West. Content Security Policy 1.1,
June 2013. W3C Working Draft WD-CSP11-20130604.

[22] K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis.
Language-Based Defenses Against Untrusted Browser
Origins. In Proceedings of USENIX Security 2013,
pages 653–670, 2013.

[23] E. Budianto, Y. Jia, X. Dong, P. Saxena, and Z. Liang.
You Can’t Be Me: Enabling Trusted Paths and User
Sub-origins in Web Browsers. In A. Stavrou, H. Bos,
and G. Portokalidis, editors, Proceedings of RAID 2014,
volume 8688 of Lecture Notes in Computer Science,
pages 150–171. Springer, 2014.

[24] Bugzilla. Bug 1007205 — CSP allows local CSS
@import with only ‘unsafe-inline’ set. https:
//bugzilla.mozilla.org/show_bug.cgi?id=1007205.

[25] Bugzilla. Bug 1007634 — CSP allows local Worker
construction with only ‘unsafe-inline’ set. https:
//bugzilla.mozilla.org/show_bug.cgi?id=1007634.

[26] Bugzilla. Bug 471020 — Add X-Content-Type-Options:
nosniff support to Firefox. https:
//bugzilla.mozilla.org/show_bug.cgi?id=471020.

[27] Bugzilla. Bug 671389 — Implement CSP sandbox
directive. https:
//bugzilla.mozilla.org/show_bug.cgi?id=671389.

[28] P. De Ryck, L. Desmet, P. Philippaerts, and
F. Piessens. A security analysis of next generation web
standards. Technical report, ENISA, July 2011.

[29] X. Dong, Z. Chen, H. Siadati, S. Tople, P. Saxena, and
Z. Liang. Protecting sensitive web content from
client-side vulnerabilities with CRYPTONS. In
Proceedings of CCS’13, pages 1311–1324, 2013.

[30] P. Eckersley. How unique is your web browser? In
Proceedings of PETS’10, pages 1–18, 2010.

[31] R. Fielding, J. Gettys, J. Mogul, H. Frystyk,
L. Masinter, P. Leach, and T. Berners-Lee. Hypertext
Transfer Protocol – HTTP/1.1. RFC 2616 (Draft
Standard), June 1999.

[32] GitHub. BrowserAudit project.

https://github.com/browseraudit/.

[33] M. Heiderich, M. Niemietz, F. Schuster, T. Holz, and
J. Schwenk. Scriptless Attacks: Stealing the Pie
Without Touching the Sill. In Proceedings of CCS’12,
pages 760–771, 2012.

[34] I. Hickson and D. Hyatt. HTML5: A vocabulary and
associated APIs for HTML and XHTML. W3C
Candidate Recommendation CR-HTML5-20140429,
Apr. 2014.

[35] J. Hodges, C. Jackson, and A. Barth. HTTP Strict
Transport Security (HSTS). RFC 6797 (Proposed
Standard), Nov. 2012.

[36] L.-S. Huang, A. Moshchuk, H. J. Wang, S. Schechter,
and C. Jackson. Clickjacking: Attacks and Defenses. In
Proceedings of USENIX Security 2012, pages 22–22,
2012.

[37] C. Jackson and A. Barth. Forcehttps: Protecting
High-security Web Sites from Network Attacks. In
Proceedings of WWW’08, pages 525–534, 2008.

[38] E. Kirda. Cross Site Scripting Attacks. In Encyclopedia
of Cryptography and Security, pages 275–277. 2011.

[39] S. Maffeis, J. C. Mitchell, and A. Taly. Object
Capabilities and Isolation of Untrusted Web
Applications. In Proceedings of S&P 2010, pages
125–140, 2010.

[40] MSDN Blogs. IE8 Security Part VI: Beta 2 Update.
http://blogs.msdn.com/b/ie/archive/2008/09/02/

ie8-security-part-vi-beta-2-update.aspx.

[41] K. Patil, X. Dong, X. Li, Z. Liang, and X. Jiang.
Towards Fine-Grained Access Control in JavaScript
Contexts. In Proceedings of ICDCS’11, pages 720–729,
2011.

[42] D. Ross and T. Gondrom. HTTP Header Field
X-Frame-Options. RFC 7034 (Informational), Oct.
2013.

[43] G. Rydstedt, E. Bursztein, D. Boneh, and C. Jackson.
Busting Framebusting: a Study of Clickjacking
Vulnerabilities at Popular Sites. In Proceedings of
W2SP 2010, 2010.

[44] K. Singh, A. Moshchuk, H. J. Wang, and W. Lee. On
the Incoherencies in Web Browser Access Control
Policies. In Proceedings of S&P 2010, pages 463–478,
2010.

[45] B. Sterne and A. Barth. Content Security Policy 1.0.
Nov. 2012. W3C Candidate Recommendation
CR-CSP-20121115.

[46] A. Van Kesteren. Cross-origin Resource Sharing. W3C
Recommendation REC-cors-20140116, Jan. 2014.

[47] M. Zalewski. Browser Security Handbook, 2010.

[48] M. Zalewski. The Tangled Web: A Guide to Securing
Modern Web Applications. No Starch Press, 2012.

47

https://www.howsmyssl.com/
http://jquery.com/
http://mochajs.org/
http://nginx.org/
https://panopticlick.eff.org/
http://www.postgresql.org/
https://www.ssllabs.com/
http://tests.caniuse.com/
https://golang.org/
https://bugzilla.mozilla.org/show_bug.cgi?id=1007205
https://bugzilla.mozilla.org/show_bug.cgi?id=1007205
https://bugzilla.mozilla.org/show_bug.cgi?id=1007634
https://bugzilla.mozilla.org/show_bug.cgi?id=1007634
https://bugzilla.mozilla.org/show_bug.cgi?id=471020
https://bugzilla.mozilla.org/show_bug.cgi?id=471020
https://bugzilla.mozilla.org/show_bug.cgi?id=671389
https://bugzilla.mozilla.org/show_bug.cgi?id=671389
https://github.com/browseraudit/
http://blogs.msdn.com/b/ie/archive/2008/09/02/ie8-security-part-vi-beta-2-update.aspx
http://blogs.msdn.com/b/ie/archive/2008/09/02/ie8-security-part-vi-beta-2-update.aspx

Hybrid Typing of Secure Information Flow in a

JavaScript-like Language

José Fragoso Santos, Thomas Jensen, Tamara Rezk, Alan Schmitt

To cite this version:

José Fragoso Santos, Thomas Jensen, Tamara Rezk, Alan Schmitt. Hybrid Typing of Secure
Information Flow in a JavaScript-like Language. International Symposium on Trustworthy
Global Computing, Aug 2015, Madrid, Spain. Proceedings of the 10th International Symposium
on Trustworthy Global Computing (TGC 2015). <hal-01243029>

HAL Id: hal-01243029

https://hal.archives-ouvertes.fr/hal-01243029

Submitted on 14 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01243029
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Hybrid Typing of Secure Information Flow in a
JavaScript-like Language

José Fragoso Santos1, Thomas Jensen2, Tamara Rezk2, Alan Schmitt2

1 Imperial College London, jfaustin@imperial.ac.uk
2 Inria, firstname.lastname@inria.fr

Abstract. As JavaScript is highly dynamic by nature, static informa-
tion flow analyses are often too coarse to deal with the dynamic con-
structs of the language. To cope with this challenge, we present and
prove the soundness of a new hybrid typing analysis for securing infor-
mation flow in a JavaScript-like language. Our analysis combines static
and dynamic typing in order to avoid rejecting programs due to impre-
cise typing information. Program regions that cannot be precisely typed
at static time are wrapped inside an internal boundary statement used
by the semantics to interleave the execution of statically verified code
with the execution of code that must be dynamically checked.

1 Introduction

The dynamic aspects of JavaScript make the analysis of JavaScript programs
very challenging. On one hand, one may use a purely static analysis, but either re-
strict the language to exclude these dynamic aspects or over-approximate them;
this is too coarse to be applicable in practice. On the other hand, one may use
purely dynamic mechanisms, such as monitoring or secure multi-executions [1,
6, 8, 16]; but the gained precision comes at the cost of a much lower performance
compared to the original code [7].

We propose a general hybrid analysis to statically verify secure information
flow in a core of JavaScript. Following the hybrid typing motto “static anal-
ysis where possible with dynamic checks where necessary”[5], we are able to
reduce the runtime overhead introduced by purely dynamic analyses without
excluding dynamic field operations. In fact, our analysis can handle some of the
most challenging JavaScript features, such as prototype-based inheritance, ex-
tensible objects, and constructs for checking the existence of object properties.
Its key ingredient is an internal boundary statement inspired by recent work in
inter-language interoperability [10]. The static component of our analysis wraps
program regions that cannot be precisely verified inside an internal boundary
statement instead of rejecting the whole program. This boundary statement
identifies the regions of the program that must be verified at runtime—which
may be as small as a single statement—and enables the initial set up required
by the dynamic analysis. In summary, the proposed boundary statement allows
the semantics to effortlessly interleave the execution of statically verified code
with the execution of code that must be verified at runtime.

Although our work is generally motivated by the verification of dynamic
features of JavaScript, we choose to focus on the particular case of constructs
that rely on dynamic computation of object field names, which we call dynamic
field operations. In JavaScript, one can access a field f of an object o either by
writing o.f or o[e], where e is an expression that dynamically evaluates to the
string f. Dynamic computation of field names is one of the major sources of
imprecision of static analyses for JavaScript [9].

Example 1 (Running example: the challenge of typing dynamic field operations).
Below we present a program that creates an object o with a secret field secret1

and two public fields public1 and public2.

o = {}; o.secret1 = secret_input();
o.public1 = public_input(); o.public2 = public_input(); public = o[g()]

The secret field secret1 gets a secret input via function secret_input, while
the two public fields public1 and public2 each get a public input via function
public_input. The program then assigns the value of one of the three fields to
the public variable public, as determined by the return value of function g.
Concretely, when g returns the string "secret1", the program assigns a secret
value to public and the execution is insecure. On the other hand, when g returns
either "public1" or "public2", the program assigns a public value to public and
the execution is secure. However, in order to make sure that g never returns
"secret1", a static analysis needs to predict the dynamic behaviour of g, which
is, in general, undecidable.

The loss of precision introduced by the dynamic computation of field names
is not exclusive to field projections. It also occurs in method calls, field dele-
tions, and membership checks. We account for the use of these operations by
verifying them at runtime. When verifying a statement containing a dynamic
field operation, the static component of the analysis wraps it inside a bound-
ary statement. In the case of the running example, all statements except the
last one are statically typed. In contrast, the last assignment is re-written as
@monitor(@type_env, @pc, @ret, public = o[g()]), where the first three arguments
of the monitor statement are used for the setup of the runtime analysis. Hence,
when the program is executed the only overhead introduced by the dynamic
component of our hybrid analysis regards the security checks for validating or
rejecting the statement public = o[g()].

Contributions. The main contribution of the paper is the design of a new
hybrid analysis for verifying secure information flow in a JavaScript-like lan-
guage. To achieve this, we introduce: (1) a type language specifically designed
to control information flow in a subset of JavaScript, (2) a static type system
for verifying statements not containing dynamic field operations, (3) a dynamic
typing analysis for verifying statements containing dynamic field operations, and
(4) a novel boundary operator for interleaving the execution of statically verified
regions with dynamically verified ones. Finally, we have implemented a prototype
as well as a case study, available online at [15].

v ∈ Val ::= lit | lit | l | λx : τ̇ .s

e ∈ Expr ::= v | this | x | x = e | { } [τ̇] | e.f | e1[e2] | e1.f = e2

| e1[e2] = e3 | f in e | [e1] in e2 | delete e.f | delete e1[e2]

| function (x)[τ̇]{s} | e1(e2) | e1.x(e) | e1[e2](e3)

s ∈ Stmt ::= e | var x [τ̇] | s1; s2 | if(e) {s1} else {s2} | return e

Table 1. Core JS Syntax - Expressions and Statements

2 Core JS

Syntax. The syntax of Core JS is given in Table 1. Expressions include values,
the keyword this, variables, variable assignments, object literals, static and dy-
namic field projections, static and dynamic field assignments, static and dynamic
membership checks, static and dynamic field deletions, function literals, func-
tion calls, and static and dynamic method calls. Statements include expression
statements, variable declarations, sequences, conditional statements, and return
statements. We distinguish two types of values: literal values and runtime val-
ues. Literal values include numbers, booleans, strings, and undefined. Runtime
values, ranged over by v, include parsed literal values, locations, and parsed
function literals. Object literals, function literals, and variable declarations are
annotated with their respective security types (which are explained in Section 3).
In the following, we use Expr for the set of Core JS dynamic field operations.

Memory Model. A heap H ∈ Heap : Loc × X ⇀ Val is a partial mapping
from locations in Loc and field names in X to values in Val. We denote a heap
cell by (l, f) 7→ v, the union of two disjoint heaps by H1] H2, a read operation
by H(l, f), and a heap update operation by H[l.f 7→ v]. An object can be seen
as a set of heaps cells addressed by the same location but with different field
names. We use l 7→ {f1 : v1, . . . , fn : vn} as an abbreviation for the object
(l, f1) 7→ v1] . . .] (l, fn) 7→ vn.

Every object has a prototype, whose location is stored in a special field
proto . In order to determine the value of a field f of an object o, the semantics

first checks whether f is one of the fields of o. If that is the case, the field look-up
yields that value. Otherwise, the semantics checks whether f belongs to the fields
of the prototype of o and so forth. The sequence of objects that can be accessed
from a given object through the inspection of the respective prototypes is called
a prototype chain. The prototype chain inspection procedure is modelled by
the semantic function π given in appendix. Informally, the expression π(H, l, f)
denotes the location of the first object that defines f in the prototype chain
of the object pointed to by l (if no such object exists, π returns null). Given
that most implementations of JavaScript allow for explicit prototype mutation,
we include this feature in Core JS. For instance, x. proto evaluates to the the
prototype of the object bound to x and x. proto = y sets the prototype of the
object bound to x to the object bound to y.

Scope is modelled using environment records. An environment record is sim-
ply an internal object that maps variable names to their respective values.

Ê ::= � | x = Ê | Ê.f | Ê[e] | l[Ê] | Ê.f = e | Ê[e1] = e2

| l[Ê] = e | l[f] = Ê | [Ê] in e | [f] in Ê | delete Ê.f | delete Ê[e]

| delete l[Ê] | Ê(e) | l(Ê) | Ê.f(e) | Êe | l[Ê](e) | l[f](Ê)

E ::= Ê | E; s | if(Ê) {s1} else {s2} | return Ê

Table 2. Evaluation Contexts

An environment record is created for every function or method call. We use
act(l, x, v, s, l′) to denote the environment record that: (1) is identified by loca-
tion l where it is stored, (2) maps x to v, (3) maps all the variables declared in
s to undefined, and (4) maps the field @this to the location l′. (Note that envi-
ronment records map a single variable because functions have a single argument.
Moreover, in the execution of a method call, the field @this is used to store the
location of the object on which the method was invoked.) Variables are resolved
with respect to a list of environment record locations, called scope chain. The
variable inspection procedure is modelled by the semantic function σ given in
appendix. We let σ(H,L, x) denote the location of the first environment record
that defines x in the scope chain L. The global object, assumed to be pointed
to by a fixed location lg, is the environment record that binds global variables.

Since functions are first-class citizens, the evaluation of a function literal
triggers the creation of a special type of object, called function object. Every
function object has two fields: @body and @scope, which respectively store the
corresponding parsed function literal and the scope chain that was active when
the function literal was evaluated. Functions execute in the scope in which the
they were evaluated.

Semantics. Figure 1 presents a fragment of the semantics of Core JS in the
style of Wright and Felleisen [19] (the full semantics is given in appendix). A
configuration Ψ has the form 〈H,L, s〉 where H is the current heap, L the current
scope chain, and s the statement to execute. Transitions are labelled with an
internal event α for the use of the dynamic analysis. The evaluation order is
specified with the help of evaluation contexts, whose syntax is given in Table 2.
In the following, we use l ::L for the list obtained by prepending l to L and
head(L) for the first element of L.

Rule Variable uses σ to determine the location l′ of the environment record
that defines x and reads its value from the heap. Rule Dyn Field Projection
uses π to determine the location l′′ of the object that defines f in the pro-
totype chain of the object pointed to by l′ and then reads its value from the
heap. Rule Dyn Field Assignment updates the current heap with a mapping
from l and f to v. Rule Membership Check - True checks if f is defined in
the prototype chain of the object pointed to by l and evaluates to true. Rule
Function Literal adds a new function object to the heap. Rule Function
Call extends the heap with a new environment record for the evaluation of the
function pointed to by l. The current scope chain L is replaced with the scope
chain L′ that was active when the corresponding function literal was evaluated
extended with the location l′′ of the newly created environment record. The se-

Variable
l = head(L) l′ = σ(H,L, x)
v = H(l′, x)

〈H,L, x〉 varl(x)→ 〈H,L, v〉

Dyn. Field Projection
l = head(L) l′′ = π(H, l′, f)
v = H(l′′, f)

〈H,L, l′[f]〉 f-projl(f)→ 〈H,L, v〉

Dyn. Field Assignment
l′ = head(L) H ′ = H[l.f 7→ v]

〈H,L, l[f] = v〉
f-assl′ (f)→ 〈H ′, L, v〉

Membership Check - True
l′ = head(L) π(H, l, f) 6= null

〈H,L, [f] in l〉
inl′ (f)→ 〈H,L, true〉

Function Literal
l = head(L) l′ = fresh(H, τ̇) H ′ = H] l′ 7→ {@scope : L,@body : λx : τ̇ .s}

〈H,L, function (x)[τ̇]{s}〉 pushl(τ̇)→ 〈H ′, L, l′〉

Function Call
l′ = head(L) l′′ 6∈ dom(H) λx : τ̇ .s = H(l,@body)
L′ = H(l,@scope) H ′ = H] act(l′′, x, v, s, lg)

〈H,L, l(v)〉
f-calll′→ 〈H ′, l′′ ::L′,@FunExe(L, s)〉

If End
l = head(L)

〈H,L,@EI(v)〉 �l→ 〈H,L, v〉

If - True
l = head(L) ¬false(v) s′ = @EI(s1)

〈H,L, if(v) {s1} else {s2}〉
ifl→ 〈H,L, s′〉

Contextual Propagation
〈H,L, s〉 α→ 〈H ′, L′, s′〉

〈H,L,E[s]〉 α→ 〈H ′, L′, E[s′]〉

Fig. 1. Fragment of the Small-Step Semantics of Core JS

mantics makes use of an internal statement @FunExe(L, s) for keeping track of the
caller’s scope chain during the execution of the function’s body. Rule If - True
checks if the guard of the conditional does not belong to the set of falsy values
–{false, 0, undefined, null}– and replaces the whole conditional with its then-branch
followed by an internal statement @EI for notifying the dynamic analysis of the
end of that branch. Contextual Propagation is standard.

3 Static Typing Secure Information Flow in Core JS

In this section, we present both a new type language for controlling information
flow in JavaScript and the static component of our analysis. Here, the specifi-
cation of security policies relies on two key elements: a lattice of security levels
and a typing environment that maps resources to security types, which can be
viewed as safety types annotated with security levels. In the examples, we use
L = {H,L} with L @ H, meaning that L-labelled resources (low resources) are
less confidential than those labelled with H (high). We use t, ⊥, and > for the
least upper bound (lub), the bottom level, and the top level, respectively.

Security Types. A security type τ̇ = τσ is obtained by pairing up a raw type τ
with a security level σ, called its external level. The external level of a security
type establishes an upper bound on the levels of the resources on which the values

of that type may depend. For instance, a primitive value of type PRIM
L may only

depend on low resources. The syntax of raw types is given and explained below:

τ ::= PRIM | 〈τ̇ .τ̇ σ→ τ̇〉 | 〈κ.τ̇ σ→ τ̇〉
| µκ.〈fσ : τ̇ , · · · , fσ : τ̇ , ∗σ : τ̇〉 | µκ.〈fσ : τ̇ , · · · , fσ : τ̇〉

– The type PRIM is the type of expressions which evaluate to primitive values.
– The type 〈τ̇0.τ̇1

σ→ τ̇2〉 is the type of expressions which evaluate to functions
that map values of type τ̇1 to values of type τ̇2 and during the execution
of which, the keyword this is bound to an object of type τ̇0. Level σ is the
writing effect [14] of functions of this type, that is, a lower bound on the levels
of the resources updated or created during their execution. When specifying
a function type inside an object type, one can use the type variable bound
by that object type as the type of the keyword this (in the syntax of types,
κ ranges over the set of type variables).

– The type µκ.〈fσ00 : τ̇0, · · · , fσnn : τ̇n, ∗σ∗ : τ̇∗〉 is the type of expressions which
evaluate to objects that may define the fields f0 to fn mapping each field fi
to a value of security type τ̇i. The security type assigned to ∗ is the default
security type, which is the security type of all fields not in {f0, · · · , fn}.
Every field fi is further associated with an existence level σi that establishes
an upper bound on the levels of the contexts in which the field can be created
or deleted. The level σ∗ is the default existence level. When no default security
type is declared, the objects of the type may only define explicitly declared
fields.
The reason why we do not precisely track the presence of fields in object
types is that we do not want the type of an object to change at runtime even
though its structure may change. Notice that the absence of a field in a type
does not mean it cannot be accessed in objects of that type: this field may
still be defined in the prototype chain. We could have flattened security types
for objects by requiring every object type to explicitly declare all the fields
accessible through the prototype chains of the objects of that type, but this
would have two disadvantages. First, object types would be less precise, and
second, they would be much larger as the types of prototype fields would be
duplicated. The cost of this design choice is a more complex Static Field
Projection typing rule that has to take the prototype chain into account.

Given a security type τ̇ , the expression lev(τ̇) denotes its external level and
bτ̇c its raw type (for instance, lev(PRIML) = L and bPRIMLc = PRIM). We define τ̇σ

as bτ̇clev(τ̇)tσ (for example, (PRIML)H = PRIM
H). Given a function security type

τ̇ = 〈τ̇0.τ̇1
σ→ τ̇2〉σ

′
, we use τ̇ .this, τ̇ .arg, τ̇ .ret, and τ̇ .wef to denote τ̇0, τ̇1, τ̇2,

and σ, respectively. Given an object security type τ̇ , we use dom(τ̇) for the set
containing all field names explicitly declared in τ̇ (including ∗, if present). Given
a field name f and an object security type τ̇ , τ̇ .f (τ̇ .f , resp.) denotes either
the security type (existence level resp.) with which τ̇ associates f or its default
security type (existence level, resp.) when f 6∈ dom(τ̇) and ∗ ∈ dom(τ̇). The
ordering v on security levels induces a simple ordering � on security types:
τ̇0 � τ̇1 iff lev(τ̇0) v lev(τ̇1) and bτ̇0c = bτ̇1c. We use τ̇g for the type of the global

Γ (public) = PRIM
L

Γ (secret) = PRIM
H

Γ (secret input) = 〈τ̇g.
H→ PRIM

H〉L

Γ (public input) = 〈τ̇g.
H→ PRIM

L〉L

Γ (g) = 〈τ̇g.
H→ PRIM

L〉L

τ̇o = µκ ·〈public1L : PRIM
L,

public2L : PRIM
L,

secret1H : PRIM
H

secret2H : PRIM
H
〉

L

Γ (o0) = µκ.〈 proto H : τ̇o〉L

Γ (o) = Γ (o1) = Γ (o2) = τ̇o

Table 3. Typing Environment for the Examples 1 to 6

object. Finally, a typing environment Γ is simply a mapping from variables to
security types.

Example 2. Table 3 presents the typing environment used to type the programs
given in Examples 1 to 6. Since secret input, public input, and g are to be
used as functions, their respective types use the type of the global object as the
type of the keyword this. Since none of these three functions expects an argument
or updates the heap, their respective types omit the type of the argument and
declare a high writing effect. Our design choice of not flattening object types can
also be seen in this example: the type of o0 is much shorter as it does not need
to mention at top level the fields declared in τ̇o.

Static Type System. The key insight of the static type system is that it
wraps program regions which cannot be precisely analysed at static time within
a boundary statement @monitor(Γ, pc, τ̇r, s) responsible for turning on the typing
analysis at runtime. The parameters Γ , pc, and τ̇r are the typing environment,
the context level [14], and the type of the function whose body is being typed,
respectively. Given a typing environment Γ , a level pc, and an expression e, the
typing judgment Γ, pc `e e ↪→ e′ : τ̇ means that e is rewritten as a semantically
equivalent expression e′, which may include boundary statements, has raw type
bτ̇c, and reads variables or fields of level at most lev(τ̇). Typing judgements for
statements, with the form Γ, pc, τ̇r `s s ↪→ s′, differ from typing judgements for
expressions in that they do not assign a type to the statement. When e (s resp.)
coincides with e′ (s′ resp.), we omit ↪→ e′ (↪→ s′ resp.) from the typing rules.
The most relevant typing rules are given in Figure 2 and described below. (We
omit the explanations of Rules Literal, Variable, and Assignment as they
are standard.)

Static field projection As a given field may be defined anywhere in the
prototype chain of the inspected object, this rule needs to take into account
the whole prototype chain of that object. To this end, we overload function
π to model a static prototype chain inspection procedure. Informally, π(τ̇ , f)
computes the lub between the security types of f in the prototype chain of objects
of type τ̇ and upgrades the external level of this type with the lub between the
existence levels of the field proto in that prototype chain.

Example 3 (Leaks via Prototype Mutations). The program below creates three
empty objects bound to: o0, o1, and o2. Then, it creates a field named public1 in

Literal

Γ, pc `e lit : PRIM⊥
Variable
Γ, pc `e x : Γ (x)

Assignment
Γ, pc `e e : τ̇ τ̇pc � Γ (x)

Γ, pc `e x = e : τ̇

Static Field Projection
Γ, pc `e e : τ̇ τ̇f = π(τ̇ , f)

Γ, pc `e e.f : τ̇
lev(τ̇)
f

Static Member Check
Γ, pc `e e : τ̇ σ = lev(τ̇) t π̄(τ̇ , f)

Γ, pc `e f in e : PRIM
σ

Static Field Assignment
∀i=1,2 Γ, pc `e ei : τ̇i
τ̇2 � τ̇1.f pc t lev(τ̇1) v τ̇1.f

Γ, pc `e e1.f = e2 : τ̇2

Static Field Deletion
Γ, pc `e delete e : τ̇

pc t lev(τ̇) v τ̇ .f = σf

Γ, pc `e delete e.f : PRIMσf

Function Literal
Γ ′ = hoist(Γ [x 7→ τ̇ .arg, this 7→ τ̇ .this], s)
pc′ = τ̇ .wef lev(τ̇) t pc v pc′ Γ ′, pc′, τ̇ `s s ↪→ s′

Γ, pc `e function (x)[τ̇]{s} ↪→ function (x)[τ̇]{s′} : τ̇

Static Method Call
∀i=1,2 Γ, pc `e ei : τ̇i τ̇f = π(τ̇1, f) σ = pc t lev(τ̇1) t lev(τ̇f)
σ v τ̇f .wef τ̇σ1 � τ̇f .this τ̇σ2 � τ̇f .arg

Γ, pc `e e1.f(e2) : (τ̇f .ret)σ

Verified Expr Stmt
Γ, pc `e e ↪→ e′ : τ̇

Γ, pc, τ̇ret `s e ↪→ e′

Dyn. Expression Stmt
e ∈ Expr s = @monitor(Γ, pc, τ̇r, e)

Γ, pc, τ̇r `s e ↪→ s

(Partially) Verified Conditional

Γ, pc `e e ↪→ e′ : τ̇ ∀i=0,1 Γ, pc t lev(τ̇), τ̇r `s si ↪→ s′i

Γ, pc, τ̇ret `s if(e) {s1} else {s2} ↪→ if(e′) {s′1} else {s′2}

Monitored Conditional
e ∈ Expr s = @monitor(Γ, pc, τ̇ret, if(e) {s1} else {s2})

Γ, pc, τ̇ret `s if(e) {s1} else {s2} ↪→ s

Fig. 2. Static Typing Core JS Expressions

both o1 and o2, which is set to 0 in o1 and to 1 in o2. Depending on the value of
a high variable secret, the prototype of o0 is either set to o1 or to o2. Finally, the
low variable public1 is set to the value of the field public1 of the prototype of o0
(because o0 does not define that field), thereby creating an implicit information
flow between secret and public.

o0 = {}; o1 = {}; o2 = {}; o1.public1 = 0; o2.public1 = 1;
if(secret){o0._proto_ = o1} else {o0._proto_ = o2}; public = o0.public1

Letting Γ be the typing environment of Table 3, it follows that π(Γ (o0), public1) =

PRIM
H because Γ (o0). proto = H. Hence, the assignment public = o0.public1 is

not typable as the type of o0.public1, PRIM
H , is not lower than or equal to PRIM

L.

Static Member Check Since the domain of an object can change at ex-
ecution time and since programs can check if a given field is defined using the
keyword in, the mere existence of a field may disclose secret information. The
existence security levels declared in object security types serve to control this
type of information flows. However, analogously to field projections, this rule
needs to take into account the whole prototype chain of the inspected object,
because the field whose existence is being checked may be defined anywhere in
that prototype chain. To this end, we make use of the static function π̄(τ̇ , f) that
computes the lub between the existence levels of f and proto in the prototype
chain of objects of type τ̇ .

Example 4 (Leaks via Membership Checks). The program below creates an ob-
ject with two fields secret1 and secret2. Then, depending on the value of a
high variable secret, it deletes either secret1 or secret2 from the domain of o.
Finally, the low variable public is assigned to true if secret1 is defined in the
prototype chain of o or to false if it is not, thereby creating an implicit flow
between secret and public.

o = {}; o.secret1 = 0; o.secret2 = 0;
if (secret) { delete o.secret1 } else { delete o.secret2 }; public = secret1 in o

Letting Γ be the typing environment of Table 3, it follows that π̄(Γ (o), secret1) =

PRIM
H because Γ (o).secret1 = H. Hence, the last assignment is not typable as the

type of the expression secret1 in o, PRIM
H , is not lower than or equal to PRIM

L.

Static field assignment The first constraint of the rule checks if the type
of the assigned expression is a subtype of the assigned field type, thus preventing
the assignment of a secret value to a public field. The second constraint checks if
the context level is lower than or equal to the existence level of the assigned field,
thereby preventing the creation of a visible field depending on secret information.

Field Deletion The rule checks if the context level is lower than or equal
to the field’s existence level, thereby preventing visible fields from being deleted
in invisible contexts.

Functional literal This rule checks if the context level is lower than or
equal to the writing effect of the type of the function literal, thereby preventing
the evaluation of function literals that update or create public resources inside
secret contexts. Then, the type system types the body of the function literal
using the typing environment obtained by extending the current one with the
type of the the formal argument, the type of the keyword this, and the types of
the variables declared in the body of the function literal. To this end, we make
use of a syntactic function hoist that extends the typing environment given as its
first argument with the mappings from the variables declared in the statement
given as its second argument to their respective security types. Note that this
rule may re-write the the body of the function literal in order to enable the
dynamic analysis.

Method call This rule first verifies if the context level is lower than or
equal to the writing effect of the method to call, thereby preventing the calling
of a method that creates or updates public resources depending on secret values.

Then, the rule checks if the type of the object on which the method is called and
the type of the function argument match the type of the keyword this and the
type of the formal parameter. The method call is finally typed with the return
type of the method type upgraded with the context level.

Dyn. expression statement This rule wraps every expression that con-
tains a dynamic field operation inside a boundary statement. Recall that Expr
denotes the set of Core JS dynamic field operations.

Conditional If the conditional guard contains a dynamic field operation,
the whole conditional is wrapped inside a boundary statement. In the opposite
case, the type system types both branches, upgrading the context level with the
external level of the security type of the conditional guard.

Example 5 (Hybrid versus Static Typing of the Running Example). Consider the
program from Example 1 and the typing environment of Table 3. When typing
the assignment public = o[g()], which contains a dynamic field operation, the
type system applies the Dyn. expression statement rule and wraps the whole
assignment inside a boundary statement. All the other statements, which do not
contain dynamic field operations, are fully statically verified and, therefore, left
unchanged. Hence, the resulting program is given by:

o = {}; o.secret1 = secret_input(); o.public1 = public_input();
o.public2 = public_input(); @monitor(@type_env, @pc, @ret, public = o[g()])

If, instead, the type system tried to statically type this assignment, it would need
to check that the type of o[g()] was less than or equal to the type of public, PRIML.
Since we do not know the value to which the call to g evaluates, the type system
would need to use the lub between the types of all the fields declared in the type
of o. Consequently, as one of those fields has type PRIM

H , the assignment would
not be typable.

4 Dynamic Typing Secure Information Flow in Core JS

The goal of a boundary statement is to enable and disable the information flow
analysis at runtime. In this section, we define the semantics of the boundary
operator by extending the semantics of Core JS with optional tracking of security
types and verification of security constraints.

Monitored Semantics A configuration of the monitored semantics has the
form LΨ,ΩM where Ψ is a Core JS configuration and Ω is a possibly empty set
of monitor configurations. A monitor configuration ω is associated to a specific
function call and has the form ω = 〈Γ, τ̇r, l, o, ρ〉 where: (1) Γ is a typing environ-
ment, (2) τ̇r is the type of the function that is executing, (3) l is the identifier of
the environment record associated to the function call that is being monitored,
(4) o is a control context, which is a list containing the levels of the expressions
on which the monitored statement branched in order to reach the current con-
text, and (5) ρ is an expression context, which is a list consisting of the security
types of the values of the current evaluation context. The rules of the monitored

Monitor sync
Ψ

αl→ Ψ ′ ω
αl→ ω′

LΨ,Ω ∪ {ω}M→ LΨ ′, Ω ∪ {ω′}M

Unmonitored step
Ψ

αl→ Ψ ′ ∀ω∈Ω er(ω) 6= l

LΨ,ΩM→ LΨ ′, ΩM

Monitor configuration +
l = head(L) ∀ω∈Ω er(ω) 6= l ω′ = 〈Γ, τ̇r, l, pc :: [], []〉

L〈H,L,E[@monitor(Γ, τ̇r, pc, s)]〉, ΩM→ L〈H,L,E[@monitor(s)]〉, Ω ∪ {ω′}M

Monitor configuration - 1
Ψ = 〈H,L,E[@monitor(v)]〉
head(L) = er(ω) Ψ ′ = 〈H,L,E[v]〉

LΨ,Ω ∪ {ω}M→ LΨ ′, ΩM

Monitor configuration - 2
Ψ = 〈H,L,E[@monitor(return v)]〉
head(L) = er(ω) Ψ ′ = 〈H,L,E[return v]〉

LΨ,Ω ∪ {ω}M→ LΨ ′, ΩM

Fig. 3. Monitored Semantics Rules

semantics are given in Figure 3 and described below. We use er(ω) to denote the
location of the environment record associated with ω.

Rule Monitor sync corresponds to a monitored step. The transition of
the monitor is synchronised with the transition of Core JS semantics through
an internal event αl, where l identifies the running function that performed a
computation step.

Rule Unmonitored step models the case where there is no matching mon-
itor configuration for the current computation step. In this case, Core JS se-
mantics performs an unconstrained computation step (that takes place outside
a boundary statement).

Rule Monitor configuration + generates a new monitor configuration
for verifying the statement inside a boundary statement. In order to account for
computation steps inside boundary statements, we extend the syntax of evalua-
tion contexts with a special boundary context: E = @monitor(E′).

Rules Monitor configuration - 1 and Monitor configuration - 2
remove a monitor configuration from the current set of monitor configurations
when its corresponding statement finishes executing.

Monitoring Rules Monitor transitions are defined in Figure 4. We use Γ, τ̇r, l `
〈o, ρ〉 αl→ 〈o′, ρ′〉 as shorthand for 〈Γ, τ̇r, l, o, ρ〉

αl→ 〈Γ, τ̇r, l, o′, ρ′〉. The constraints
enforced by the monitor are the same as the constraints enforced by the type
system of Section 3. However, in contrast to the type system, the monitor can
precisely type dynamic expressions, since it has access to field names computed
at runtime.

Example 6 (Monitoring a Dynamic Field Look-up). In the following, we present
the sequence of monitor configurations generated when executing the statement:
@monitor(@type_env, @pc, @ret, public = o[g()]) (check the running example).

〈⊥, []〉 varl(o)→ 〈L, τ̇o〉
varl(g)→ 〈L, 〈τ̇g.

H→ PRIM
L〉L :: τ̇o〉

f-calll→ 〈L, PRIML :: τ̇o〉
If g() returns public1:

f-projl(public1)→ 〈L, PRIML〉 v-assl(public)→ 〈L, PRIML〉

If g() returns private1:
f-projl(private1)→ 〈L, PRIMH〉

v-assl(public)

6→

Literal
ρ′ = PRIM⊥ :: ρ

Γ, τ̇r, l ` 〈o, ρ〉
litl→ 〈o, ρ′〉

This
ρ′ = Γ (this) :: ρ

Γ, τ̇r, l ` 〈o, ρ〉
thisl→ 〈o, ρ′〉

Variable
ρ′ = Γ (x) :: ρ

Γ, τ̇r ` 〈o, ρ〉
varl(x)→ 〈o, ρ′〉

Variable Assignment
pc = head(o) τ̇ = head(ρ)
τ̇pc � Γ (x)

Γ, τ̇r, l ` 〈o, ρ〉
v-assl(x)→ 〈o, ρ〉

Field Projection
pc = head(o) ρ = τ̇2 :: τ̇1 :: ρ′

τ̇ = π(τ̇1, f) σ = pc t lev(τ̇1) t lev(τ̇2)

Γ, τ̇r, l ` 〈o, ρ〉
f-projl(f)→ 〈pc :: o, ρ, τ̇σ :: ρ′〉

Membership Check
pc = head(o) ρ = τ̇2 :: τ̇1 :: ρ′

σ = π̄(τ̇1, f) t lev(τ̇1) t lev(τ̇2) t pc

Γ, τ̇r, l ` 〈o, ρ〉
inl(f)→ 〈o,PRIMσ :: ρ〉

Field Assignment
ρ = τ̇3 :: τ̇2 :: τ̇1 :: ρ′ pc = head(o)
σ = lev(τ̇1) t lev(τ̇2) t pc
τ̇σ3 � τ̇1.f σ v τ̇1.f

Γ, τ̇r, l ` 〈o, ρ〉
f-assl(f)→ 〈o, τ̇3 :: ρ′〉

Field Deletion
ρ = τ̇2 :: τ̇1 :: ρ′ σ = τ̇1.f
lev(τ̇1) t lev(τ̇2) t head(o) v σ

Γ, τ̇r, l ` 〈o, ρ〉
dell(f)→ 〈o,PRIMσ :: ρ′〉

Method Call
ρ = τ̇3 :: τ̇2 :: τ̇1 :: ρ′ pc = head(o)
τ̇f = π(τ̇1, f) σ = lev(τ̇1) t lev(τ̇2) t pc
σ v τ̇f .wef τ̇σ1 � τ̇f .this τ̇σ3 � τ̇f .arg

Γ, τ̇r, l ` 〈o, ρ〉
m-calll(f)→ 〈o, (τ̇f .ret)σ :: ρ〉

If - Branch
o′ = lev(τ̇) :: o

Γ, τ̇r, l ` 〈o, τ̇ :: ρ〉 ifl→ 〈o′, ρ〉

If - End

Γ, τ̇r, l ` 〈σ :: o, ρ〉 �
if l→ 〈o, ρ〉

Fig. 4. Dynamic Typing Core JS Expressions and Statements

We consider two different cases: the case in which g() evaluates to public1 and
the case in which it evaluates to secret1. While in the first case, the execution
is allowed to go through, in the second one it gets stuck, because the program
tries to assign a secret value to a public variable.

Let us now briefly explain the rules that better illustrate our choices when
designing the monitor. Since, by default, all literal values are public, when a
literal value is evaluated, the monitor simply pushes PRIM⊥ onto the expression
stack. In contrast, when a variable is evaluated, the monitor has to read its type
from the typing environment and push it onto the expression stack. When a
field projection is evaluated, the first two types on the expression stack are the
types of the expressions that evaluate to the field name and to the inspected
object, respectively. Furthermore, the name of the inspected field is available in
the internal event that labels the transition. Hence, the monitor simply has to
replace the first two types of the expression stack with the type of the inspected
field upgraded with the external levels of the types of the current subexpressions.
When an if statement is evaluated, the type of the conditional guard is on top
of the expression stack. Hence, the monitor simply pops that type out of the

Labelled Object Low Projection

τ̇lo = µκ.〈fL1 : PRIM
L, fL2 : PRIM

H , fH3 : PRIM
H〉L

Fig. 5. A Labelled Object and Its Low Projection

expression stack and pushes its external level (upgraded with the current pc)
onto the control stack. Complementarily, when the execution leaves the branch
of a conditional, the monitor just pops out the top of the control stack.

Implementation. Instead of wrapping statements containing dynamic field op-
erations within boundary statements, which are not part of the JavaScript lan-
guage, the prototype of the hybrid type system [15] in-lines the monitoring logic
in the statement itself [16]. This approach has the advantage of being immedi-
ately deployable. The prototype implementation was used to secure simple Web
application accessible online [15].

5 Security Guarantees

This section describes the security guarantees offered by the proposed analysis.
To formally define the absence of information leaks, we rely on an intuitive notion
of low-projection [14] that establishes the part of a heap that an attacker at a
given security level can see. Informally, given a heap H, an attacker at level σ
can observe:

1. the existence of a field f in the domain of an object whose type has external
level ≤ σ and associates f with an existence level ≤ σ and

2. the value of a field f in the domain of an object whose type has external
level ≤ σ and associates f with a security type with external level ≤ σ.

Figure 5 presents a labelled object together with its low-projection at level L.
The object in the figure has three fields: f1, f2, and f3. An attacker at level L can
observe both the existence and the value of f1 since it has low existence level and
is associated with a visible value and the existence but not the value of f2, since
it has low existence level but is associated with an invisible value. The attacker
can neither observe the value nor the existence of f3 because it has high existence
level and is associated with an invisible value. Two heaps H0 and H1 are said
to be low-equal at level σ, written H0 ∼σ H1, if they coincide in their respective
low-projections. Theorem 1 states that the monitored successfully-terminating
execution of a program generated by the static type system on two low-equal
heaps always yields two low-equal heaps. A sketch of the proof of Theorem 1 is
given in the long-version of the paper available online at [15].

Theorem 1 (Noninterference). For any typing environment Γ , levels σ and
pc, security type τ̇ , statement, s, and two heaps H0 and H1, such that Γ, pc, τ̇ `s
s ↪→ s′, H0 ∼σ H1, and L〈Hi, [], s′〉, {}M→∗ L〈H ′i, [], vi〉, {}M for i = 0, 1, it holds
that H ′0 ∼σ H ′1.

6 Related Work

There is a wide variety of mechanisms for enforcing and verifying secure infor-
mation flow, ranging from purely static type systems [18, 14] to different flavours
of dynamic analysis [13, 2]. The main mechanisms for securing information flow
in JavaScript [1, 8, 6] are mostly-dynamic due to the dynamicity of the language.

There is a long line of research on safety types for JavaScript which dates
back to the seminal work of Thieman [17]. Since then, the TypeScript program-
ming language [11] was proposed as a flexible language that adds optional types
to JavaScript with the goal of harnessing the flexibility of real JavaScript, while
at the same time providing some of the advantages otherwise reserved for stati-
cally typed languages, such as informative compiling errors. Recently, Rastogi et
al. [12] designed and implemented a new gradual type system for safely compiling
TypeScript to JavaScript. The soundness of the proposed approach is guaran-
teed by combining strict static checks with residual runtime checks. We believe
that our work can serve as a basis for extending TypeScript types with security
labels in order to verify secure information flow in TypeScript web applications.

Gradual type systems for secure information flow have been proposed for a
pure lambda calculus [3] and for a core ML-like language with references [4].
The goal of these two works is significantly different from ours, as their main
intent is to cater for the use of polymorphic security labels. For instance, the
type language proposed in [4] includes a special annotation “?” representing an
unknown security level at static time. Expressions that use variables whose types
contain the unknown level annotation, “?”, cannot be precisely typed at static
time. The programmer can introduce runtime casts in points where values of a
pre-determined security type are expected. Then the dynamic analysis checks
whether or not a cast can be securely performed during execution. However, in
order to verify such casts at runtime, these analyses must track security labels
during the execution of both dynamically verified and statically verified program
regions. In contrast, our analysis only needs to dynamically verify the execution
of program regions which were not statically verified.

7 Conclusions

We propose a sound hybrid typing analysis for enforcing secure information flow
in a core of JavaScript that includes dynamic field operations. Furthermore,
our analysis can be easily extended to handle other dynamic constructs of the
language such as eval or unknown code, which only need to be wrapped inside
the proposed boundary statement. Finally, we have implemented our analysis
and used it to verify a web application described available online [15].

This work follows a well-established trend on combining static and dynamic
analysis to devise more permissive and efficient hybrid mechanisms [13]. Our
approach can be applied to other scenarios, such as the verification of isola-
tion properties [9], where it could be used to derive mostly-static lightweight
enforcement mechanisms from prior purely static specifications.

Acknowledgments We acknowledge funding from the EPSRC grant reference
EP/K032089/1 (Fragoso Santos) and the ANR project AJACS ANR-14-CE28-
0008 (Jensen, Rezk, and Schmitt). No new data was collected in the course of
this research.

References

1. A. Bichhawat, V. Rajani, D. Garg, and C. Hammer. Information flow control in
WebKit’s JavaScript bytecode. In POST, 2014.

2. D. Devriese and F. Piessens. Noninterference through secure multi-execution. In
SP, 2010.

3. T. Disney and C. Flanagan. Gradual information flow typing. In STOP, 2011.
4. L. Fennell and P. Thiemann. Gradual security typing with references. In CSF,

2013.
5. C. Flanagan. Hybrid type checking. In POPL, 2006.
6. W. De Groef, D. Devriese, N. Nikiforakis, and F. Piessens. Flowfox: a web browser

with flexible and precise information flow control. In CCS, 2012.
7. D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. JSFlow: Tracking information

flow in JavaScript and its APIs. In SAC, 2014.
8. D. Hedin and A. Sabelfeld. Information-flow security for a core of JavaScript. In

CSF, 2012.
9. S. Maffeis and A. Taly. Language-based isolation of untrusted JavaScript. In CSF,

2009.
10. J. Matthews and R. B. Findler. Operational semantics for multi-language pro-

grams. ACM TOPLAS, 2009.
11. Microsoft. TypeScript language specification. Technical report, Microsoft, 2014.
12. A. Rastogi, N. Swamy, C. Fournet, G. Bierman, and P. Vekris. Safe & efficient

gradual typing for TypeScript. In POPL, 2015.
13. A. Russo and A. Sabelfeld. Dynamic vs. static flow-sensitive security analysis. In

CSF, 2010.
14. A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE

Journal on Selected Areas in Communications, 2003.
15. J. Fragoso Santos. Online materials - hybrid type system.

http://www.doc.ic.ac.uk/̃jfaustin, 2015.
16. J. Fragoso Santos and T. Rezk. An information flow monitor-inlining compiler for

securing a core of JavaScript. In IFIP SEC, 2014.
17. P. Thiemann. Towards a type system for analysing JavaScript programs. In ESOP,

2005.
18. D. M. Volpano, C. E. Irvine, and G. Smith. A sound type system for secure flow

analysis. Journal of Computer Security, 1996.
19. A. Wright and M. Felleisen. A syntactic approach to type soundness. Inf. Comput.,

1994.

Modular Monitor Extensions for Information Flow

Security in JavaScript

José Fragoso Santos, Tamara Rezk, Ana Almeida Matos

To cite this version:

José Fragoso Santos, Tamara Rezk, Ana Almeida Matos. Modular Monitor Extensions for
Information Flow Security in JavaScript. Trustworthy Global Computing, 2015, Madrid, Spain.
2015. <hal-01247123>

HAL Id: hal-01247123

https://hal.archives-ouvertes.fr/hal-01247123

Submitted on 21 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01247123

Modular Monitor Extensions for Information Flow
Security in JavaScript
José Fragoso Santos1, Tamara Rezk2, and Ana Almeida Matos3

1 Imperial College London
jose.fragoso.santos@imperial.ac.uk

2 Inria
tamara.rezk@inria.fr

3 University of Lisbon, SQIG-Instituto de Telecomunicações
ana.matos@ist.utl.pt

Abstract
Client-side JavaScript programs often interact with the web page into which they are included,
as well as with the browser itself, through APIs such as the DOM API, the XMLHttpRequest
API, and the W3C Geolocation API. Precise reasoning about JavaScript security must therefore
take API invocation into account. However, the continuous emergence of new APIs, and the het-
erogeneity of their forms and features, renders API behavior a moving target that is particularly
hard to capture. To tackle this problem, we propose a methodology for modularly extending
sound JavaScript information flow monitors with a generic API. Hence, to verify whether an
extended monitor complies with the proposed noninterference property requires only to prove
that the API satisfies a predefined set of conditions. In order to illustrate the practicality of our
methodology, we show how an information flow monitor-inlining compiler can take into account
the invocation of arbitrary APIs, without changing the code or the proofs of the original compiler.
We provide an implementation of such a compiler with an extension for handling a fragment of
the DOM Core Level 1 API. Furthermore, our implementation supports the addition of monitor
extensions for new APIs at runtime.

1 Introduction

Isolation properties guarantee protection for trusted JavaScript code from malicious code.
The noninterference property [9] provides the mathematical foundations for reasoning pre-
cisely about isolation. In particular, noninterference properties guarantee absence of flows
from confidential/untrusted resources to public/trusted ones.

Although JavaScript can be used as a general-purpose programming language, many
JavaScript programs are designed to be executed in a browser in the context of a web page.
Such programs often interact with the web page in which they are included, as well as with
the browser itself, through Application Programming Interfaces (APIs). Some APIs are fully
implemented in JavaScript, whereas others are built with a mix of different technologies,
which can be exploited to conceal sophisticated security violations. Thus, understanding
the behavior of client-side web applications, as well as proving their compliance with a given
security policy, requires cross-language reasoning. The size, complexity, and number of com-
monly used APIs poses an important challenge to any attempt at formally reasoning about
the security of JavaScript programs [13]. To tackle this problem, we propose a methodology
for extending JavaScript monitored semantics. This methodology allows us to verify whether
a monitor complies with the proposed noninterference property in a modular way. Thus,
we make it possible to prove that a security monitor is still noninterferent when extending
it with a new API, without having to revisit the whole model. Generally, an API can be
viewed as a particular set of specifications that a program can follow to make use of the

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Modular Monitor Extensions for Information Flow Security in JavaScript

resources provided by another particular application. For client-side JavaScript programs,
this definition of API applies both to: (1) interfaces of services that are provided to the
program by the environment in which it executes, namely the web browser (for instance, the
DOM, the XMLHttpRequest, and the W3C Geolocation APIs); (2) interfaces of JavaScript
libraries that are explicitly included by the programmer (for instance, jQuery, Prototype.js,
and Google Maps Image API). In the context of this work, the main difference between
these two types of APIs is that in the former case their semantics escapes the JavaScript
semantics, whereas in the latter it does not. The methodology proposed here was designed
as a generic way of extending security monitors to deal with the first type of APIs. Never-
theless, we can also apply it to the second type whenever we want to execute the library’s
code in the original JavaScript semantics instead of the monitored semantics.

I Example 1 (Running example: A Queue API). Consider the following API for creating and
manipulating priority queues. The API is available to the programmer through the global
variable queueAPI, and variable queueObj is bound to a concrete queue:

queueAPI.queue(): creates a new priority queue;
queueObj.push(el, priority): adds a new element to the queue;
queueObj.pop(): pops the element with the highest priority.

The method calls from this API cannot be verified by the JavaScript monitor, as we are
assuming that the code of the methods is not available to the JavaScript engine. Further-
more, the specification of the queue API may not obey the JavaScript semantics and hence
prevention of the security leaks may need different constraints.

In order to extend a JavaScript security monitor to control the behavior of this API, one
has to define what we call an API Register to set the security constraints associated to the
corresponding API method calls on queueAPI and queueObj. API method calls should be
implemented as interception points of the monitor semantics and the API Register should
then make the invocation of these methods if the security constraints are satisfied.

The following questions then arise: What constraints must we impose on the new API
register in order to preserve the noninterference guarantees of the JavaScript monitor? Is it
possible to modularly prove noninterference of the extended monitor without revisiting the
whole set of constraints, including those of the JavaScript monitor?

There are two main approaches for implementing a monitored JavaScript semantics:
either one modifies a JavaScript engine so that it also implements the security monitor (as
in [15]), or one inlines the monitor in the original program (as in [16], [8], and [10]). Both
these approaches suffer from the problem of requiring ad-hoc security mechanisms for all
targeted APIs. We show how to extend an information flow monitor-inlining compiler so
that it also takes into account the invocation of APIs. Our extensible compiler requires
each API to be associated with a set of JavaScript methods that we call its IFlow Signature,
which describes how to handle the information flows triggered by its invocation. We provide
a prototype of the compiler, which is available online [20]. A user can easily extend it by
loading new IFlow signatures. Using the compiler, we give realistic examples of how to
prevent common security violations that arise from the interaction between JavaScript and
the DOM API. In a nutshell, the benefit of our approach is that it allows us to separate
the proof of security for each API from the proof of security for the core language. This
separation is, to the best of our knowledge, new and useful as new APIs are continuously
emerging.

The contributions of the paper are: (1) a methodology for extending JavaScript monitors
with API monitoring (Section 3.2), (2) the design of an extensible information flow monitor-
inlining compiler that follows our methodology (Section 4), (3) an implementation [20] of a

José Fragoso Santos, Tamara Rezk, and Ana Almeida Matos 3

JavaScript information flow monitor-inlining compiler (Section 5) that handles an important
subset of the DOM API and is extensible with new APIs by means of IFlow Signatures.

2 Related Work

We refer the reader to a recent survey [7] on web scripts security and to [19] for a complete
survey on information flow enforcement mechanisms up to 2003, while focusing here on the
most closely related work on dynamic mechanisms for enforcing noninterference.

Flow-sensitive monitors for enforcing noninterference can be divided into purely dynamic
monitors [3–5] and hybrid monitors [12, 22]. While hybrid monitors use static analysis
to reason about untaken execution paths, purely dynamic monitors do not rely on any
kind of static analysis. There are three main strategies in designing sound purely dynamic
information flow monitors. The no-sensitive-upgrade (NSU) strategy [3] forbids the update of
public resources inside private contexts. The permissive-upgrade strategy [4] allows sensitive
upgrades, but forbids programs to branch depending on values upgraded in private contexts.
Finally, themultiple facet strategy [5] makes use of values that appear differently to observers
at different security levels. Here, we show how to extend information flow monitors that
follow the NSU discipline.

Hedin and Sabelfeld [15] are the first to propose a runtime monitor for enforcing non-
interference for JavaScript. The technique that we present for extending security monitors
can be applied to this monitor, which is purely dynamic and follows the NSU discipline.
In [14], the authors implement their monitor as an extended JavaScript interpreter. Their
implementation makes use of the informal concepts of shallow and deep information flow
models in order to cater for the invocation of built-in libraries and DOM API methods.
However, these concepts are not formalised. In fact, our definition of monitored API can be
seen as a formalisation of the notion of deep information flow model for libraries.

Both Chudnov and Naumann [8] and Magazinius et al. [16] propose the inlining of in-
formation flow monitors for simple imperative languages. In [10], we present a compiler that
inlines a purely dynamic information flow monitor for a realistic subset of JavaScript. In
the implementation presented in this paper we extend the inlining compiler of [10] with the
DOM API, applying the methodology proposed here.

Taly et al. [21] study API confinement. They provide a static analysis designed to
verify whether an API may leak its confidential resources. Unlike us, they only target APIs
implemented in JavaScript, whose code is available for either runtime or static analysis.

Russo et al. [18] present an information flow monitor for a WHILE language with prim-
itives for manipulating DOM-like trees and prove it sound. They do not model references.
In [2], we present an information flow monitor for a simple language that models a core of
the DOM API based on the work of Gardner et al. [11]. In contrast to [18], we can handle
references and live collections. Here, we apply the techniques of [2] to develop monitor
extensions for a fragment of the DOM Core Level 1 API [17]. Recent work [23] presents
an information flow monitor for JavaScript extended with the DOM API that also con-
siders event handling loops. To the best of our knowledge, no prior work proposes a generic
methodology to extend JavaScript monitors and inlining compilers with arbitrary web APIs.

3 Modular Extensions for JavaScript Monitors

In this section we show how to extend a noninterferent monitor so that it takes into account
the invocation of web APIs, while preserving the noninterference property.

4 Modular Monitor Extensions for Information Flow Security in JavaScript

3.1 Noninterferent JavaScript Monitors

JavaScript Memory Model. In JavaScript [1], objects can be seen as partial functions
mapping strings to values. The strings in the domain of an object are called its proper-
ties. Memories are mappings from references to objects. In the following, we assume that
memories include a reference to a special object called the global object pointed to by a
fixed reference #glob, that binds global variables. In this presentation, objects, properties,
memories, references and values, are ranged over by o, p, µ, r and v, respectively.

We use the notation [p0 7→ v0, . . . , pn 7→ vn] for the partial function that maps pi to
vi where i = 0, . . . n, and f [p0 7→ v0, . . . , pn 7→ vn] for the function that coincides with f

everywhere except in p0, . . . , pn, which are otherwise mapped to v0, . . . , vn respectively.
Furthermore, we denote by dom(f) the domain of a function f , and by f |P the restriction of
f to P (when P ⊆ dom(f)). Finally, we write f(r)(p) instead of (f(r))(p), the application
of the image of r by function f to p.

Sequences are denoted by stacking an arrow as in −→v , and ε denotes the empty sequence.
The length of −→v is given by |−→v | and · denotes concatenation of sequences.
Security Setting. Information flow policies such as noninterference are specified over security
labelings that assign security levels, taken from a given security lattice, to the observable
resources of a program. In the following, we use a fixed lattice L of security levels ranged
over by σ. We denote by ≤ its order relation, by σ0 t σ1 the least upper bound between
levels σ0 and σ1, and by t~σ the least upper bound of all levels in the sequence ~σ. In the
examples, we consider two security levels {H,L} such that L < H, meaning that resources
labeled with high level H are more confidential than those labeled with low level L.

In our setting, a security labeling is as a pair 〈Γ,Σ〉, where Γ maps references, followed
by properties, to security levels, and Σ maps references to security levels. Then, given an
object o pointed to by a reference r, if defined, Γ(r)(p) corresponds to the security levels
associated with o’s property p, and Σ(r) with o’s domain. The latter, also referred to as o’s
structure security level, controls the observability of the existence of properties [15].

We say that memory µ is well-labeled by 〈Γ,Σ〉 if dom(Γ) = dom(Σ) ⊆ dom(µ) and for
every reference r ∈ dom(Γ), dom(Γ(r)) ⊆ dom(µ(r)).
Security Monitor. JavaScript programs are statements, that include expressions, ranged
over by s and e, respectively. We model an information flow monitor as a small-step se-
mantics relation →IF between configurations of the form 〈µ, s,−→σpc,Γ,Σ,−→σ 〉 composed of (1)
a memory µ (2) a statement s, that is to execute, (3) a sequence of security levels −→σpc, match-
ing the expressions on which the original program branched to reach the current context,
(4) a security labeling 〈Γ,Σ〉, and (5) a sequence of security levels −→σ matching the reading
effects of the subexpressions of the expression being computed.

The reading effect [19] of an expression is defined as the least upper bound on the security
levels of the resources on which the value to which it evaluates depends. Additionally, we
assume that the reading effect of an expression is always higher than or equal to the level
of the context in which it is evaluated, t−→σpc.
Low-equality. In order to account for a non-deterministic memory allocator, we rely on a
partial injective function which relates observable references that point to the same resource
in different executions of the same program [6]. The β relation is extended to relate observ-
able values via the β-equality, which is denoted ∼β : two objects are β-equal if they have
the same domain and all their corresponding properties are β-equal; primitive values and
parsed functions are β-equal if syntactically equal; and, two references r0 and r1 are β-equal
if the latter is the image by β of the former.

José Fragoso Santos, Tamara Rezk, and Ana Almeida Matos 5

Two memories µ0 and µ1 are said to be low-equal with respect to labelings 〈Γ0,Σ0〉
and 〈Γ1,Σ1〉, a security level σ, and a partial injective function β, written µ0,Γ0,Σ0 ≈β,σ
µ1,Γ1,Σ1, if µ0 and µ1 are well-labeled by 〈Γ0,Σ0〉 and 〈Γ1,Σ1〉 respectively, and for all
references r0, r1 ∈ dom(β), such that r1 = β(r0), the following hold:

1. The observable domains (i.e. set of observable properties) of the objects pointed by r0, r1,
coincide: Pσ = {p ∈ dom(µ0(r0)) | Γ0(r0)(p) ≤ σ} = {p ∈ dom(µ1(r1)) | Γ1(r1)(p) ≤ σ};

2. The objects pointed by r0, r1 coincide in their observable domain: µ0(r0)|P ∼β µ1(r1)|P ;
3. If the structure security level of either object pointed by r0, r1 is observable (Σ0(r0)≤σ

or Σ1(r1)≤σ), then their domains and structure security levels coincide: dom(µ0(r0)) =
dom(µ1(r1)) and Σ0(r0) = Σ1(r1).

We extend informally the definition of low-equality to sequences of labeled values and
to program continuations (the interested reader can find the formal definitions in [20]).
Two sequences of labeled values are low-equal with respect to a given security level σ,
denoted ~v0, ~σ0 ≈β,σ ~v1, ~σ1 if for each position of both sequences, either the two values in that
position are low-equal, or the levels that are associated with both of them are not observable.
Low-equality between program continuations s0,

−−→σpc0,−→σ0 ≈β,σ s1,
−−→σpc1,−→σ1 relaxes syntactic

equality between programs in order to relate the intermediate states of the execution of the
same original program in two low-equal memories, as illustrated by the following example.

I Example 2 (Low-equal program continuations). Consider the program x = y, an initial
labeling 〈Γ,Σ〉 such that Γ(#glob)(x)=Γ(#glob)(y)=H, and two memories µ0 and µ1 such
that µi=[#glob 7→ [x 7→ undefined, y 7→ i]], for i ∈ {0, 1}. The execution of one computation
step of this program in µ0 and µ1 yields the programs x= 0 and x= 1. Since the reading
effects associated with the values 0 and 1 are both H, the expressions x= 0 and x= 1 are
low-equal. Formally: x=0, 〈L〉, 〈H〉 ≈id,L x=1, 〈L〉, 〈H〉 (where id is the identity function).

Finally, two monitor configurations 〈µ0, s0,
−−→σpc0,Γ0,Σ0,

−→σ0〉 and 〈µ1, s1,
−−→σpc1,Γ1,Σ1,

−→σ1〉
are said to be low-equal w.r.t a level σ and function β, written 〈µ0, s0,

−−→σpc0,Γ0,Σ0,
−→σ0〉

≈β,σ 〈µ1, s1,
−−→σpc1,Γ1,Σ1,

−→σ1〉, if µ0,Γ0,Σ0 ≈β,σ µ1,Γ1, σ1 and s0,
−−→σpc0,−→σ0 ≈β,σ s1,

−−→σpc1,−→σ1.
Noninterferent Monitor.

In the remaining of the paper, we consider only noninterferent JavaScript monitors.
As usual, a monitor →IF is noninterferent, written NImon(→IF), if its application on two
low-equal configurations produces two low-equal configurations.

I Definition 3 (Monitor Noninterference). A monitor →IF is said to be noninterferent, writ-
ten NImon(→IF), if for every programs s0, s1, memories µ0, µ1, and labeling 〈Γ,Σ〉, such
that µ0, µ1 are well-labeled by 〈Γ,Σ〉 and, for all security levels σ, there exists β such
that 〈µ0, s0, ε,Γ,Σ, ε〉 ≈β,σ 〈µ1, s1, ε,Γ,Σ, ε〉, if 〈µ0, s0, ε,Γ,Σ, ε〉 →∗IF 〈µ′0, v′0, ε,Γ′,Σ′, σ′〉
and 〈µ1, s1, ε,Γ,Σ, ε〉 →∗IF 〈µ′1, v′1, ε,Γ′,Σ′, σ′〉 then there is an extension β′ of β such that
〈µ′0, v′0, ε,Γ′,Σ′, σ′〉 ≈β,σ 〈µ′1, v′1, ε,Γ′,Σ′, σ′〉.

3.2 API Extensions to JavaScript Monitors

API relation. Even if the execution of certain APIs escapes the JavaScript semantics, the
interaction between JavaScript programs and these APIs is mediated via special API objects
that exist in the JavaScript memory. In the following, we assume that (1) the state of the
API can be fully encoded in a JavaScript memory and (2) the behavior of each API method
only depends on its state. An API is thus modeled as a semantic relation ⇓JS

API of the form
〈µ,−→v 〉 ⇓JS

API 〈µ′, v′〉 where µ is the JavaScript memory in which the API is executed, µ′

6 Modular Monitor Extensions for Information Flow Security in JavaScript

is the resulting memory, the sequence of values −→v corresponds to the arguments of the
API invocation, and v′ is the value to which the API invocation evaluates. Accordingly, a
monitored API relation, ⇓API, has the form

〈µ,Γ,Σ,−→v ,−→σ 〉 ⇓API 〈µ′,Γ′,Σ′, v, σ〉

which adds to the original API configuration the initial and final labelings 〈Γ,Σ〉 and 〈Γ′,Σ′〉
(respectively), the sequence of security levels −→σ that is associated with the arguments of
the API invocation, and their corresponding reading effect σ.
API register. The bridge between API invocations and the corresponding monitored API
semantics is performed by a API register, denoted by RAPI. We define an API register as a
function that, given a memory and a sequence of values, returns a monitored API relation.

I Example 4 (Queue API Register). In order for an extended monitor to take into account
the methods of the Queue API from Example 1, the API Register must be extended to
handle invocations of the Queue API methods. In the following, ⇓QU , ⇓PU , and ⇓PO are
the API relations corresponding to each one of the methods of the Queue API:

RQ(µ, 〈r,m, . . .〉) =

 ⇓QU if m = “queue” ∧ $q ∈ dom(µ(r))
⇓P U if m = “push” ∧ $q ∈ dom(µ(r))
⇓P O if m = “pop” ∧ $q ∈ dom(µ(r))

The idea is to “mark” the Queue API object (the one bound to variable queueAPI) as well
as the concrete queue objects, with a special property (in this case, $q).

Monitor-extending Constructor. We now define a monitor-extending constructor E that,
given a monitored small-step semantics→IF, a partial function Intercept mapping statements
to sequences of values, and an API register RAPI, produces a new monitored small-step
semantics E(→IF, Intercept,RAPI). The new extended semantics handles the invocation of
APIs by applying the API relation that is returned by RAPI. API invocation is triggered
by interception points, statements containing expression redexes (expressions that only have
values as subexpressions) and that are in the set Intercept. Then, if the sequence of values
to which its subexpressions evaluate is in the domain of the API register RAPI, their image
by RAPI is the semantic relation that models the API to be executed.

The definition of E , given in Figure 1, makes use of a syntactic function, SubExpressions,
defined on JavaScript statements, such that SubExpressions[[s]] corresponds to the sequence
comprising all the subexpressions of s in the order by which they are evaluated. Rules [Non-
Intercepted Program Construct] and [Intercepted Program Construct - Standard
Execution] model the case in which the new small-step semantics behaves according to the
original semantics →IF. Rule [Intercepted Program Construct - API Execution] models
the case in which an API is executed. The semantics rule retrieves the semantics relation
that models the API to execute (using the API register) and then executes the API. After
executing the API, the sequence of values of its subexpressions is replaced with the value
to which the API call evaluates. Analogously, the sequence of levels of its subexpressions is
replaced with the reading effect of the API call.

3.3 Sufficient Conditions for Noninterferent API Extensions
We identify sufficient conditions to be satisfied by API relations in order for the new extended
monitored semantics E(→IF, Intercept,RAPI) to be noninterferent, assuming that the original
monitor →IF is noninterferent.

José Fragoso Santos, Tamara Rezk, and Ana Almeida Matos 7

Non-Intercepted Program Construct
s /∈ Intercept 〈µ, s,−→σpc,Γ,Σ,−→σ 〉 →IF 〈µ′, s′,−→σpc

′,Γ′,Σ′,−→σ ′〉
〈µ, s,−→σpc,Γ,Σ,−→σ 〉 E(→IF, Intercept,RAPI) 〈µ′, s′,−→σpc

′,Γ′,Σ′,−→σ ′〉

Intercepted Program Construct - Standard Execution
s ∈ Intercept (µ, SubExpressions[[s]]) 6∈ dom(RAPI) 〈µ, s,−→σpc,Γ,Σ,−→σ 〉 →IF 〈µ′, s′,−→σpc

′,Γ′,Σ′,−→σpc
′〉

〈µ, s,−→σpc,Γ,Σ,−→σ 〉 E(→IF, Intercept,RAPI) 〈µ′, s′,−→σpc
′,Γ′,Σ′,−→σ ′〉

Intercepted Program Construct - API Execution
s ∈ Intercept (µ, SubExpressions[[s]]) ∈ dom(RAPI)

|SubExpressions[[s]]| = n+ 1 −→σ = −→σ ′ · 〈σ0, . . . , σn〉 ⇓API= RAPI(µ, SubExpressions[[s]])
〈µ,Γ,Σ,SubExpressions[[s]], 〈σ0, . . . , σn〉〉 ⇓API 〈µ′,Γ′,Σ′, v′, σ′〉
〈µ, s,−→σpc,Γ,Σ,−→σ 〉 E(→IF, Intercept,RAPI) 〈µ′, v′,−→σpc

′,Γ′,Σ′,−→σ ′ · σ′〉

Figure 1 Definition of the monitor-extending constructor E .

The first condition requires that the API relation is confined, as formalized in Definition 5.
An API relation is confined if it only creates/updates resources whose levels are higher than
or equal to the least upper bound on the levels of its arguments. This constraint is needed
because the choice of which API to execute may depend on all of its arguments.

I Definition 5 (Confined API Relation/Register). An API relation ⇓API is confined if, for
every memory µ well-labeled by a labeling 〈Γ,Σ〉, every sequence of argument values −→v and
corresponding sequence of security levels −→σ , if 〈µ, 〈Γ,Σ〉,−→v ,−→σ 〉 ⇓API 〈µ′, 〈Γ′,Σ′〉, v′, σ′〉 for
some memory µ′, labeling 〈Γ′,Σ′〉, value v′, and level σ′; then, for all security levels σ̂:

t−→σ 6≤ σ̂ ⇒ µ,Γ,Σ ≈id,σ̂ µ
′,Γ′,Σ′ ∧ σ′ 6≤ σ̂

Furthermore, we say that the API Register function RAPI is confined, written Conf(RAPI),
if all the API relations in its range are confined, and if for every memories µ and µ′, la-
belings 〈Γ,Σ〉 and 〈Γ′,Σ′〉, sequence of values −→v , security level σ, and function β, such that
µ,Γ,Σ ≈β,σ µ′,Γ′,Σ′, then RAPI(µ,−→v) = RAPI(µ′, β(−→v)).

The second condition requires that the API relation is noninterferent, as formalized in
Definition 6. In order to relate the outputs of the API Register in two low-equal memories,
we extend the notion of low-equality to API registers. Informally, two API registers are
said to be low-equal if, whenever they are given as input two low-equal memories and two
low-equal sequences of values, they output the same noninterferent API relation. Then,
an API relation is noninterferent if whenever it is executed on two low-equal memories, it
produces two low-equal memories and two low-equal values.

I Definition 6 (Noninterferent API Relation/Register). An API relation ⇓API is said to be
noninterferent, written NI(⇓API), if for every two memories µ0 and µ1 respectively well-
labeled by 〈Γ0,Σ0〉 and 〈Γ1,Σ1〉, any two sequences of values −→v0 and −→v1, respectively labeled
by two sequences of security levels −→σ0 and −→σ1, and any security level σ for which there exists
a function β such that −→v0,

−→σ0 ≈β,σ −→v1,
−→σ1 and µ0,Γ0,Σ0 ≈β,σ µ1,Γ1,Σ1, if:

〈µ0,Γ0,Σ0,
−→v0 ,
−→σ0〉 ⇓API 〈µ′0,Γ′0,Σ′0, v′0, σ′0〉 ∧ 〈µ1,Γ1,Σ1,

−→v1 ,
−→σ1〉 ⇓API 〈µ′1,Γ′1,Σ′1, v′1, σ′1〉

then there is an extension β′ of β s.t. µ′0,Γ′0,Σ′0≈β′,σ µ
′
1,Γ′1,Σ′1 and 〈v′0〉, 〈σ′0〉≈β′,σ 〈v′1〉, 〈σ′1〉.

Furthermore, we say that the API Register function RAPI is noninterferent, written
NI(RAPI), if all the API relations in its range are noninterferent.

8 Modular Monitor Extensions for Information Flow Security in JavaScript

I Example 7 (Noninterferent JavaScript program using the Queue API). Assume that the
APIs given in Example 1 are noninterferent and consider the following program that starts
by computing two objects o0 and o1:
1 q = queueAPI . createQueue ();
2 if (h) { q.push(o1 , 1); }
3 q.push(o0 , 0); l = q.pop ();

If this program starts with memories µi (i ∈ {0, 1}) using labeling 〈Γ,Σ〉 and assuming that
in both executions the invocations of all the external APIs go through (i.e. the execution is
never blocked), then it must terminate with memories µ′i labeled by Γ′,Σ:

µi =
[

(#glob, o0) 7→ r0, (#glob, o1) 7→ r1,

(#glob, h) 7→ i

]
Γ =
[

(#glob, h) 7→ H, (#glob, l) 7→ L,

(#glob, o0) 7→ L, (#glob, o1) 7→ L

]
µ′

i =
[

(#glob, o0) 7→ r0, (#glob, o1) 7→ r1,

(#glob, h) 7→ i, (#glob, l) 7→ ri, (#glob, q) 7→ rq

]
Γ′ =

[
(#glob, h) 7→ H, (#glob, l) 7→ H,

(#glob, o0) 7→ L, (#glob, o1) 7→ L

]
Since initial memories are low-equal, µ0,Γ,Σ ≈id,L µ1,Γ,Σ, we use the hypothesis that
all three API relations are noninterferent to conclude that the memories yielded by the
invocation of the API relations in lines 1, 2, and 3 are also low-equal. Furthermore, in the
execution that maps h to 1, the value of l clearly depends on the value of h, from which we
conclude that it is also the case in the execution that maps h to 0.

Our main result states that if the API relation is confined and noninterferent, then the
extension of the noninterferent JavaScript monitor with the API monitor is noninterferent.
I Theorem 8 (Security). For every monitored semantics →IF, API register RAPI and set of
interception points Intercept:

NImon(→IF) ∧ NI(RAPI) ∧ Conf(RAPI) ⇒ NImon(E(→IF, Intercept,RAPI))

4 A Meta-Compiler for Securing Web APIs

We now propose a way of extending an information flow monitor inlining compiler to take
into account the execution of arbitrary APIs.
Input compilers. We assume available two inlining compilers specified by compilation func-
tions Ce and Cs for compiling JavaScript expressions and statements, respectively. Function
Cs makes use of function Ce. The compilers Ce/Cs map every expression e/statement s to a
pair 〈s′, i〉, where:
1. statement s′ simulates the execution of e/s in the monitored semantics;
2. index i is such that, after the execution of s′, (1) the compiler variable $v̂i stores the

value to which e/s evaluates in the original semantics and (2) the compiler variable $l̂i
stores its corresponding reading effect.
We assume that the inlining compiler works by pairing up each variable/property with

a new one, called its shadow variable/property [8, 16], that holds its corresponding security
level. Since the compiled program has to handle security levels, we include them in the set
of program values, which means adding them to the syntax of the language as such, as well
as adding two new binary operators corresponding to ≤ (the order relation) and t (the least
upper bound). Besides adding to every object o an additional shadow property $lp for every
property p in its domain, the inlined monitoring code is also assumed to extend o with a
special property $struct that stores its structure security level.
I Example 9 (Instrumented Labeling). Given an object o = [p 7→ v0, q 7→ v1] pointed to by
ro and a labeling 〈Γ,Σ〉, such that Γ(ro) = [p 7→ H, q 7→ L] and Σ(ro) = L, the instrumented
counterpart of o labeled by 〈Γ,Σ〉 is ô = [p 7→ v0, q 7→ v1, $lp 7→ H, $lq 7→ L, $struct 7→ L].

José Fragoso Santos, Tamara Rezk, and Ana Almeida Matos 9

Intercepted Expression
SubExpressions[[e]] = 〈e0, . . . , en〉 CAPI〈Ce〉〈e0〉 = 〈s0, i0〉 · · · CAPI〈Ce〉〈en〉 = 〈sn, in〉

ê = Replace[[e, $v̂i0 , . . . , $v̂in]] 〈Ce〉ê = 〈ŝ, i〉

sapi =



s0 . . . sn

$ifsig = $apiRegister($v̂i0 , . . . , $v̂in);
if($ifsig){

$ifsig.check($v̂i0 , . . . , $v̂in , $l̂i0 , . . . , $l̂in);
$v̂i = ê;
$l̂i = $ifsig.label($v̂i, $v̂i0 , . . . , $v̂in , $l̂i0 , . . . , $l̂in);

} else {ŝ}

s′ =
{

sapi if ê ∈ Intercept
ŝ otherwise

CAPI〈Ce〉〈e〉 = 〈s′, i〉

Figure 2 Extended Compiler CAPI.

4.1 IFlow Signatures
We propose IFlow signatures to simulate monitored executions of API relations. IFlow
signatures are composed of three methods – domain, check, and label. Method domain
checks whether or not to apply the API, check checks if the constraints associated with the
API are verified, and label updates the instrumented labeling and outputs the reading effect
associated with a call to the API. Functions check and label must be specified separately
because check has to be executed before calling the API (in order to prevent its execution
when it can potentially trigger a security violation), whereas label must be executed after
calling the API (so that it can label the memory resulting from its execution). Formally,
we define an IFlow Signature as a triple 〈#check,#label,#domain〉, where: #check is the
reference of the check function object, #label is the reference of the label function object,
and #domain is the reference of the domain function object.
Runtime API Register. We assume the existence of a runtime function called the runtime
API register, that simulates the API Register, which we denote by $apiRegister. The
function $apiRegister makes use of the domain method of each API in its range to decide
whether there is an API relation associated with its inputs, in which case it outputs an
object containing the corresponding IFlow Signature, otherwise it returns null.
Meta-compiler. Figure 2 presents a new meta-compiler, CAPI, that receives as input an
inlining compiler for JavaScript expressions, Ce, and outputs a new inlining compiler that
can handle the invocation of the APIs whose signatures are in the range of the API re-
gister simulated by $apiRegister. Since statement redexes are not intercepted, the com-
pilation function Cs is left unchanged except that it uses the new compilation function for
expressions for compiling the subexpressions of the given statement. The specification of
the meta-compiler makes use of a syntactic function Replace that receives as input an ex-
pression and a sequence of variables and outputs the result of substituting each one of its
subexpressions by the corresponding sequence variable. Intercept is the set of all statements
that contain an expression redex whose execution is to be intercepted by the monitored
semantics. Each expression that can be an interception point of the semantics is compiled
by the compiler generated by the meta-compiler to a statement, which: (1) executes the
statements corresponding to the compilation of its subexpressions, (2) tests if the sequence
of values corresponding to the subexpressions of the expression to compile is associated with
an IFlow signature, (3) if the test is true, it executes the check method of the corresponding
IFlow signature, an expression equivalent to the original expression, and the label method
of the corresponding IFlow signature. If the test is false, it executes the compilation of an

10 Modular Monitor Extensions for Information Flow Security in JavaScript

expression equivalent to the original one by the original inlining compiler. For simplicity,
we do not take into account expressions that manipulate control flow, meaning that the
evaluation of a given expression implies the evaluation of all its subexpressions. Therefore,
we do not consider the JavaScript conditional expression. This limitation can be surpassed
by re-writing all conditional expressions as IF statements before applying the compiler.

4.2 Correctness
We say that an inlining compiler is correct with respect to a given monitored semantics→IF if,
provided that a program and its compiled counterpart are evaluated in “similar” memories,
the evaluation of the original one in the monitored semantics terminates if and only if the
evaluation of its compilation also terminates in the original semantics, in which case the
final memories as well as the computed values are again “similar”. Here we use a notion of
similarity between labeled memories in the monitored semantics and instrumented memories
in the original semantics, denoted by Sβ . This relation requires that for every object in
the labeled memory, the corresponding labeling coincides with the instrumented labeling
and that the property values of the original object be similar to those of its instrumented
counterpart. (The formal definition of Sβ can be found in the companion report [20].)

The correctness of the compiler generated by the meta-compiler depends on the correct-
ness of the compiler given as input and the correctness of the IFlow signatures in the runtime
API register. Definitions 10 and 11 formally specify the conditions that the instrumented
API register must verify in order for the generated compiler to be correct. We use →∗JS as
the semantics relation for JavaScript configurations.

I Definition 10 (Correct IFlow Signature). An IFlow Signature 〈#c,#l,#d〉 is correct with
respect to an API ⇓API if for all memories µ0 and µ1, labeling 〈Γ,Σ〉, sequence of values
−→v , and sequence of security levels −→σ , such that 〈µ0,Γ,Σ〉 Sβ µ1 for some function β, then:
〈µ0,Γ,Σ,−→v ,−→σ 〉 ⇓API 〈µ′0,Γ′,Σ′, v0, σ〉 if and only if (1) 〈µ1,#c(β(−→v),−→σ)〉 →∗JS 〈µ′1, true〉,
(2) 〈µ′1, β(−→v)〉 ⇓JS

API 〈µ′′1 , v1〉, and (3) 〈µ′′1 ,#l(v1, β(−→v),−→σ)〉 →∗JS 〈µ′′′1 , σ〉, in which case
〈µ′0,Γ′,Σ′〉 Sβ′ µ′′′1 and v0 Sβ v1, for some β′ extending β.

I Definition 11 (Correct Runtime API Register). A runtime API register corresponding to
a function object pointed by #$apiRegister is correct with respect to an API register RAPI if
for all memories µ0 and µ1, labeling 〈Γ,Σ〉 and sequence of values−→v , such that 〈µ0,Γ,Σ〉 Sβ µ1
for some function β, then: RAPI(µ0,

−→v) = ⇓API if and only if (1) 〈µ1,#apiRegister(β(−→v))〉
→∗JS 〈µ′1, rsig〉, (2) 〈µ0,Γ,Σ〉 Sβ′ µ′1 for some β′ extending β, and (3) signature 〈osig(“check”),
osig(“label”), osig(“domain”)〉 is correct with respect to ⇓API, where osig = µ′1(rsig).

Theorem 12 states that provided that the compiler given as input to the meta-compiler
is correct and the runtime API register is correct, the generated compiler is also correct.

I Theorem 12 (Correctness). If compiler C is correct w.r.t. →IF, then CAPI〈C〉 is correct
w.r.t. E(→IF, Intercept,RAPI) provided that the runtime API register is correct w.r.t. RAPI.

The meta-compiler proposed in this section allows the developer of the inlining compiler
to extend it in a modular way, developing and proving each API IFlow signature at a time.

5 Implementation of the Meta Compiler and DOM API Extension

An implementation of a meta-compiler based on the JavaScript inlining compiler of [10]
can be found in [20] together with an online testing tool and a set of IFlow signatures that

José Fragoso Santos, Tamara Rezk, and Ana Almeida Matos 11

RDOM
API (µ, 〈r,m, . . .〉) =



⇓cre if m = “createElement” ∧ r = #doc
⇓app if m = “appendChild” ∧@tag ∈ dom(µ(r))
⇓rem if m = “removeChild” ∧@tag ∈ dom(µ(r))
⇓len if m = “length” ∧@tag ∈ dom(µ(r))
⇓par if m = “parentNode” ∧@tag ∈ dom(µ(r))
⇓ind if m ∈ Number ∧@tag ∈ dom(µ(r))
⇓sib if m = “nextSibling” ∧@tag ∈ dom(µ(r))

Figure 3 API register RDOM
API for the DOM API.

includes all those studied in the paper. As a case study, we give a high-level description of
our the DOM API extension.

Interaction between client-side JavaScript programs and the HTML document is done via
the DOM API [17]. In order to access the functionalities of this API, JavaScript programs
manipulate a special kind of objects, here named DOM objects. In contrast to the ECMA
Standard [1] that specifies in full detail the internals of objects created at runtime, the
DOM API only specifies the behavior that DOM interfaces are supposed to exhibit when a
program interacts with them. Hence, browser vendors are free to implement the DOM API
as they see fit. In fact, in all major browsers, the DOM is not managed by the JavaScript
engine. Instead, there is a separate engine, often called the render engine, whose role is to
do so. Therefore, interactions between a JavaScript program and the DOM may potentially
stop the execution of the JavaScript engine and trigger a call to the render engine. Thus, a
monitored JavaScript engine has no access to the implementation of the DOM API.

We model DOM objects as standard JavaScript objects and we assume that every
memory contains a document object denoted doc, which is accessed through the property
“doc” and stored in fixed reference #doc. Each DOM object defines a property @tag that
specifies its tag (for instance, 〈div〉, 〈html〉, 〈a〉) and, possibly, an arbitrary number of in-
dexes 0, ..., n each pointing to one of its n + 1 children. DOM Element objects form a
forest, such that the displayed HTML document corresponds to the tree hanging from the
object pointed to by #doc. Due to lack of space, we only present the labeled API relation
for removing a DOM Element object from its parent object in the DOM forest. This API
method gives rise to implicit information flows [2, 18, 23] that its labeled version needs to
take into account.

I Example 13 (Leak via removeChild - Order Leak). Suppose that in the original memory
there are three orphan DIV nodes bound to variables div1, div2, and div3.
1 div1. appendChild (div2); div1. appendChild (div3);
2 if(h) { div1. removeChild (div2); }
3 l = div1 [0];

After the execution of this program, depending on the value of the high variable h, the
value of the low variable l can be either that of div2 or div3, meaning that the final level
associated with variable l must be H in both executions. This example shows that, when
removing a node, the new indexes of its right siblings are affected. To tackle this problem,
the labelled DOM API methods enforce that the level of the property through which a DOM
object is accessed is always lower than or equal to the levels of the properties corresponding
to its right siblings.

Below we give the specification of the labeled API relation ⇓rem for removing a DOM
object from its parent in the DOM forest. This rule receives a sequence of arguments
〈r0,m1, r2〉 as input and removes the object pointed to by r2 from the children of the object
pointed to by r1. To this end, it first checks that µ(r0) is in fact the parent of µ(r2). Then,

12 Modular Monitor Extensions for Information Flow Security in JavaScript

domain = function(o0,m){
return o0[@tag] && (m == “removeChild”);

}

check = function(o0,m1, o2, σ0, σ1, σ2){
var i = $index(o0, o2);
return $check(σ0 t σ1 t σ2 ≤ o0[$shadow(i)]);

†

}

label = function(ret, o0,m1, o2, σ0, σ1, σ2){
var j = $index(o0, o2);
while(j < o0.length− 1){

o0[$shadow(j)] = o0[$shadow(j + 1)];
††

}
return σ0 t σ1 t σ2

†††;
}

Figure 4 IFlow Signature of ⇓rem.

the object µ(r0) is updated by shifting by −1 all the indexes equal to or higher than i (the
index of the object being removed) and by removing its index n. The levels of the indexes
of the right siblings of the node to remove are accordingly shifted by −1. The constraint of
the rule prevents a program from removing in a high context a node that was inserted in a
low context. Function R#Children receives a memory µ as input and outputs a binary relation
such that if 〈r, n〉 ∈ R#Children(µ), then the DOM node pointed to by r has n children (with
indexes 0, . . . , n− 1).
removeChild
µ(r0)(i) = r2 〈r0, n+ 1〉 ∈ R#Children(µ) dom(o0) = dom(γ0) = dom(µ(r0))\{n}
∀0≤j<i . o0(j) = µ(r0)(j) ∀i≤j<n . o0(j) = µ(r0)(j + 1) o0(@tag) = µ(r0)(@tag)
∀0≤j<i . γ0(j) = Γ(r0)(j) ∀i≤j<n . γ0(j) = Γ(r0)(j + 1)

††
γ0(@tag) = Γ(r0)(@tag)

µ′ = µ [r0 7→ o0] Γ′ = Γ [r0 7→ γ0] σ0 t σ1 t σ2 ≤ Γ(r0)(i)
†

〈µ,Γ,Σ, 〈r0,m1, r2〉, 〈σ0, σ1, σ2〉〉 ⇓rem 〈µ′,Γ′,Σ, r2, σ0 t σ1 t σ2
†††〉

In order for DOM API relations to be added to the semantics, one has to add them to the
API register. Hence, we assume that the RAPI extends the API register given in Figure 3.
The following lemma validates the hypotheses of the security theorem (Theorem 8) for
RDOM

API , allowing us to conclude that the extension of a noninterferent JavaScript monitor
with the DOM API relations here defined is noninterferent.

I Lemma 14 (Confinement and Noninterference for the DOM API). Conf(RDOM
API)∧NI(RDOM

API)

Figure 4 presents a possible IFlow signature for the API relation ⇓rem, which makes use
of the following runtime functions: (1) $check diverges if its argument is different from true

and returns true otherwise; (2) $shadow receives as input a property name and outputs the
name of the corresponding shadow property; and (3) $index outputs the index of its second
argument in the list of children of its first argument. The labeled boxes in the API relation
rule and in the code of the IFlow signature are intended to emphasize the correspondence
between the two.

6 Conclusion

In summary, we have proposed a methodology for extending arbitrary monitored JavaScript
semantics with secure APIs, which allows to prove the security of the extended monitor in
a modular way. As a case study, we extend the inlining compiler of [10] with a fragment of
the DOM Core Level 1 API. Further related technical developments, as well as an imple-
mentation that includes the IFlow signatures of the APIs studied in the paper, can be found
in [20].

José Fragoso Santos, Tamara Rezk, and Ana Almeida Matos 13

This work has been partially supported by the EPSRC Grant Reference EP/H008373/1.

References
1 The 5.1th edition of ECMA 262 June 2011. ECMAScript Language Specification. Technical

report, ECMA, 2011.
2 A. Almeida-Matos, J. Fragoso Santos, and T. Rezk. An Information Flow Monitor for a

Core of DOM - Introducing References and Live Primitives. In TGC, 2014.
3 T. H. Austin and C. Flanagan. Efficient purely-dynamic information flow analysis. In

PLAS, 2009.
4 T. H. Austin and C. Flanagan. Permissive dynamic information flow analysis. In PLAS,

2010.
5 T. H. Austin and C. Flanagan. Multiple facets for dynamic information flow. In POPL,

2012.
6 A. Banerjee and D. A. Naumann. Secure information flow and pointer confinement in a

java-like language. In CSFW, 2002.
7 N. Bielova. Survey on javascript security policies and their enforcement mechanisms in a

web browser. Special Issue on Automated Specification and Verification of Web Systems of
JLAP, 2013.

8 A. Chudnov and D. A. Naumann. Information flow monitor inlining. In CSF, 2010.
9 D. E. Denning. A lattice model of secure information flow. Communications of the ACM,

19(5), 1976.
10 J. Fragoso Santos and T. Rezk. An Information Flow Monitor-Inlining Compiler for Secur-

ing a Core of Javascript. In SEC, 2014.
11 P. Gardner, G. Smith, M. J. Wheelhouse, and U. Zarfaty. Dom: Towards a formal specific-

ation. In PLAN-X, 2008.
12 G. Le Guernic. Confidentiality Enforcement Using Dynamic Information Flow Analyses.

PhD thesis, Kansas State University, 2007.
13 A. Guha, B. Lerner, J. Gibbs Politz, and S. Krishnamurthi. Web api verification: Results

and challenges. 2012.
14 D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. JSFlow: Tracking information flow in

JavaScript and its APIs. In SAC.
15 D. Hedin and A. Sabelfeld. Information-flow security for a core of javascript. In CSF, 2012.
16 J. Magazinius, A. Russo, and A. Sabelfeld. On-the-fly inlining of dynamic security monitors.

Computers & Security, 2012.
17 W3C Recommendation. DOM: Document Object Model (DOM). Technical report, W3C,

2005.
18 A. Russo, A. Sabelfeld, and A. Chudnov. Tracking information flow in dynamic tree struc-

tures. In ESORICS, 2009.
19 A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE Journal

on Selected Areas in Communications, 2003.
20 José Fragoso Santos and Tamara Rezk. Information flow monitor-inlining compiler.

http://www-sop.inria.fr/indes/ifJS/.
21 A. Taly, U. Erlingsson, J. C. Mitchell, M. S. Miller, and J. Nagra. Automated analysis of

security-critical javascript apis. In SP, 2011.
22 V. N. Venkatakrishnan, W. Xu, D. C. DuVarney, and R. Sekar. Provably correct runtime

enforcement of non-interference properties. In ICICS, 2006.
23 Deepak Garg Vineet Rajani, Abhishek Bichhawat and Christian Hammer. Information

Flow control for Event Handling and the DOM in Web Browsers. In CSF, 2015. to appear.

14 Modular Monitor Extensions for Information Flow Security in JavaScript

A DOM API Relations

This appendix describes the labeled API relations with which we extend the JavaScript
semantics for interaction with DOM objects.

A.1 Auxiliary Semantic Functions
Our specification of the DOM API relations makes use of the following semantic functions:

R#Children receives a memory µ as input and outputs a binary relation in Ref ×N, such
that if 〈r, n〉 ∈ R#Children(µ), then the DOM node pointed to by r has n children (meaning
that it defines the indexes 0, · · · , n− 1).
RAncestor receives a memory µ as input and outputs a binary relation in Ref ×Ref , such
that if 〈r0, r1〉 ∈ RAncestor(µ), then the DOM node pointed to by r0 is an ancestor of the
DOM node pointed to by r1 in the DOM forest stored in µ.
RParent receives a memory µ as input and outputs a relation in Ref × Ref , such that
if 〈r0, r1〉 ∈ RParent(µ), then the DOM node pointed to by r0 is the parent of the DOM
node pointed to by r1 (meaning that there is an index i such that µ(r0)(i) = r1).
Orphan receives a memory µ as input and ouputs a set of references, such that if r ∈
Orphan(µ), then the DOM node pointed to by r is an orphan node, that is, it does not
have a parent in the DOM forest stored in µ (meaning that it is the root of a dangling
tree).

A.2 DOM API Relations - Invariants

Indexes Invariant. When appending a new node to a given node, its index depends on the
indexes of the nodes that were already appended. Analogously, when removing a node, the
new indexes of its right siblings depend on the index of the node that is to be removed. To
tackle this problem, we specify the semantic relations corresponding to the DOM methods
removeChild and appendChild in such a way that, for every DOM node, the level of the
property through which it is accessed is always lower than or equal to the levels of the
properties corresponding to its right siblings. We refer to this invariant as the indexes
invariant.
Parent Node Invariant. In the formal model, a DOM object does not define a property
pointing to its parent. However, the API relations are specified in such a way that the
structure security level of a DOM node works as the level of a “ghost” property pointing to
its parent node. Hence, if the structure of a DOM object is observable, it also means that
its parent is also observable.

A.3 DOM API Relations - Specification
In the following, we explain the monitored API rules given in Figure 5. In the specification
of each API, when an element of the initial configuration is not used in the premises of the
corresponding rule, we denote it by _.

[createElement] The API relation ⇓cre creates a new DOM Element node with tag m
and binds a free reference r to it. The structure security level of the newly created node
as well as the level of its property @tag are both set to σ0 t σ1 t σ2 in order to verify
the confinement property (Definition 5).

José Fragoso Santos, Tamara Rezk, and Ana Almeida Matos 15

createElement
r 6∈ dom(µ) µ′ = µ [r 7→ [@tag 7→ m]]

Γ′ = Γ [r 7→ [@tag 7→ σ0 t σ1 t σ2]] Σ′ = Σ [r 7→ σ0 t σ1 t σ2]
〈µ,Γ,Σ, 〈#doc,_,m〉, 〈σ0, σ1, σ2〉〉 ⇓cre 〈µ′,Γ′,Σ′, r, σ0 t σ1 t σ2〉

removeChild
µ(r0)(i) = r2 〈r0, n+ 1〉 ∈ R#Children(µ) dom(o0) = dom(γ0) = dom(µ(r0))\{n}
∀0≤j<i · o0(j) = µ(r0)(j) ∀i≤j<n · o0(j) = µ(r0)(j + 1) o0(@tag) = µ(r0)(@tag)
∀0≤j<i · γ0(j) = Γ(r0)(j) ∀i≤j<n · γ0(j) = Γ(r0)(j + 1) γ0(@tag) = Γ(r0)(@tag)

µ′ = µ [r0 7→ o0] Γ′ = Γ [r0 7→ γ0] σ0 t σ1 t σ2 ≤ Γ(r0)(i)
〈µ,Γ,Σ, 〈r0,_, r2〉, 〈σ0, σ1, σ2〉〉 ⇓rem 〈µ′,Γ′,Σ, r2, σ0 t σ1 t σ2〉

appendChild - orphan node
〈r2, r〉 6∈ RAncestor(µ) r2 ∈ Orphan(µ) 〈r0, n〉 ∈ R#Children(µ)

σ0 t σ1 t σ2 ≤ Σ(r0) u Σ(r2)
µ′ = µ [r0 7→ µ(r0) [n 7→ r2]] Γ′ = Γ [r0 7→ Γ(r0) [n 7→ Σ(r0) t Σ(r2)]]
〈µ,Γ,Σ, 〈r0,_, r2〉, 〈σ0, σ1, σ2〉〉 ⇓app 〈µ′,Γ′,Σ, r2, σ0 t σ1 t σ2〉

appendChild - non-orphan node
〈rp, r2〉 ∈ RParent(µ) 〈µ,Γ,Σ, 〈rp,_, r2〉, 〈σ0 t Σ(r2), σ1, σ2〉〉 ⇓rem 〈µ′,Γ′,Σ′,_,_〉
〈µ′,Γ′,Σ′, 〈r0,_, r2〉, 〈σ0 t Σ(r2), σ1, σ2〉〉 ⇓app 〈µ′′,Γ′′,Σ′′,_,_〉 σ0 t σ1 t σ2 ≤ Σ(r2)

〈µ,Γ,Σ, 〈r0,_, r2〉, 〈σ0, σ1, σ2〉〉 ⇓app 〈µ′′,Γ′′,Σ′′, r2, σ0 t σ1 t σ2〉

length
〈r, n〉 ∈ R#Children(µ) σ = σ0 t σ1 t Σ(r)
〈µ,Γ,Σ, 〈r,_〉, 〈σ0, σ1〉〉 ⇓len 〈µ,Γ,Σ, n, σ〉

parentNode

v =
{
rp if 〈rp, r〉 ∈ RParent(µ)
undefined otherwise

σ = σ0 t σ1 t Σ(r2)
〈µ,Γ,Σ, 〈r,_〉, 〈σ0, σ1〉〉 ⇓par 〈µ,Γ,Σ, v, σ〉

index

〈v, σ〉 =
{
〈µ(r)(i),Γ(r)(i)〉 if i ∈ dom(µ(r))
〈undefined,Σ(r)〉 otherwise

〈µ,Γ,Σ, 〈r, i〉, 〈σ0, σ1〉〉 ⇓ind 〈µ,Γ,Σ, v, σ0 t σ1 t σ)〉

nextSibling
〈rp, r〉 ∈ RParent(µ) 〈rp, n〉 ∈ R#Children(µ)

〈vi, σi〉 =
{
〈µ(rp)(i+ 1),Γ(rp)(i+ 1)〉 if i+ 1 < n

〈undefined,Γ(rp)〉 otherwise
σ = σ0 t σ1 t σi t Σ(r)

〈µ,Γ,Σ, 〈r,_〉, 〈σ0, σ1〉〉 ⇓sib 〈µ,Γ,Σ, vi, σ〉

Figure 5 DOM API Relations

[removeChild] The API relation ⇓rem removes the node pointed to by r2 from the list of
children of the node pointed to by r0, after checking that µ(r0) is in fact the parent of
µ(r2). The object µ(r0) is updated by shifting by −1 all the indexes equal to or higher
than i (the index of the object being removed) and by removing index n. The levels of

16 Modular Monitor Extensions for Information Flow Security in JavaScript

the indexes of the right siblings of the node to remove are accordingly shifted by −1.
The constraint of the rule prevents a program from removing in a high context a node
that was inserted in a low context (see Example 13).
[appendChild] The API relation ⇓app has two different behaviors depending on the fact
that the node pointed to by r2 is or is not an orphan node. If the node pointed to by r2 is
an orphan node, the behavior of ⇓app is the following: (1) it first checks that the node to
append (µ(r2)) is not an ancestor of the node to which it is to be appended (µ(r0)); (2)
it creates a new property n in µ(r0) and sets it to point to µ(r2) (where n is the previous
number of children of µ(r0)); (3) the level of the new index property n is set to the least
upper bound on the levels of the arguments and the level of its new left sibling provided
that it exists (in order to enforce the Indexes Invariant); (4) the least upper bound on
the level of the arguments must be equal to or lower than the structure security level of
µ(r0) because adding an index to a node changes its domain; (5) the least upper bound
on the level of the arguments must be equal to or lower than the structure security level
of µ(r2) (in order to enforce the Parent Node Invariant). If the node pointed to by r2 is
not an orphan node, the behavior of ⇓app is the following: (1) it removes µ(r2) from the
list of children of its current parent (using the ⇓rem API relation); (2) the API relation
⇓app calls itself recursively.
[length] The API relation ⇓len evaluates to the number of children of µ(r). The reading
effect of a call to this API must be higher than or equal to the structure security level of
µ(r) because it leaks information about the domain of µ(r). Concretely, by calling this
API relation, one finds out which are the index properties that the node defines.
[parentNode] The API relation ⇓par evaluates either to the reference that points to the
parent of µ(r), or to undefined if µ(r) is an orphan node. The reading effect of a call to
this API is higher than or equal to the structure security level of µ(r) because it acts as
the level of a “ghost” property pointing to the corresponding parent node.
[index] The API relation ⇓ind evaluates to the ith child of µ(r). If µ(r) has less than
i + 1 children the call to this API returns undefined. Besides the security levels of
the arguments, the reading effect of a call to this API must take into account either
the security level associated with index i (provided that it is defined), or the structure
security level of µ(r) (if it does not exist).
[nextSibling] The API relation ⇓sib evaluates either to the reference that points to the
right sibling of µ(r), or to undefined if µ(r) does not have a right sibling. In the former
case, the reading effect of a call to this API is higher than or equal to the security level
associated with the index pointing to the right sibling, whereas in the latter case it must
be higher than or equal to the structure security level of the parent node of µ(r).

A Taxonomy of Information Flow Monitors

Nataliia Bielova and Tamara Rezk

Inria, France
name.surname@inria.fr

Abstract. We propose a rigorous comparison of information flow mon-
itors with respect to two dimensions: soundness and transparency.
For soundness, we notice that the standard information flow security def-
inition called Termination-Insensitive Noninterference (TINI) allows the
presence of termination channels, however it does not describe whether
the termination channel was present in the original program, or it was
added by a monitor. We propose a stronger notion of noninterference,
that we call Termination-Aware Noninterference (TANI), that captures
this fact, and thus allows us to better evaluate the security guarantees
of different monitors. We further investigate TANI, and state its formal
relations to other soundness guarantees of information flow monitors.
For transparency, we identify different notions from the literature that
aim at comparing the behaviour of monitors. We notice that one common
notion used in the literature is not adequate since it identifies as better
a monitor that accepts insecure executions, and hence may augment the
knowledge of the attacker. To discriminate between monitors’ behaviours
on secure and insecure executions, we factorized two notions that we call
true and false transparency. These notions allow us to compare monitors
that were deemed to be incomparable in the past.
We analyse five widely explored information flow monitors: no-sensitive-
upgrade (NSU), permissive-upgrade (PU), hybrid monitor (HM), secure
multi-execution (SME), and multiple facets (MF).

1 Introduction

Motivated by the dynamic nature and an extensive list of vulnerabilities found
in web applications in recent years, several dynamic enforcement mechanisms in
the form of information flow monitors [5–7, 10, 13, 15, 18, 25, 29, 35], have been
proposed. In the runtime monitor literature [8, 14], two properties of monitors
are considered specially important: soundness and transparency. In this work,
we rigorously compare information flow monitors with respect to these two di-
mensions. We analyse five widely explored information flow monitor techniques:
no-sensitive-upgrade (NSU) [35], permissive-upgrade (PU) [6], hybrid monitor
(HM) [15], secure multi-execution (SME) [13], and multiple facets (MF) [7].

Soundness An information flow monitor is sound when it ensures that observable
outputs comply with a given information flow policy. In the case of noninterfer-
ence, the monitor must ensure equal observable outputs if executions start in

equal observable inputs. We notice that some monitoring techniques introduce
new termination channels, whereas others don’t. The standard information flow
security definition called Termination-Insensitive Noninterference (TINI) does
not account for termination: only initial memories in which the program termi-
nates should lead to equal observable outputs. Thus, TINI allows the presence
of termination channels, however it does not describe whether the termination
channel was present in the original program, or it was added by a monitor.
Termination-Sensitive Noninterference (TSNI), on the other hand, is a stronger
policy that disallows the presence of any termination channel. However, most
information flow monitors do not satisfy TSNI. Hence, existing definitions do not
allow us to discriminate between different monitors with respect to the security
guarantees that they provide. We propose a notion of noninterference, stronger
than TINI but weaker than TSNI, that we call Termination-Aware Noninterfer-
ence (TANI), that captures the fact that the monitor does not introduce a new
termination channel, and thus allows to better evaluate the security guarantees
of different monitors. We discovered that HM, SME, and MF do satisfy TANI,
while NSU and PU do not satisfy TANI.

Example 1 (NSU introduces a termination channel). Consider the following pro-
gram, where each variable can take only two possible values: 0 and 1.

Program 11 if h = 0 then l = 1;
2 output l

This program is leaking confidential information – upon observing output
l=0 (l=1), it’s possible to derive that h=1 (h=0). In spite of this fact, NSU allows
the execution of this program starting in a memory [h=1, l=0] and blocks the
execution otherwise, thus introducing a new termination channel.

Transparency An information flow monitor is transparent when it preserves
program semantics if the execution complies with the policy. In the case of non-
interference, the monitor must produce the same output as an original program
execution with a value that only depends on observable inputs. We identify dif-
ferent common notions from the literature that aim at comparing the behaviour
of monitors: precision, permissiveness, and transparency. We notice that per-
missiveness is not adequate since it identifies as better a monitor that accepts
insecure executions, and hence may augment the knowledge of the attacker,
given that the attacker has knowledge based on the original executions. To dis-
criminate between monitors’ behaviours on secure and insecure executions, we
factorized two notions that we call true and false transparency. True transparency
corresponds to the standard notion of transparency in the field of runtime mon-
itoring: the ability of a monitor to preserve semantics of secure executions. An
information flow monitor is false transparent when it preserves semantics of the
original program execution that does not comply with the security policy. False
transparency might seem contradictory to soundness at first sight but this is not
the case since information flow is not a property of one execution [2, 26] but a
property of several executions, also called a hyperproperty [12, 31]. These two

notions of transparency allow us to compare monitors that were deemed to be
incomparable in the past. In particular, we prove that HM is more TSNI pre-
cise (more true transparent for the set of TSNI secure programs) than NSU and
NSU is more false transparent than HM. Proofs can be found in the companion
technical report [1].

Our contributions are the following:

1. We propose a new information flow policy called termination-aware non-
interference (TANI) that allows us to evaluate monitors according to their
soundness guarantees. We prove that TANI is stronger than TINI but weaker
than TSNI that disallows any termination channels.

2. We identify two different notions of transparency that are used in the liter-
ature as the same notion and we call them true and false transparency.

3. We generalize previous results from Hedin et al. [17]: we show that dy-
namic and hybrid monitors become comparable when the two flavors of
transparency are separated into true and false transparency.

4. We analyse and compare five major monitors previously proved sound for
TINI: NSU, PU, HM, SME and MF. Table 2 in Section 9 summarizes our
results for TANI, true and false transparency.

2 Knowledge

We assume a two-element security lattice with L v H and we use t as the least
upper bound. A security environment Γ maps program variables to security
levels. By µL we denote a projection of low variables of the memory µ, according
to an implicitly parameterized security environment Γ . The program semantics
is defined as a big-step evaluation relation (P, µ) ⇓ (v, µ′), where P is a program
that produces only one output v at the end of execution. We assume that v is
visible to the attacker at level L and that the program semantics is deterministic.
The attacker can gain knowledge while observing output v. Following Askarov
and Sabelfeld [3, 4], we define knowledge as a set of low-equal memories, that
lead to the program observation v.

Definition 1 (Knowledge). Given a program P , the low part µL of an initial
memory µ, and an observation v, the knowledge for semantics relation ⇓ is a set
of memories that agree with µ on low variables and can lead to an observation
v: k⇓(P, µL, v) = {µ′ | µL = µ′L ∧ ∃µ′′.(P, µ′) ⇓ (v, µ′′)}.

Notice that knowledge corresponds to uncertainty about the environments in
the knowledge set: any environment is a possible program input. The attacker
believes that the environments outside of the knowledge set are impossible inputs.
Upon observing a program output, the uncertainty might decrease because the
new output may render some inputs impossible. This means that the knowledge
set may become smaller, thus increasing the knowledge of the attacker.

To specify a security condition, we define what it means for an attacker not
to gain any knowledge. Given a program P , and a low part µL of an initial

memory µ, the attacker’s knowledge before the execution of the program is a set
of memories that agree with µ on low variables. This set is an equivalence class
of low-equal memories: [µ]L = {µ′ | µL = µ′L}.

Definition 2 (Possible outputs). Given a program P and the low part µLof
an initial memory µ, a set of observable outputs for semantics relation ⇓ is:
O⇓(P, µL) = {v | ∃µ′, µ′′. µL = µ′L ∧ (P, µ′) ⇓ (v, µ′′)}.

In the following, we don’t write the semantics relation ⇓ when we mean the
program semantics; the definitions in the rest of this section can be also used
with the subscript parameter ⇓ when semantics has to be explicit.

We now specify the security condition as follows: by observing a program
output, the attacker is not allowed to gain any knowledge.

Definition 3 (Termination-Sensitive Noninterference). Program P is ter-
mination-sensitively noninterferent for an initial low memory µL, written TSNI(P, µL),
if for all possible observations v ∈ O(P, µL), we have

[µ]L = k(P, µL, v)

A program P is termination-sensitively noninterferent, written TSNI(P), if for
all possible initial memories µ, TSNI(P, µL).

The above definition is termination-sensitive because it does not allow an at-
tacker to learn the secret information from program divergence. Intuitively, if the
program terminates on all low-equal memories, and it produces the same output
v then it satisfies TSNI. If the program doesn’t terminate on some of the low-
equal memories, then for all possible observations v, the knowledge k(P, µL, v)
becomes a subset of [µ]L and doesn’t satisfy the definition.

Example 2. Consider Program 2. If the attacker observes that l=1, then he learns
that h was 0, and if the attacker doesn’t see any program output (divergence),
the attacker learns that h was 1. TSNI captures this kind of information leakage,
hence TSNI doesn’t hold.

Program 21 l = 1;
2 (while (h=1) do skip);
3 output l

Proposition 1. TSNI(P) holds if and only if for all pairs of memories µ1 and
µ2, we have: µ1

L = µ2
L ∧∃µ′.(P, µ1) ⇓ (v1, µ

′)⇒ ∃µ′′.(P, µ2) ⇓ (v2, µ
′′)∧ v1 = v2.

Termination-sensitive noninterference sometimes is too restrictive as it re-
quires a more sophisticated program analysis or monitoring that may reject many
secure executions of a program. A weaker security condition, called termination-
insensitive noninterference (TINI), allows information flows through program
divergence, while still offering information flow security.

To capture this security condition, we follow the approach of Askarov and
Sabelfeld [4], by limiting the allowed attacker’s knowledge to the set of low-
equal memories where the program terminates. Since termination means that
some output is observable, a set that we call a termination knowledge, is a union
of all knowledge sets that correspond to some program output:

⋃
v′ k(P, µL, v

′).

Definition 4 (Termination-Insensitive Noninterference). Program P is
termination-insensitively noninterferent for an initial low memory µL, written
TINI(P, µL), if for all possible observations v ∈ O(P, µL), we have⋃

v′∈O(P,µL)

k(P, µL, v
′) = k(P, µL, v).

A program P is termination-insensitively noninterferent, written TINI(P), if
for all possible initial memories µ, TINI(P, µL).

Example 3. TINI recognises the Program 2 as secure, since the attacker’s ter-
mination knowledge is only a set of low-equal memories where the program ter-
minates. For example, for µL= [l=0], only one observation l=1 is possible when
h=0, therefore TINI holds:

⋃
v′∈{1} k(P, l=0, v′) = [h=0, l=0] = k(P, l=0, 1).

Proposition 2. TINI(P) holds if and only if for all pairs of memories µ1 and
µ2, we have: µ1

L = µ2
L ∧∃µ′.(P, µ1) ⇓ (v1, µ

′)∧∃µ′′.(P, µ2) ⇓ (v2, µ
′′)⇒ v1 = v2.

3 Monitor soundness

In this section, we consider dynamic mechanisms for enforcing information flow
security. For brevity, we call them “monitors”. The monitors we consider are
purely dynamic monitors, such as NSU and PU, hybrid monitors in the style of
Le Guernic et al. [22,23] that we denote by HM, secure multi-execution (SME),
and multiple facets monitor (MF). All the mechanisms we consider have deter-
ministic semantics denoted by ⇓M , whereM represents a particular monitor. All
the monitors enforce at least termination-insensitive noninterference (TINI).1
Since TINI accepts termination channels, it also allows the monitor to intro-
duce new termination channels even if an original program did not have any. In
the next section, we will propose a new definition for soundness of information
flow monitors, capturing that a monitor should not introduce a new termination
channel. But, first, we set up the similar definitions of termination-sensitive and
-insensitive noninterference for a monitored semantics. Instead of using a sub-
script ⇓M for a semantics of a monitor M , we will use a subscript M .

Definition 5 (Soundness of TSNI enforcement). Monitor M soundly en-
forces termination-sensitive noninterference, written TSNI(M), if for all possi-
ble programs P , TSNIM (P).
1 This is indeed a lower bound since some monitors, like SME, also enforce termination-
and time-sensitive noninterference.

Proposition 1 proves that this definition of TSNI soundness is equivalent to
the standard two-run definition if we substitute the original program semantics
with the monitor semantics. Similarly, to define a sound TINI monitor, we re-
state Definition 4 of TINI with the monitored semantics. The definition below
is equivalent to the standard two-run definition (see Proposition 2).

Definition 6 (Soundness of TINI enforcement). Monitor M soundly en-
forces termination-insensitive noninterference, written TINI(M), if for all pos-
sible programs P , TINIM (P).

This definition compares the initial knowledge and the final knowledge of the
attacker under the monitor semantics. But in practice, an attacker has also the
initial knowledge of the original program semantics (see Example 1).

4 Termination-Aware Noninterference

We propose a new notion of soundness for the monitored semantics, called
Termination-Aware Noninterference (TANI) that does not allow a monitor to
introduce a new termination channel.

Intuitively, all the low-equal memories, on which the original program termi-
nates, should be treated by the monitor in the same way, meaning the monitor
should either produce the same result for all these memories, or diverge on all
of them. In terms of knowledge, it means that the knowledge provided by the
monitor, should be smaller or equal than the knowledge known by the attacker
before running the program. Additionally, in the case the original program al-
ways diverges, TANI holds if the monitor also always diverges or if the monitor
always terminates in the same value.

Definition 7 (Termination-Aware Noninterference). A monitor ⇓M is
Termination-Aware Noninterferent (TANI), written TANI(M), if for all pro-
grams P , initial memories µ, and possible observations v ∈ OM (P, µL), we have:
– O(P, µL) 6= ∅ =⇒

⋃
v′∈O(P,µL) k(P, µL, v

′) ⊆ kM (P, µL, v)
– O(P, µL) = ∅ =⇒ (OM (P, µL) = ∅ ∨ [µ]L = kM (P, µL, v))

Notice that, for the case that the original program sometimes terminate
(O(P, µL) 6= ∅)), we do not require equality of the two sets of knowledge since the
knowledge set of the monitored program can indeed be bigger than the knowl-
edge set of the attacker before running the program2. The knowledge set may
increase when a monitor terminates on the memories where the original program
did not terminate (e.g., SME from Section 6 provides such enforcement).

Example 4 (TANI enforcement). Coming back to Program 1, TANI requires
that on two low-equal memories [h=0, l=0] and [h=1, l=0] where the original
program terminates, the monitor behaves in the same way: either it terminates
on both memories producing the same output, or it diverges on both memories.
2 Remember that the bigger knowledge set corresponds to the smaller knowledge or
to the increased uncertainty.

It is well-known that TSNI is a strong form of noninterference that implies
TINI. We now formally state the relations between TINI, TANI and TSNI.

Theorem 1. TSNI(M)⇒ TANI(M) and TANI(M)⇒ TINI(M).

5 Which monitors are TANI?

We now present five widely explored information flow monitors and prove whether
these monitors comply with TANI. In order to compare the monitors, we first
model all of them in the same language. Thus, our technical results are based
on a simple imperative language with one output (see Figure 1). The language’s
expressions include constants or values (v), variables (x) and operators (⊕) to
combine them. We present the standard big-step program semantics in Figure 2.

P ::= S; output x
S ::= skip | x:= e |S1;S2 | if x then S1 else S2 | while x do S
e ::= v | x |e1 ⊕ e2

Fig. 1: Language syntax

skip
(skip, µ) ⇓ µ

assign
(x := e, µ) ⇓ µ[x 7→ JeKµ]

seq
(S1, µ) ⇓ µ′ (S2, µ

′) ⇓ µ′′

(S1;S2, µ) ⇓ µ′′

if
JxKµ = α (Sα, µ) ⇓ µ′

(if x then Strue else Sfalse, µ) ⇓ µ′
while

(if x then S; while x do S else skip, µ) ⇓ µ′

(while x do S, µ) ⇓ µ′

output
JxKµ = v

(output x, µ) ⇓ (v, µ)

where JxKµ = µ(x), JvKµ = v and Je1 ⊕ e2Kµ = Je1Kµ ⊕ Je2Kµ

Fig. 2: Language semantics

The semantics relation of a command S is denoted by pc ` (Γ, S, µ) ⇓M
(Γ ′, µ′) where pc is a program counter, M is the name of the monitor and Γ is
a security environment mapping variables to security levels. All the considered
monitors are flow-sensitive, and Γ may be updated during the monitored execu-
tion. We assume that the only output produced by the program is visible to the
attacker at level L. Since our simple language supports only one output at the
end of the program, the output rule of the monitors is defined only for pc = L,
and thus only checks the security level of an output variable x.

No-sensitive upgrade (NSU) The no-sensitive upgrade approach (NSU) first
proposed by Zdancewic [35] and later applied by Austin and Flanagan [5] is

based on a purely dynamic monitor that controls only one execution of the
program. To avoid implicit information flows, the NSU disallows any upgrades
of a low security variables in a high security context. Consider Program 1: since
the purely dynamic monitor accepts its execution when h=1, it should block
the execution when h=0 to enforce TINI. NSU does so by blocking the second
execution since the low variable l is updated in a high context.

skip
pc ` (Γ, skip, µ) ⇓NSU (Γ, µ)

assign
JeKµ = v pc v Γ (x) Γ ′ = Γ [x 7→ Γ (e) t pc]

pc ` (Γ, x := e, µ) ⇓NSU (Γ ′, µ[x 7→ v])

seq
pc ` (Γ, S1, µ) ⇓NSU (Γ ′, µ′) pc ` (Γ ′, S2, µ

′) ⇓NSU (Γ ′′, µ′′)
pc ` (Γ, S1;S2, µ) ⇓NSU (Γ ′′, µ′′)

if
JxKµ = α pc t Γ (x) ` (Γ, Sα, µ) ⇓NSU (Γ ′, µ′)
pc ` (Γ, if x then Strue else Sfalse, µ) ⇓NSU (Γ ′, µ′)

while
pc ` (Γ, if x then S; while x do S else skip, µ) ⇓NSU (Γ ′, µ′)

pc ` (Γ,while x do S, µ) ⇓NSU (Γ ′, µ′)

output
JxKµ = v Γ (x) = L

L ` (Γ, output x, µ) ⇓NSU (v, Γ, µ)

Fig. 3: NSU semantics

Our NSU formalisation for a simple imperative language is similar to that
of Bichhawat et al. [11]. The main idea of NSU appears in the assign rule: the
monitor blocks “sensitive upgrades” when a program counter level pc is not lower
than the level of the assigned variable x. Figure 3 represents the semantics of
NSU monitor. We use Γ (e) as the least upper bound of all variables occurring
in expression e. If e contains no variables, then Γ (e) = L. NSU was proven to
enforce termination-insensitive noninterference (TINI) (see [5, Thm. 1]).

Example 5 (NSU is not TANI). Consider Program 1 and an initial memory
[h=1, l=0]. NSU does not satisfy TANI, since the monitor terminates only on one
memory, i.e., kM (P, µL, v) = [h=1, l=0], while the original program terminates
on both memories, low-equal to [l=0].

Permissive Upgrade (PU) The NSU approach suffices to enforce TINI, how-
ever it often blocks a program execution pre-emptively. Consider Program 3.
This program is TINI, however NSU blocks its execution starting in memory
[h=0, l=0] because of a sensitive upgrade under a high security context.

Program 31 if h = 0 then l = 1;
2 l := 0;
3 output l

Austin and Flanagan proposed a less-restrictive strategy called permissive
upgrade (PU) [6]. Differently from NSU, it allows the assignments of low variables
under a high security context, but labels the updated variable as partially-leaked
or ’P ’. Intuitively, P means that the content of the variable is H but it may be
L in other executions. If later in the execution, there is a branch on a variable
marked with P , or such variable is to be output, the monitor stops the execution.

assign
JeKµ = v Γ ′ = Γ [x 7→ Γ (e) t lift(pc, Γ (x))]

pc ` (Γ, x := e, µ) ⇓PU (Γ ′, µ[x 7→ v])

if
Γ (x) 6= P JxKµ = α pc t Γ (x) ` (Γ, Sα, µ) ⇓PU (Γ ′, µ′)

pc ` (Γ, if x then Strue else Sfalse, µ) ⇓PU (Γ ′, µ′)
where

lift(pc, l) =


L if pc = L

H if pc = H ∧ l = H

P if pc = H ∧ l 6= H

Fig. 4: PU semantics

We present a permissive upgrade monitor (PU) for a two-point lattice ex-
tended with label P with H @ P . The semantics of PU is identical to the one of
NSU (see Fig. 3) except for the assign and if rules, that we present in Fig. 5.
Rule assign behaves like the assign rule of NSU, if pc v Γ (x) and Γ (x) 6= P .
Otherwise, the assigned variable is marked with P . Rule if is similar to the rule
if in NSU, but the semantics gets stuck if the variable in the test condition is
partially leaked. PU was proven to enforce TINI (see [6, Thm. 2]). However, PU
is not TANI since it has the same mechanism as NSU for adding new termination
channels.

Example 6 (PU is not TANI). Consider Program 1 and an initial memory [h=1,
l=0]. PU does not satisfy TANI, since the monitor terminates only on one mem-
ory, i.e., kM (P, µL, v) = [h=1, l=0], while the original program terminates on
both memories, low-equal to [l=0].

Hybrid Monitor (HM) Le Guernic et al. were the first to propose a hybrid
monitor (HM) [15] for information flow control that combines static and dy-
namic analysis. This mechanism statically analyses the non-executed branch of
each test in the program, collecting all the possibly updated variables in that
branch. The security level of such variables are then raised to the level of the
test, thus preventing information leakage.

Example 7. Consider Program 1 and its execution starting in [h=1, l=0]. This
execution is modified by HM because the static analysis discovers that variable
l could have been updated in a high security context in an alternative branch.

assign
JeKµ = v Γ ′ = Γ [x 7→ pc t Γ (e)]
pc ` (Γ, x := e, µ) ⇓HM (Γ ′, µ[x 7→ v])

if

Γ ′′ = Analysis(S¬α, pc t Γ (x), Γ)
JxKµ = α pc t Γ (x) ` (Γ, Sα, µ) ⇓HM (Γ ′, µ′)

pc ` (Γ, if x then Strue else Sfalse, µ) ⇓HM (Γ ′ t Γ ′′, µ′)

output
Γ (x) = L⇒ v = JxKµ Γ (x) 6= L⇒ v = def

L ` (Γ, output x, µ) ⇓HM (v, Γ, µ)

Fig. 5: HM semantics

The semantics of HM is identical to NSU except for the assign, if and
output rules that we show in Figure 6. The assign rule does not have any
specific constraints. The static analysis Analysis(S, pc, Γ) in the if rule explores
variables assigned in S and upgrades their security level according to pc. We
generalize the standard notation Γ [x 7→ l] to sets of variables and use Vars(S)
for the sets of variables assigned in command S.

Analysis(S, pc, Γ) = Γ [{y 7→ pc t Γ (y) | y ∈ Vars(S)}

HM was previously proven to enforce TINI [15, Thm. 1] and we prove in the
companion technical report [1] that HM satisfies TANI.

Theorem 2. HM is TANI.

Secure Multi-Execution (SME) Devriese and Piessens were the first to pro-
pose secure multi-execution (SME) [13]. The main idea of SME is to execute
the program multiple times: one for each security level. Each execution receives
only inputs visible to its security level and a fixed def value for each input that
should not be visible to the execution. Different executions are executed with a
low priority scheduler to avoid leaks due to divergence of high executions because
SME enforces TSNI.

Example 8 (SME “fixes” termination channels). Consider Program 4:

Program 41 if l = 0 then
2 while h=0 do skip;
3 else
4 while h=1 do skip;
5 output l

Assume µL = [l=0] and the default high value used by SME is h=1. Then,
there exists a memory µ′ = [h=0, l=0], low-equal to µL, on which the original
program doesn’t terminate: µ′ 6∈

⋃
v′ k(P, µL, v

′), but SME terminates: µ′ ∈
kM (P, µL, l=0). Notice that SME makes the attacker’s knowledge smaller.

SME
(P, µ|Γ) ⇓ (v, µ′) µ′′′ =

{
µ′ �Γ µ′′ if ∃µ′′.(P, µ) ⇓ (v′, µ′′)
µ′ �Γ ⊥ otherwise

pc ` (Γ, P, µ) ⇓SME (v, Γ, µ′′′)

where µ|Γ (x) =
{
µ(x) Γ (x) = L

def Γ (x) = H
µ′ �Γ µ′′(x) =

{
µ′(x) Γ (x) = L

µ′′(x) Γ (x) = H

Fig. 6: SME semantics

The SME adaptation for our while language is given in Figure 7, with execu-
tions for levels L and H. The special value ⊥ represents the idea that no value
can be observed and we overload the symbol to also denote a memory that maps
every variable to ⊥. Using memory ⊥ we simulate the low priority scheduler of
SME in our setting: if the execution corresponding to the H security level does
not terminate, the SME semantics still terminates. In this case all the variables
with level H, which values should correspond to values obtained in the normal
execution of the program, are given value ⊥.

SME was previously proven TSNI [13, Thm. 1] and we prove that it also
enforces TANI: this can be directly inferred from our Theorem 1.

Theorem 3. SME is TANI.

Multiple Facets Austin and Flanagan proposed multiple facets (MF) in [7].
In MF, each variable is mapped to several values or facets, one for each security
level: each value corresponds to the view of the variable from the point of view
of observers at different security levels. The main idea in MF is that if there is
a sensitive upgrade, MF semantics does not update the observable facet. Other-
wise, if there is no sensitive upgrade, MF semantics updates it according to the
original semantics.

Example 9. Consider the TINI Program 5. In MF, the output observable at level
L (or the L facet of variable l) is always the initial value of variable l since MF
will not update a low variable in a high context. Therefore, all the executions of
Program 5 starting with l=1 are modified by MF, producing the output l=1.

Program 51 if h = 0 then l = 0 else l=0;
2 output l

Our adaptation of MF semantics is given in Figure 8 where we use the fol-
lowing notation: a faceted value, denoted 〈v1 : v2〉, is a pair of values v1 and v2.

MF Rule
pc ` (Γ, P, µ ↑Γ) ↓MF (〈v1 : v2〉, Γ ′, µ̂)
pc ` (Γ, P, µ) ⇓MF (v2, Γ

′, µ̂ ↓Γ ′)
skip

pc ` (Γ, skip, µ̂) ↓MF (Γ, µ̂)

assign

[e]µ̂ = 〈v1 : v2〉 v̂ =
{
〈v1 : µ̂(x)2〉 if pc = H ∧ Γ (x) = L

〈v1 : v2〉 if pc = L ∨ Γ (x) 6= L

Γ ′(y) =
{
Γ (e) if pc = L ∧ y = x

Γ (y) otherwise
pc ` (Γ, x := e, µ̂) ↓MF (Γ ′, µ̂[x 7→ v̂])

seq
pc ` (Γ, S1, µ̂) ↓MF (Γ ′, µ̂′) pc ` (Γ ′, S2, µ̂

′) ↓MF (Γ ′′, µ̂′′)
pc ` (Γ, S1;S2, µ̂) ↓MF (Γ ′′, µ̂′′)

if-high
[x]µ̂ = 〈α1 : α2〉 pc = H ∨ Γ (x) = H H ` (Γ, Sα1 , µ̂) ↓MF (Γ ′, µ̂′)

pc ` (Γ, if x then Strue else Sfalse, µ̂) ↓MF (Γ ′, µ̂′)

if-low

[x]µ̂ = 〈α1 : α2〉 pc = L ∧ Γ (x) = L
L ` (Γ, Sα1 , µ̂) ↓MF (Γ ′, µ̂1) L ` (Γ, Sα2 , µ̂) ↓MF (Γ ′, µ̂2)
pc ` (Γ, if x then Strue else Sfalse, µ) ↓MF (Γ ′, µ̂1 ⊗Γ µ̂2)

while
pc ` (Γ, if x then S; while x do S else skip, µ̂) ↓MF (Γ ′, µ̂′)

pc ` (Γ,while x do S, µ̂) ↓MF (Γ ′, µ̂′)

output
[x]µ̂ = v̂

L ` (Γ, output x, µ̂) ↓MF (v̂, Γ, µ̂)
where

[v̂]µ̂ = v̂, [x]µ̂ = µ̂(x)
[e1 ⊕ e2]µ̂ = 〈v1 ⊕ v2 : v′1 ⊕ v′2〉, where [e1]µ̂ = 〈v1 : v′1〉, [e2]µ̂ = 〈v2 : v′2〉

µ̂1 ⊗Γ µ̂2(x) =
{
µ̂1(x) if Γ (x) = H

〈µ̂1(x)1 : µ̂2(x)2〉 if Γ (x) = L

µ ↑Γ (x) =
{
〈µ(x) : µ(x)〉 if Γ (x) = L

〈µ(x) : ⊥〉 if Γ (x) = H
µ̂ ↓Γ (x) =

{
µ̂(x)1 if Γ (x) = H

µ̂(x)2 if Γ (x) = L

Fig. 7: Multiple Facets semantics

The first value presents the view of an observer at level H and the second value
the view of an observer at level L. In the syntax, we interpret a constant v as
the faceted value 〈v : v〉. Faceted memories, ranged over µ̂, are mappings from
variables to faceted values. We use the notation µ̂(x)i (i ∈ {1, 2}) for the first
or second projection of a faceted value stored in x. As in SME, the special value
⊥ represents the idea that no value can be observed. MF was previously proven
TINI [7, Thm. 2] and we prove that it satisfies TANI.

Theorem 4. MF is TANI.

6 Precision, permissiveness and transparency

A number of works on dynamic information flow monitors try to analyse pre-
cision of monitors. Intuitively, precision describes how often a monitor blocks
(or modifies) secure programs. Different approaches have been taken to compare
precision of monitors, using definitions such as “precision”, “permissiveness” and
“transparency”. We propose a rigorous comparison of these definitions.

In the field of runtime monitoring, a monitor should provide two guaran-
tees while enforcing a security property: soundness and transparency. Trans-
parency [8] means that whenever an execution satisfies a property in question,
the monitor should output it without modifications3.

Precision (versus well typed programs) Le Guernic et al. [23] were
among the first to start the discussion on transparency for information flow
monitors. The authors have proved that their hybrid monitor accepts all the
executions of a program that is well typed under a flow-insensitive type system
similar to the one of Volpano et al. [33]. Le Guernic [21] names this result as
partial transparency. Russo and Sabelfeld [27] prove a similar result: they show
that a hybrid monitor accepts all the executions of a program that is well typed
under the flow-sensitive type system of Hunt and Sands [19].

Precision (versus secure programs) Devriese and Piessens [13] propose
a stronger notion, called precision, that requires a monitor to accept all the
executions of all secure programs. Notice that this definition is stronger because
not only the monitor should recognise the executions of well typed programs,
but also of secure programs that are not well typed. Devriese and Piessens have
proven that such precision guarantee holds for SME versus TSNI programs.

Transparency (versus secure executions) As a follow-up, Zanarini et
al. [34] have proven that another monitor based on SME satisfies transparency
for TSNI. This monitor accepts all the TSNI executions of a program, even if
the program itself is insecure.

Permissiveness (versus executions accepted by other monitors) In
his PhD thesis, Le Guernic [21] compares his hybrid monitor with another hybrid
monitor that performs a more precise static analysis, and proves an improved
precision theorem stating that whenever the first hybrid monitor accepts an
execution, the second monitor accepts it as well. Following this result, Besson
et al. [10] investigate other hybrid monitors and prove relative precision in the
style of Le Guernic, and Austin and Flanagan [6, 7] use the same definition
to compare their dynamic monitors. Hedin et al. [17] name the same notion by
permissiveness and compare the sets of accepted executions: one monitor is more
permissive than another one if its set of accepted executions contains a set of
accepted executions of the other monitor.

To compare precision of different information flow monitors, we propose to
distinguish two notions of transparency. True transparency defines the secure

3 Bauer et al. [8] actually provide a more subtle definition, saying a monitor should
output a semantically equivalent trace.

executions accepted by a monitor, and false transparency defines the insecure
executions accepted by a monitor.

True Transparency We define a notion of true transparency for TINI. Intu-
itively, a monitor is true transparent if it accepts all the TINI executions of a
program.

Definition 8 (True Transparency). Monitor M is true transparent if for
any program P , and any memories µ, µ′ and output v, the following holds:

TINI(P, µL) ∧ (P, µ) ⇓ (v, µ′)⇒ (P, µ) ⇓M (v, µ′)

There is a well-known result that a truncation automata cannot recognise
more than computable safety properties [16, 30]. Since noninterference can be
reduced to a safety property that is not computable [31], and NSU and PU can
be modeled by truncation automata, it follows that they are not true transparent.
We show that the monitors of this paper, that cannot be modeled by truncation
automata, are not true transparent for TINI neither.

Example 10 (HM is not true transparent). Consider Program 5: it always ter-
minates with l=0 and hence it is secure. Any execution of this program will be
modified by HM because l will be marked as high.

Example 11 (MF is not true transparent). Consider again TINI Program 5. The
MF semantics will not behave as the original program semantics upon an execu-
tion starting in [h=1, l=1]. The sensitive upgrade of the test will assign faceted
value [l=〈0 : 1〉] to variable l and the output will produce the low facet of l
which is 1, while the original program would produce an output 0. Hence, this
is a counter example for true transparency of MF.

Example 12 (SME is not true transparent for TINI). Since SME enforces TSNI,
it eliminates all the termination channels, therefore even if the original program
has TINI executions, SME might modify them to achieve TSNI.

Consider TINI Program 4 and an execution starting in [h=0,l=1]. SME (with
default value h=1) will diverge because it’s “low” execution will diverge upon h=1.
Therefore, SME is not true transparent for TINI.

Even though none of the considered monitors are true transparent for TINI,
this notion allows us to define a relative true transparency to better compare the
behaviours of information flow monitors when they deal with secure executions.

Given a program P and a monitor M , we define a set of initial memories
that lead to secure terminating executions of program P , and a monitor M does
not modify these executions:

T (M,P) = {µ | TINI(P, µL) ∧ ∃µ′, v. (P, µ) ⇓ (v, µ′)⇒ (P, µ) ⇓M (v, µ′)}

Definition 9 (Relative True Transparency). Monitor A is more true trans-
parent than monitor B, written A ⊇T B, if for any program P , the following
holds: T (A,P) ⊇ T (B,P).

Austin and Flanagan [5, 6] have proven that MF is more true transparent
than PU and PU is more true transparent than NSU. We restate this result in
our notations and provide a set of counterexamples showing that for no other
couple of analysed monitors relative true transparency holds.

Theorem 5. MF ⊇T PU ⊇T NSU .

Example 13 (NSU 6⊇T PU,NSU 6⊇T HM). Consider TINI Program 3: an ex-
ecution in initial memory with [h=0] is accepted by PU and HM because the
security level of l becomes low just before the output, and it is blocked by NSU
due to sensitive upgrade.

Example 14 (NSU 6⊇T SME,NSU 6⊇T MF,PU 6⊇T HM , PU 6⊇T SME
and PU 6⊇T MF). Program 7 is TINI since l’ does not depend on h. With
initial memory [h=0, l=1], HM, SME (with default value chosen as 0) and MF
terminate with the same output as normal execution. However, NSU will diverge
due to sensitive upgrade and PU will diverge because of the branching over a
partially-leaked variable l.

Program 61 if h = 0 then l = 1;
2 if l = 1 then l = 0;
3 output l’;

Example 15 (HM 6⊇T NSU,HM 6⊇T PU,HM 6⊇T SME,HM 6⊇T MF). Con-
sider Program 1 and its secure execution starting in [h=1, l=1]. NSU, PU, SME
(the default value of SME does not matter in this case) and MF terminate with
the same output as original program execution, producing l=1. However, HM
modifies it because the security level of l is raised by the static analysis of the
non-executed branch.

Example 16 (SME 6⊇T NSU, SME 6⊇T PU, SME 6⊇T HM,SME 6⊇T MF).
All the terminating executions of TINI Program 4 are accepted by NSU, PU,
HM and MF, while an execution starting in [h=0, l=1] with default value for
SME set to h=1 doesn’t terminate in SME semantics.

Example 17 (MF 6⊇T HM). Program 8 is TINI for any execution. HM with
[h=1,l=0,l’=0] terminates with the original output because the output variable
[l’] is low. However, MF with [h=1,l=0,l’=0] doesn’t terminate.

Program 71 if h=0 then l=0 else l=1;
2 if l=0 then
3 while true do skip;
4 else
5 l=0
6 output l’

Example 18 (MF 6⊇T SME). Program 5 is TINI for any execution. With [h=0,
l=1] it terminates in the program semantics and SME semantics (with any de-
fault value) producing l=0. However, the MF semantics produces l=1.

Precision We have discovered that certain monitors (e.g., HM and NSU) are
incomparable with respect to true transparency. To compare them, we propose a
more coarse-grained definition that describes the monitors’ behaviour on secure
programs.

Definition 10 (Precision). Monitor M is precise if for any program P , the
following holds:

TINI(P) ∧ ∀µ.(∃µ′, v.(P, µ) ⇓ (v, µ′)⇒ (P, µ) ⇓M (v, µ′))

This definition requires that all the executions of secure programs are ac-
cepted by the monitor. NSU, PU, HM and MF are not precise since they are not
true transparent. SME is precise for TSNI, and this result was proven by Devriese
and Piessens [13], however SME it not precise for TINI (see Example 15).

To compare monitors’ behaviour on secure programs, we define a set of a
TINI programs P , where a monitor accepts all the executions of P :

P(M) = {P | TINI(P) ∧ ∀µ.(∃µ′, v.(P, µ) ⇓ (v, µ′)⇒ (P, µ) ⇓M (v, µ′))}

Definition 11 (Relative Precision). Monitor A is more precise than monitor
B, written A ⊇P B, if P(A) ⊇ P(B).

We have found out that no couple of the five monitors are in relative precision
relation. Below we present the counterexamples that demonstrate our findings.

Example 19 (HM 6⊇P SME). Consider TINI Program 5. All the executions of
this program are accepted by SME. However, HM modifies the program output
to default because the security level of l is upgraded to H by the static analysis
of the non-executed branch.

Example 20 (HM 6⊇P NSU , HM 6⊇P PU). Consider the following program:

Program 81 l = 0;
2 if h = 0 then skip
3 else
4 while true do l = 1;
5 output l

This TINI program terminates only when [h=0]. This execution is accepted
by NSU and PU, but the program output is modified by HM since HM analyses
the non-executed branch and upgrades the level of l to H.

Example 21 (HM 6⊇P MF). Consider TINI Program 11. MF accepts all of
its executions, while HM modifies the program output to default because the
security level of l is raised to high.

Program 91 l = 0;
2 if h = 0 then l = 0 else skip;
3 output l

The rest of relative precision counterexamples demonstrated in Table 2 of
Section 9 are derived from the corresponding counterexamples for relative true
transparency.

Since relative precision does not hold for any couple of monitors, we propose
a stronger definition of relative precision for TSNI programs. We first define a
set of a TSNI programs P , where a monitor accepts all the executions of P :

P∗(M) = {P | TSNI(P) ∧ ∀µ.(∃µ′, v.(P, µ) ⇓ (v, µ′)⇒ (P, µ) ⇓M (v, µ′))}

Definition 12 (Relative TSNI precision). A monitor A is more TSNI pre-
cise than a monitor B, written A ⊇∗P B, if P∗(A) ⊇ P∗(B).

Theorem 6. For all programs without dead code, HM ⊇∗P NSU,HM ⊇∗P PU .

Notice that SME was proven to be precise for TSNI programs (see [13, Thm.
2]), therefore SME is more TSNI precise than any other monitor. We demonstrate
this in Table 2 of Section 9.

False Transparency To compare monitors with respect to the amount of inse-
cure executions they accept, we propose the notion of false transparency. Notice
that false transparency violates soundness.

Definition 13 (False Transparency). Monitor M is false transparent if for
any program P , for all executions starting in a memory µ and finishing in mem-
ory µ′ with value v, the following holds:

¬TINI(P, µ) ∧ (P, µ) ⇓ (v, µ′)⇒ (P, µ) ⇓M (v, µ′).

Given a program P and a monitor M , we define a set of initial memories,
where a program P terminates, and a monitor M is false transparent for P :

F(M,P) = {µ | ¬TINI(P, µL) ∧ ∃µ′, v.(P, µ) ⇓ (v, µ′)⇒ (P, µ) ⇓M (v, µ′)}

Definition 14 (Relative False Transparency). Monitor A is more false
transparent than monitor B, denoted A ⊇F B, if for any program P , the fol-
lowing holds: F(A,P) ⊇ F(B,P).

Theorem 7. The following statements hold: NSU ⊇F HM , PU ⊇F NSU ,
PU ⊇F HM , SME ⊇F HM , MF ⊇F NSU , MF ⊇F PU and MF ⊇F HM .

Example 22 (NSU 6⊇F PU). Execution of Program 12 in the initial memory µ=
[h=0, l=0, l’=0] is interfering since it produces an output l=0, while an exe-
cution in the low-equal initial memory where [h=1] produces l=1. An execution
started in µ is accepted by PU but blocked by NSU.

Program 101 if h = 0 then l’ = 1 else l = 1;
2 output l

Example 23 (NSU 6⊇F SME, PU 6⊇F SME). Execution of Program 13 start-
ing in memory [h=0, l=0] is not TINI and it is accepted by SME (with default
value h=0). However, it is rejected by NSU because of sensitive upgrade and by
PU because on the branching over a partially-leaked variable l.

Program 111 if h = 0 then l = 0 else l = 1;
2 if l = 0 then l’ = 0 else l’ = 1;
3 output l’

Example 24 (NSU 6⊇F MF). The following program always terminates in the
normal semantics coping the value of h into l. Hence all of its executions are
insecure. Every execution leads to a sensitive upgrade and NSU will diverge with
any initial memory. However, in the MF semantics the program will terminate
with l=0 if started with memory [h=0,l=0] since the sensitive upgrade of the
true branch will assign faceted value [l=〈0 : 0〉] to variable l. Hence, this is a
counter example for NSU being more false transparent than MF.

Program 121 if h=0 then l=0 else l=1;
2 output l

Example 25 (PU 6⊇F MF). Program 13 is not TINI for all executions. However
MF with [h=1,l=1,l’=1] terminates in the same memory as normal execution,
while PU will diverge because l is marked as a partial leak.

Example 26 (HM 6⊇F NSU , HM 6⊇F PU , HM 6⊇F SME, HM 6⊇F MF).
Consider Program 1 and an execution starting in memory [h=1, l=0]. This exe-
cution is not secure and it is rejected by HM, however NSU, PU and MF accept
it. SME also accepts this execution in case the default value for h is 1.

Example 27 (SME 6⊇F NSU , SME 6⊇F PU). Execution of Program 15 start-
ing in memory [h=0, l=0] is interfering and it is accepted by both NSU and
PU, producing an output l=0. However, SME (with default value chosen as 1)
modifies this execution and produces l=1.

Program 131 if l = 0 then
2 if h = 1 then l = 1 else skip
3 else
4 if h = 0 then l = 0 else skip
5 output l

Example 28 (SME 6⊇F MF and MF 6⊇F SME). Program 16 is not TINI if
possible values of h are 0, 1, and 2. MF with [h=1,l=1] terminates in the same
memory than normal execution but SME (with default value 0) always diverges.

Program 141 if h = 0 then
2 while true do skip;
3 else
4 if h=1 then l=1 else l=2;
5 output l;

On the other hand, with initial memory [h=1, l=0], SME (using default value
1) terminates in the same memory as the normal execution, producing l=1 but
MF produces a different output l=0.

7 Related Work

In this section, we discuss the state of the art for taxonomies of information flow
monitors with respect to soundness or transparency.

For soundness, no work explicitly tries to classify information flow monitors.
However, it is folklore that TSNI, first proposed in [32], is a strong form of non-
interference that implies TINI. Since most well-known information flow monitors
are proven sound only for TINI [5–7,15,35], it is easy, from the soundness per-
spective, to distinguish SME from other monitors because SME is proven sound
for TSNI [13]. However, to the best of our knowledge, no work tries to refine
soundness in order to obtain a more fine grain classification of monitors as we
achieve with the introduction of TANI.

For transparency, Devriese and Piessens [13] prove that SME is precise for
TSNI and Zanarini et al. [34] notice that the result could be made more general
by proving that SME is true transparent for TSNI, which makes of SME an
effective enforcement [24] for TSNI. In this work, we first compare transparency
for TINI: none of the monitors that we have studied is true transparent for TINI.
Hedin et al. [17] compare hybrid (HM) and purely dynamic monitors (NSU and
PU), and conclude that for these monitors permissiveness is incomparable. By
factorizing the notion of permissiveness, we can compare HM and NSU: HM
is more precise for TSNI than NSU and PU, and NSU and PU are more false
transparent than HM. Using the same definition of permissiveness, Austin and
Flanagan [6,7] prove that PU is more permissive than NSU and that MF is more
permissive than PU. Looking at this result and the definition of MF, our intuition
was that MF could accept exactly the same false transparent executions as NSU
and PU. However, we discovered that not only MF is more true transparent than
NSU and PU (this is an implication of Austin and Flanagan results) but also MF
is strictly more false transparent than NSU and PU. Bichhawat et al. [11] propose
two non-trivial generalizations of PU, called puP and puA, to arbitrary lattices
and show that puP and puA are incomparable w.r.t. permissiveness. It remains
an open question if puP and puA can be made comparable by discriminating
true or false transparency, as defined in our work.

NSU PU HM SME MF
NSU 6⊇P 6⊇F 6⊇P⊇F 6⊇P 6⊇F 6⊇P 6⊇F
PU ⊇T ⊇F 6⊇P⊇F 6⊇P 6⊇F 6⊇P 6⊇F
HM ⊇∗P 6⊇F ⊇∗P 6⊇F 6⊇P 6⊇F 6⊇P 6⊇F
SME ⊇∗P 6⊇F ⊇∗P 6⊇F ⊇∗P⊇F ⊇∗P 6⊇F
MF ⊇T⊇F ⊇T⊇F 6⊇P⊇F 6⊇P 6⊇F

⊇T more true TINI transparent than
⊇P more TINI precise than (6⊇P =⇒ 6⊇T)
⊇∗P more TSNI precise than
⊇F more false TINI transparent than

Monitor is TANI
Monitor is TSNI, hence TANI

Table 1: Taxonomy of five major information flow monitors

8 Conclusion

In this work we proposed a new soundness definition for information flow mon-
itors, that we call Termination-Aware Noninterference (TANI). It determines
whether a monitor adds a new termination channel to the program. We have
proven that HM, SME and MF, do satisfy TANI, whereas NSU and PU intro-
duce new termination channels, and therefore do not satisfy TANI.

We compare monitors with respect to their capability to recognise secure
executions, i.e., true transparency [8]. Since it does not hold for none of the
considered monitors, we weaken this notion and define relative true transparency,
that determines “which monitor is closer to being transparent”. We then propose
even a more weaker notion, called precision, that compares monitor behaviours
on secure programs, and allows us to conclude that HM is more TSNI precise
than NSU and PU that previously were deemed incomparable [17]. We show
that the common notion of permissiveness is composed of relative true and false
transparency and compare all the monitors with respect to these notions in
Table 2.

For simplicity, we consider a security lattice of only two elements, however
we expect our results to generalise to multiple security levels. In future work,
we plan to compare information flow monitors with respect to other information
flow properties, such as declassification [28].

Acknowledgment

We would like to thank Ana Almeida Matos for her valuable feedback and in-
teresting discussions that has lead us to develop the main ideas of this paper,
Aslan Askarov for his input to the definition of TANI, and anonymous reviewers
for feedback that helped to improve this paper. This work has been partially
supported by the ANR project AJACS ANR-14-CE28-0008.

References

1. A Taxonomy of Information Flow Monitors Technical Report. https://team.
inria.fr/indes/taxonomy.

2. M. Abadi and L. Lamport. Composing Specifications. ACM Transactions on
Programmming Languages and Systems., 1993.

3. A. Askarov and A. Sabelfeld. Gradual release: Unifying declassification, encryption
and key release policies. In IEEE Symposium on Security and Privacy, pages 207–
221, 2007.

4. A. Askarov and A. Sabelfeld. Tight enforcement of information-release policies
for dynamic languages. In Proceedings of the 2009 22Nd IEEE Computer Security
Foundations Symposium, CSF ’09, pages 43–59. IEEE Computer Society, 2009.

5. T. H. Austin and C. Flanagan. Efficient purely-dynamic information flow analysis.
In PLAS’09, pages 113–124, 2009.

6. T. H. Austin and C. Flanagan. Permissive dynamic information flow analysis. In
PLAS’10, pages 3:1–3:12. ACM, 2010.

7. T. H. Austin and C. Flanagan. Multiple facets for dynamic information flow. In
Proc. of the 39th Symposium of Principles of Programming Languages. ACM, 2012.

8. L. Bauer, J. Ligatti, and D. Walker. Edit Automata: Enforcement Mechanisms for
Run-time Security Policies. International Journal of Information Security, 4(1-
2):2–16, 2005.

9. L. Bello, D. Hedin, and A. Sabelfeld. Value sensitivity and observable abstract
values for information flow control. In Proceedings of the International Conferences
on Logic for Programming, Artificial Intelligence and Reasoning (LPAR), 2015.

10. F. Besson, N. Bielova, and T. Jensen. Hybrid information flow monitoring against
web tracking. In CSF’13, pages 240–254. IEEE, 2013.

11. A. Bichhawat, V. Rajani, D. Garg, and C. Hammer. Generalizing permissive-
upgrade in dynamic information flow analysis. In Proceedings of the Ninth Work-
shop on Programming Languages and Analysis for Security, PLAS’14, pages 15:15–
15:24. ACM, 2014.

12. M. R. Clarkson and F. B. Schneider. Hyperproperties. Journal of Computer
Security, 2010.

13. D. Devriese and F. Piessens. Non-interference through secure multi-execution. In
Proc. of the 2010 Symposium on Security and Privacy, pages 109–124. IEEE, 2010.

14. U. Erlingsson. The Inlined Reference Monitor Approach to Security Policy En-
forcement. PhD thesis, Cornell University, 2003.

15. G. L. Guernic, A. Banerjee, T. Jensen, and D. A. Schmidt. Automata-based con-
fidentiality monitoring. In Proc. of the 11th Asian Computing Science Conference
(ASIAN’06), volume 4435, pages 75–89. Springer-Verlag Heidelberg, 2006.

16. K. W. Hamlen, G. Morrisett, and F. B. Schneider. Computability classes for en-
forcement mechanisms. ACM Transactions on Programming Languages and Sys-
tems, 28(1):175–205, 2006.

17. D. Hedin, L. Bello, and A. Sabelfeld. Value-sensitive hybrid information flow
control for a javascript-like language. In IEEE 28th Computer Security Foundations
Symposium, CSF, 2015.

18. D. Hedin and A. Sabelfeld. Information-flow security for a core of JavaScript. In
Proc. of the 25th Computer Security Foundations Symposium, pages 3–18. IEEE,
2012.

19. S. Hunt and D. Sands. On flow-sensitive security types. In POPL’06, pages 79–90,
New York, NY, USA, Jan. 2006. ACM.

20. V. Kashyap, B. Wiedermann, and B. Hardekopf. Timing- and termination-sensitive
secure information flow: Exploring a new approach. In Security and Privacy (SP),
2011 IEEE Symposium on, pages 413–428, 2011.

21. G. Le Guernic. Confidentiality Enforcement Using Dynamic Information Flow
Analyses. PhD thesis, Kansas State University and University of Rennes 1, 2007.

22. G. Le Guernic. Precise Dynamic Verification of Confidentiality. In Proc. of the 5th
International Verification Workshop, volume 372 of CEUR Workshop Proc., pages
82–96, 2008.

23. G. Le Guernic, A. Banerjee, T. Jensen, and D. Schmidt. Automata-based Confiden-
tiality Monitoring. In Proc. of the Annual Asian Computing Science Conference,
volume 4435 of LNCS, pages 75–89. Springer, 2006.

24. J. Ligatti, L. Bauer, and D. Walker. Enforcing Non-Safety Security Policies with
Program Monitors. In ESORICS 05, 2005.

25. A. G. A. Matos, J. F. Santos, and T. Rezk. An Information Flow Monitor for a
Core of DOM - Introducing References and Live Primitives. In Trustworthy Global
Computing - 9th International Symposium, TGC, 2014.

26. J. McLean. A general theory of composition for a class of "possibilistic" properties.
IEEE Transactions on Software Engineering, 1996.

27. A. Russo and A. Sabelfeld. Dynamic vs. Static Flow-Sensitive Security Analysis.
In Proc. of the 23rd Computer Security Foundations Symposium, pages 186–199.
IEEE, 2010.

28. A. Sabelfeld and D. Sands. Declassification: Dimensions and principles. Journal
of Computer Security, 17(5):517–548, 2009.

29. J. F. Santos and T. Rezk. An Information Flow Monitor-Inlining Compiler for
Securing a Core of Javascript. In ICT Systems Security and Privacy Protection -
29th IFIP TC 11 International Conference, SEC 2014, 2014.

30. F. Schneider. Enforceable security policies. ACM Transactions on Information
and System Security, 3(1):30–50, 2000.

31. T. Terauchi and A. Aiken. Secure information flow as a safety problem. In Static
Analysis, 12th International Symposium, pages 352–367, 2005.

32. D. Volpano and G. Smith. Eliminating covert flows with minimum typings. In
In Proc. 10th IEEE Computer Security Foundations Workshop, pages 156–168.
Society Press, 1997.

33. D. Volpano, G. Smith, and C. Irvine. A Sound Type System For Secure Flow
Analysis. Journal of Computer Security, 4(2-3):167–187, 1996.

34. D. Zanarini, M. Jaskelioff, and A. Russo. Precise enforcement of confidentiality for
reactive systems. In IEEE 26th Computer Security Foundations Symposium, pages
18–32, 2013.

35. S. A. Zdancewic. Programming languages for information security. PhD thesis,
Cornell University, 2002.

On access control, capabilities, their equivalence, and confused deputy attacks

Vineet Rajani
MPI-SWS

Deepak Garg
MPI-SWS

Tamara Rezk
INRIA

Abstract—Motivated by the problem of understanding the
difference between practical access control and capability
systems formally, we distill the essence of both in a language-
based setting. We first prove that access control systems and
(object) capabilities are fundamentally different. We further
study capabilities as an enforcement mechanism for confused
deputy attacks (CDAs), since CDAs may have been the primary
motivation for the invention of capabilities. To do this, we
develop the first formal characterization of CDA-freedom in
a language-based setting and describe its relation to standard
information flow integrity. We show that, perhaps suprisingly,
capabilities cannot prevent all CDAs. Next, we stipulate re-
strictions on programs under which capabilities ensure CDA-
freedom and prove that the restrictions are sufficient. To relax
those restrictions, we examine provenance semantics as sound
CDA-freedom enforcement mechanisms.

Keywords-Access control; Capability; Confused deputy prob-
lem; Provenance tracking; Information flow integrity

I. INTRODUCTION

Access control and capabilities are the most popular
mechanisms for implementing authorization decisions in
systems and languages. Roughly, whereas in access control a
token (authentication credential) that represents the current
principal is associated to a list of authorization rights, in
capabilities the authorization right is the token (capability).
Although, both mechanisms have been widely studied and
deployed at various levels of abstraction (see e.g. [1], [2],
[3], [4], [5], [6], [7], [8], [9], [10]), there seems to be
no clear consensus on the fundamental difference in their
modus operandi. Our broad goal is to formalize fundamental
properties that distinguish access control and capability
systems from each other. Our motivation is partly pedagogic,
and partly to discover the limits of what can and cannot
be enforced using access control systems and capabilities.
Against the backdrop of this broad goal, we make three
contributions in this paper.

First, we reflect upon the question of whether or not
access control and capability systems are equivalent in a
formal language-based setting. Specifically, we are interested
in this question in the context of capability systems that
possess what Miller et al. [11] call Property A or “no
designation without authority”: If a principal acquires a
capability, it also acquires the authority to use it.1 Property A
is very interesting because it is fundamental to many types

1The word principal should be interpreted broadly here. It may refer to
a section of code, a function, or a user.

of capability systems including all object capability systems,
which are used to obtain isolation and security in large code
bases [5], [3], [2]. In an object capability system, a capability
is a reference to an ordinary language object or a memory
location and there are no checks on using references, so the
possessor of a capability can always read or write it.

To formalize access control and capabilities, we design
a small core calculus with regions (principals) and memory
references (objects/capabilities), and equip it with two differ-
ent semantics—an access control semantics and a capability
semantics with property A. We then show that access control
and capabilities with property A are fundamentally different:
The access control semantics is strictly more permissive than
the capability semantics. (This formally justifies an earlier
informal argument to the same effect by Miller et al. [11].)

Our access control semantics is the expected one. It
intervenes on every use (read/write) of a reference and
checks that the use is compliant with a given access policy.
The capability semantics is less obvious, so we briefly
describe its design here. By contraposition of the definition
of property A, it follows that to limit authority in a capability
system with property A, we must limit the designation of
capabilities. In general, principals may acquire capabilities
either by generating them (e.g., by guessing them or com-
puting them from existing values) or by receiving them
from other principals. Hence, to get security, i.e., to control
authority, a capability system must ensure that:

1) A principal cannot generate a capability he is not
authorized to use, and

2) A principal cannot receive (from another principal) a
capability he is not authorized to use.

In practical systems with property A, (1) is ensured by
using abstract, unforgeable tokens for capabilities. (1) is
closely related to, and usually implied by, a property called
“capability safety” [12]. Capability safety requires that a
principal may acquire a capability only if the capability,
as an object, is reachable in the initial heap starting from
the principal’s initial set of capabilities. So capability safety
immediately implies (1). However, (1) in itself is not enough
to get security; we also need (2).

How do we enforce (2)? One option is to define authority
as the set of all capabilities that are obtained during program
execution. Then, (2) holds trivially. However, this implicit
definition of authority allows bugs in the code to leak

capabilities that the programmer never intended, without
breaking allowed authority in a formal sense.

An alternative to this implicit specification of authority
is to specify, via an explicit access policy, what references
(capabilities) each principal is authorized to access and
to ensure that each principal can only obtain references
that it can legitimately use. This approach is taken in
some practical implementations of object capabilities, e.g.,
Firefox’s security membrane [5], which intercepts all trans-
missions from one domain to another and restricts objects
(capabilities) in accordance with relevant policies (Firefox’s
policies are drawn from web standards like the same-origin
policy). Our capability semantics models a simplified version
of this general pattern. It intervenes on every transmitted and
computed value and checks that if the value is a reference
(capability), then the executing principal is authorized to
use the capability according to the access policy. This
intervention is computationally expensive, since every value
must be checked. Nonetheless, our capability semantics is
an ideal model of how security is enforced in the presence
of property A and an explicit access policy. Interestingly,
our semantics enforces not just (2) but also (1), so there
is no need to make capabilities unforgeable. Hence, our
approach is compatible with a language that includes pointer
arithmetic.2

As a second contribution, we formally examine confused
deputy attacks (CDAs) [16], which may have been the
primary reason for the invention of capabilities. A CDA
is a privilege escalation attack where a deputy (a trusted
system component) can act on both its own authority and on
an adversary’s authority. In a CDA, the deputy is confused
because it thinks that it is acting on its own authority when
in reality it is acting on an attacker’s authority. Cross-
site request forgery [17], FTP bounce attacks [18] and
clickjacking [19] are all prevalent examples of CDAs. It is
widely known that access control alone is insufficient to
prevent CDAs and it is known that the use of capabilities
prevents (at least some) CDAs.

We make two fundamental contributions in the context
of CDAs. First, we provide what we believe to be the
first formal definition of when a program is free from
CDAs. Our definition is extensional and is inspired by
information flow integrity [20], [21], [22], but we show
that CDA-freedom is strictly weaker than information flow
integrity. Second, we use this definition and our capability
semantics to formally establish that, perhaps surprisingly,
capability semantics is not enough to ensure CDA-freedom.
While capabilities prevent many CDAs that are based on
explicit designation of authority from the adversary to the

2Going beyond policy enforcement is the question of whether the policy
attains higher-level security goals such as ensuring specific invariants on
protected state or limiting observable effects to a desirable set. Such higher-
level goals can be attained using static verification, as in [13], [14], [15],
but these goals are beyond the scope of this paper.

deputy, there are other CDAs based on implicit designation
that capability semantics cannot prevent. We also stipulate
restrictions on programs under which capability semantics
prevent all CDAs. However, these restrictions are very strong
and render the language useless for almost all practical
purposes.

As our final contribution, we investigate alternate ap-
proaches for CDA prevention with fewer restrictions. Our
approaches rely on provenance tracking (taint tracking).
First, we formally show that merely tracking explicit prove-
nance (i.e., without taking into account influence due to
control flow) suffices to guarantee CDA-freedom with fewer
restrictions than capabilities require. In order to remove
even these restrictions, we further develop a full-fledged
provenance analysis and prove CDA-freedom. We compare
the three methods of preventing CDAs (capabilities, explicit
provenance tracking, full provenance tracking) in terms of
permissiveness through examples.

To summarize, the key contributions of this work are:
• We formally examine the fundamental difference be-

tween access control and capabilities in a language-
based setting.

• We give the first extensional characterization of CDA-
freedom and its relation to information-flow integrity.

• We show that capability semantics are not enough for
CDA-freedom in the general case. We then examine
conditions under which this implication holds.

• We present provenance tracking as an alternate ap-
proach for preventing CDAs with fewer assumptions
and prove its soundness.

Proofs and many other technical details are available in a
technical report available from the authors’ homepages. The
technical report also considers an extension of our calculus
with computable references (pointer arithmetic).

II. ACCESS CONTROL VS CAPABILITIES

Our technical development is based on a region calcu-
lus, a simple, formal imperative language with notions of
principals (which own a subset of references) and regions
(which specify a write integrity policy that we wish to
enforce). This simple calculus suffices to convey our key
ideas, without syntactic clutter. The syntax of our calculus
is shown in Figure 1. We assume two countable sets, Loc
of mutable references and Prin of principals. Elements of
Loc are written r and elements of Prin are written P.
Our calculus has five syntactic categories — values (v),
expressions (e), commands (c), regions (ρ), and top-level
programs or, simply, programs (P).

Values consist of integers (n), booleans (tt , ff) and point-
ers or mutable references Rr and Wr . References Rr and Wr
represent the read and write capabilities for the reference r .
Capability Rr can only be used to read r , whereas capability
Wr can only be used to write r . Separating these capabilities
allows us to make a fine distinction between security checks

v ::= Value
| n Integer
| tt True
| ff False

| Rr Read view of a location

| Wr Write view of a location

e ::= Expression
| v Value
| !e Dereference

c ::= Command
| if e then c else c Conditional
| while e do c Loop
| e := e Assignment
| c; c Sequential composition
| skip Skip

ρ ::= Region
| P Principal

| P Endorsed principal

P ::= Program
| ρ{c} Region command
| P ◦ P Region composition

Figure 1. Region calculus

on reads and writes. Expressions e are computations that
cannot update references. They include values and reference
reading (!e). Commands c are standard conditionals, while
loops, assignments, sequencing (c1; c2) and skip.

A region ρ is either a principal P or an endorsed principal,
P. In both cases, P represents a ceiling (maximum) authority
for executing code. However, in the case of an endorsed
region, the principal expresses the explicit willingness to
act on another principal’s behalf. In our definition of CDA-
freedom (Definition 3), we take this intention into account
to explicitly exclude endorsed regions as sources of CDAs.
For now, readers may ignore endorsed principals P, treating
them exactly like normal principals P.

A program P is a sequence of commands, executed in
possibly different regions. A program has the form ρ1{c1}◦

. . . ◦ ρn{cn} and means that first command c1 runs in the
region ρ1, then command c2 runs in region ρ2 and so on.
When a command runs in a region, the command is subject
to the ceiling authority of the region.

Regions and write integrity: The primary property we
wish to enforce is write integrity. To specify this property,
we assume that each reference is owned by a principal.
This is formalized by an ownership map O, that maps a
reference to the principal that owns the reference. Formally,
O : Loc → Prin . Principals are assumed to be organized
in a lattice L whose order is written ≥L. This lattice is
a technical representation of a write integrity policy: Code
executing in region P or P can write to reference r , i.e.,
it can wield the capability Wr only if P ≥L O(r).3 For
convenience, we extend the order ≥L to regions: ρ ≥L ρ′

when ρ ∈ {P,P}, ρ′ ∈ {P′,P′} and P ≥L P′.
It should be clear that the lattice L and the ownership

map O together define an access/authorization policy for
write references. We enforce this policy using either access
control or capability-based checks, as explained below. Au-
thorization for read references is also important in practice,
but is not the focus of this paper. In fact, we allow any
command to dereference any read capability the command
possesses.

Access control and capability semantics: Since our first
goal is to investigate the differences between access control
systems and capability systems, we equip our calculus with
two different runtime semantics — an access control seman-
tics (ACs) and a capability semantics (Cs). Both enforce
write integrity, but in different ways. Whereas ACs checks
that the ceiling authority is sufficient when a reference is
written (through the policy described above), Cs prevents
a region from getting a write capability which it cannot
wield in the first place. Technically, Cs must intercept every
constructed value and check that, if the value is a write
capability, then the executing region is higher (in L) than
the region that owns the reference accessible through the
capability. While this is cumbersome, in our opinion, this is
the formal essence of Miller et al.’s Property A of capability
systems [11]: possession of a reference (capability) implies
the authority to use it. By inference, if a region must not
write a reference according to the policy, it must not ever
possess the reference. We now formalize the two semantics
ACs and Cs.

As usual, a heap H is a map from Loc to values and
determines the value stored in each reference. Here, values
are integers and booleans. Both ACs and Cs are defined

by three evaluation judgments: 〈H , e〉
ρ

⇓X v for expres-

3The lattice specifies only an upper bound or ceiling on the set of
references the code in a region can write. However, the code must also
explicitly present a write capability to a reference in order to update the
reference. Miller et al. call this requirement to explicitly present capabilities
“property D” or “no ambient authority”, and argue that it is a pre-requisite
for ruling out confused-deputy attacks [11].

sions, 〈H , c〉 ρ→X 〈H ′, c′〉 for commands and 〈H ,P〉 →X

〈H ′,P ′〉 for programs. Here X may be A (for the semantics
ACs) or C (for the semantics Cs). In the rules for expressions
and commands, ρ denotes the region or the ceiling authority
in which evaluation happens. Figure 2 shows all the semantic
rules. When a rule applies to both ACs and Cs, we use the
generic index X in both the name of the rule and on the
reduction arrow.

The judgment for expression evaluation 〈H , e〉
ρ

⇓X v
means that when the heap is H , expression e evaluates
to value v . The ACs rules (top of Figure 2, left panel)
are straightforward. For dereferencing, we need the read
capability Rr (rule A-Deref). The Cs rules (right panel)
are exactly like the access control rules, but they all make
an additional check: If the value being returned is a write
capability, then the executing region ρ must be above the
owner of the capability’s reference. This ensures that the
executing region never gets a write capability whose owner’s
authority is not below the executing region’s authority.

The judgment for command evaluation 〈H , c〉 ρ→X

〈H ′, c′〉 means that c reduces (one-step) to c′ transforming
the heap from H to H ′. The rules for this judgment are
mostly standard. The only interesting point is that in the
ACs rule for reference update (rule A-Assign), we check
that the owner O(r) of the updated reference r is below the
executing region ρ. A corresponding check is not needed in
Cs (rule C-Assign) because, there, the assigned reference r
cannot even be computed unless ρ ≥L O(r). Technically,

the rules for
ρ

⇓C ensure that the check ρ ≥L O(r) is made
in the derivation of the first premise of C-Assign.

Access control more permissive than capabilities: We
now prove that ACs is strictly more permissive than Cs,
thus accomplishing our first goal. The extra permissiveness
of ACs over Cs should be expected because Cs prevents
code from obtaining write capabilities that it cannot use
whereas ACs allows the region to obtain such capabilities,
but prevents it from writing them (later). The following
theorem formalizes this intuition. It says that if a reduction
is allowed in Cs, then the reduction must also be allowed in
ACs.

Theorem 1 (ACs more permissive than Cs). 〈H ,P〉 →C

〈H ′,P ′〉 implies 〈H ,P〉 →A 〈H ′,P ′〉.

Proof: By induction on the given derivation of
〈H ,P〉 →C 〈H ′,P ′〉.

The converse of this theorem is false. For example,
consider the program ρ{Wr1 := Wr2} that runs with ceiling
authority ρ and stores the reference r2 in the reference r1.
Assume that ρ ≥L O(r1) but ρ 6≥L O(r2), i.e., ρ can write
to r1 but not to r2. Then, ACs allows the program to execute
to completion. On the other hand, Cs blocks this program
because ρ will not be allowed to compute the capability
Wr2, which it cannot wield. Technically, the second premise

of rule C-Assign will not hold for this example. Hence, the
access control semantics, ACs, is strictly more permissive
than the capability semantics, Cs.

Write integrity: Despite their differences, both ACs and
Cs provide write integrity in the sense that neither allows a
region to write a reference that it is not authorized to write.
We formalize and prove this result below.

Theorem 2 (ACs and Cs provide write integrity). If
〈H , ρ{c}〉→X

∗〈H ′, 〉 and H (r) 6= H ′(r), then ρ ≥L O(r).

Proof: For X = A, the result is proved by induction on
the reduction sequence →∗A and, at each step, by induction
on the derivation of the given reduction. For X = C, the
result follows from the result for X = A and Theorem 1.

Capability Safety: Capability safety is a widely dis-
cussed, but seldom formalized foundational property of
capability-based languages. Roughly, it says that capabilities
to access resources can only be obtained through legal
delegation mechanisms. We have proved capability safety
for Cs by instantiating a general definition of the property
due to Maffeis et al. [12]. Since capability safety is largely
orthogonal to our goals, we relegate its details to our
technical report.

Theorem 3 (Capability Safety). The semantics Cs is capa-
bility safe.

III. CONFUSED DEPUTY ATTACKS AND CAPABILITIES

A confused deputy attack [16], CDA for short, is a
privilege escalation attack where the adversary who doesn’t
have direct access to some sensitive resource, indirectly
writes the resource by confusing a deputy, a principal who
can access the resource. The confused compiler service is
a folklore example of a CDA. In this example, a privileged
compiler service is tricked by its unprivileged caller into
overwriting a sensitive billing file which the caller cannot
update, but the compiler can. The compiler service takes as
inputs the names of the source file to be compiled and an
output file. It compiles the source file, writes the compiled
binary to the output file and, importantly, on the side, writes
a billing file that records how much the caller must pay for
using the compiler. The caller tricks the compiler by passing
to it the name of the billing file in place of the output file,
which causes the compiler to overwrite the billing file with a
binary, thus destroying the billing file’s integrity. (Of course,
pay-per-use compilers are rare today, but the example is very
illustrative and CDAs remain as relevant as ever.)

CDAs are interesting from our perspective because they
distinguish access control semantics, which offer no defense
against CDAs from capability semantics, which can prevent
at least some CDAs. For instance, Cs would prevent the CDA
in the compiler service example above, but ACs would not
(see later examples for a proof). It has been claimed in the
past that in the presence of Miller et al.’s property A, Cs

Expressions:

Access control

A-Val
〈H , v〉

ρ

⇓A v

A-Deref
〈H , e〉

ρ

⇓A Rr v = H (r)

〈H , !e〉
ρ

⇓A v

Capability

C-Val
v = Wr =⇒ ρ ≥L O(r)

〈H , v〉
ρ

⇓C v

C-Deref

〈H , e〉
ρ

⇓C Rr v = H (r)
v = Wr ′ =⇒ ρ ≥L O(r ′)

〈H , !e〉
ρ

⇓C v

Commands:

X-if
〈H , e〉

ρ

⇓X v v = tt

〈H , if e then c1 else c2〉
ρ→X 〈H , c1〉

X-else
〈H , e〉

ρ

⇓X v v = ff

〈H , if e then c1 else c2〉
ρ→X 〈H , c2〉

X-while 1
〈H , e〉

ρ

⇓X v v = tt

〈H ,while e do c〉 ρ→X 〈H , c;while e do c〉
X-while 2

〈H , e〉
ρ

⇓X v v = ff

〈H ,while e do c〉 ρ→X 〈H , skip〉

Access control A-Assign
〈H , e1〉

ρ

⇓A Wr ρr = O(r) ρ ≥L ρr 〈H , e2〉
ρ

⇓A v

〈H , e1 := e2〉
ρ→A 〈H [r 7→ v], skip〉

Capability C-Assign
〈H , e1〉

ρ

⇓C Wr 〈H , e2〉
ρ

⇓C v

〈H , e1 := e2〉
ρ→C 〈H [r 7→ v], skip〉

X-Seq 1
〈H , c1〉

ρ→X 〈H ′, c′
1〉

〈H , c1; c2〉
ρ→X 〈H ′, c′

1; c2〉
X-Seq 2

〈H , skip; c2〉
ρ→X 〈H , c2〉

Program:

X-Prg 1
〈H , c〉 ρ→X 〈H ′, c′〉

〈H , ρ{c}〉 →X 〈H ′, ρ{c′}〉
X-Comp 1

〈H ,P1〉 →X 〈H ′,P ′
1〉

〈H ,P1 ◦ P2〉 →X 〈H ′,P ′
1 ◦ P2〉

X-Comp 2
〈H , ρ{skip} ◦ P〉 →X 〈H ,P〉

Figure 2. Access control (A) and Capability (C) semantics

prevent CDAs [16], [11], [23]. However, to the best of our
knowledge, there is, thus far, no formal characterization of
what it means for a system to be free from a CDA, nor a
formal understanding of whether all CDAs can be prevented
by Cs. In this section, we address both these issues. First, we
provide a formal definition of what it means for a program
to be free from CDAs (subsection III-A). Then we show that
Cs cannot prevent all CDAs even in a minimalist language
such as our region calculus, but they can actually prevent
all CDAs under very strong restrictions (subsection III-B).
This provides the first formal characterization of a language
(fragment) in which capabilities can provably prevent CDAs.

A. Defining CDA-freedom

The goal of this subsection is to define what it means for
a program to be CDA-free. To test whether a program is free
from CDAs or not, the program must allow for interaction
with an adversary. To this end, we define an authority context
or, simply, context, written EρA , which is a program with one
hole, where an adversary’s commands can be inserted. We
write ρA for the adversary region that has a hole.

Definition 1 (Authority Context). An authority context, EρA ,
is a program with one hole of the form ρA{•}. Formally,
EρA ::= ρ1{c1} ◦ . . . ◦ ρA{•} ◦ . . . ◦ ρn{cn}. We write
EρA [cA] for the program that replaces the hole • with the

adversary’s commands cA, i.e., the program ρ1{c1} ◦ . . . ◦
ρA{cA} ◦ . . . ◦ ρn{cn}.

Any program P (without a hole) can be trivially treated
as an authority context EρA = P ◦ρA{•}. In some examples,
we treat programs as authority contexts in this sense.

In a CDA, the goal of an adversary is to overwrite one
or more references. We call these references the “attacker’s
interest set”, denoted AIS . In the sequel, we assume a
fixed AIS . Intuitively, a context EρA is free from a CDA
if for every reference r ∈ AIS either the attacker cannot
control what value is written to r , or the attacker can write
to r directly. If the first disjunct holds, then there is no attack
on r whereas if the second disjunct holds, then there is no
need for a confused deputy (the context EρA) to modify r .
In either case, there is no confused deputy attack on r . The
first disjunct can be formalized by saying that no matter what
adversary code we substitute into EρA ’s hole, the final value
in r is the same. The second disjunct can be formalized by
saying that there must be some adversary code that, when
running with the ceiling authority ρA, can write the final
value of r to r directly. Based on this, we arrive at the
following preliminary definition of CDA-freedom (we revise
this definition later). Here, final denotes a fully reduced
program, of the form ρ{skip}.

Definition 2 (CDA-freedom). Context EρA starting from the
initial heap H and running under reduction semantics →red

is said to be free from CDAs, written CDAF(EρA ,H ,→red),
if for every cA and H ′ such that 〈H ,EρA [cA]〉 →∗red
〈H ′, final〉 and for every r ∈ AIS at least one of the
following holds:

1) (No adversary control) For any c′A, it is the case that
if 〈H ,EρA [c′A]〉 →∗red 〈H ′′, final〉 then H ′(r) =
H ′′(r), or

2) (Direct adversary write) There exists a c′′A such that
〈H , ρA{c′′A}〉 →∗red 〈H ′′′, final〉 and H ′(r) =
H ′′′(r).

Note that this definition does not require that the same
clause (1 or 2) hold for every r ∈ AIS . Instead, some r
may satisfy clause 1 and others may satisfy clause 2. This
definition is inspired by and strictly weaker than information
flow integrity (we show this formally in Section V).

Example 1 (Compiler service, simplified). We formalize
a simplified version of the confused compiler service de-
scribed at the beginning of this section. The simplification
is that this compiler does not contain the code that writes
the billing file (we add the billing file in Example 5).
Suppose that the compiler runs with authority > (the highest
authority), the compiler service’s caller/adversary runs with
authority ⊥ (the lowest authority, ⊥ 6≥L >) and that the
compiler reads the source program from the reference rS
and the name of the output file from the reference rO, both
of which the caller must write beforehand. Then, we can

abstractly model the relevant parts of the compiler service
as the context E⊥ = ⊥{•} ◦>{(!RrO) := compile(!RrS)},
where compile compiles a program. Note that this program
has a CDA, i.e., it is not CDA-free according to Definition 2.
For instance, consider adversaries of the form cA(S) =
(WrO := Wr ;WrS := S), where r ∈ AIS is a reference with
⊥ 6≥L O(r) and S ranges over source programs. Consider
the execution of E⊥[cA(s1)] for some source program s1.
Then, clause (1) does not hold for r because for another
source program s2 with compile(s1) 6= compile(s2),
the final heaps from the executions of E⊥[cA(s1)] and
E⊥[cA(s2)] disagree on r . Clause (2) clearly does not hold
when the initial heap does not contain compile(s1) in r .
Intuitively, the CDA here is the expected one: The adversary
passes whatever reference it wishes to overwrite in place of
the output file.

In this case, it is easy to see that ACs do not provide
CDA-freedom, because ACs will allow E⊥[cA(s1)] to run to
completion. Technically, CDAF(E⊥,H ,→A) does not hold
for all heaps H .

On the other hand, it can be shown that Cs does prevent
this CDA, i.e., CDAF(E⊥,H ,→C) holds for all H . The
intuition is that if the attacker is able to write any capability
Wr into rO, then it must be able to compute Wr , which
implies from the expression evaluation rules of Cs that ⊥ ≥L
O(r). Hence, ⊥ can write to r and, so, clause 2 must hold
for r .

Cs do not prevent all CDAs: Based on the above exam-
ple, one may speculate that Cs prevent all CDAs. However,
as the following three examples show, this speculation is
false.

Example 2 (Value attack). In this example, we do not allow
the adversary to control the location that is written, but
instead allow it to control the value that is written. This
could, for instance, model a SQL injection attack on a high
integrity database, via a confused deputy such as a web
server. Assume that r ∈ AIS , ⊥ 6≥L O(r) and ⊥ ≥L O(r ′),
so ⊥ cannot write to r directly, but it can write to r ′.
Consider E⊥ = ⊥{•} ◦ >{Wr := !(Rr ′)}. This context
simply copies the contents of r ′ into r . This context also
does not satisfy CDAF(E⊥,H ,→C) for all H . To see this,
consider the adversary c⊥ = (Wr ′ := 42) with H(r) 6= 42.
Then, E⊥[c⊥] ends with 42 in r . Clause 1 does not hold
because for c′⊥ = (Wr ′ := 41), E⊥[c′⊥] ends with 41 in r .
Clause 2 does not hold because no code running in ⊥{•}
can write 42 (or any value) to r .

Example 3 (Implicit influence). Consider the following con-
text: E⊥ = ⊥{•}◦>{if (!RrA) then WrH := 41 else WrH :=
42}, where ⊥ 6≥L O(rH) and ⊥ ≥L O(rA). This context
writes either 41 or 42 to a reference rH that the adversary
cannot write, depending on a boolean read from a reference
rA that the adversary can write. This context has a CDA

and it does not satisfy CDAF(E⊥,H ,→C) for all H . To
see this consider any H with H(rH) 6= 41 and the adversary
command c⊥ = (WrA := tt). Then, for the reference rH ,
neither clause (1) nor (2) holds.

Example 4 (Initial heap attack). Consider the following
context: E⊥ = ⊥{•} ◦ >{!RrA := !Rr ′A} where ⊥ ≥L
O(rA) = O(r ′A). Assume that the initial heap is such that
H (rA) =

WrH with ⊥ 6≥L O(rH), i.e., rA contains a refer-
ence WrH that the adversary cannot write. This context has
a CDA — CDAF(E⊥,H ,→C) does not hold for all heaps
H . To see this, consider the adversary c⊥ = (Wr ′A := 42)
and an initial heap H such that H (rH) 6= 42. Then, E⊥[c⊥]
ends with 42 in rH . Clause 1 does not hold because for
c′⊥ = (Wr ′A := 41), E⊥[c′⊥] ends with 41 in rH . Clause 2
does not hold because no code running in ⊥{•} can write
42 to rH .

Note that there is a fundamental difference in the nature
of the CDA in Examples 1, 2, 3 and 4. In Example 1,
the deputy (region >) obtains the write capability to the
reference under attack from the adversary. We refer to this
kind of capability designation as explicit. In Examples 2, 3
and 4 the deputy already has the capability (either directly
in its code or indirectly through the initial heap) but the
adversary influences what gets written to it. We refer to this
kind of designation as implicit. As should be clear from the
examples, Cs prevent CDAs caused by explicit designation
(Example 1) but do not prevent CDAs caused by implicit
designation.

In Section III-B, we show that the language can be
restricted to rule out cases with implicit designation. Triv-
ially, for this restricted language, Cs prevent all CDAs.
However, this restricted language also rules out many harm-
less programs. But before going into that, we point out a
shortcoming of our current definition of CDA-freedom and
propose a fix.

Relaxing CDA-freedom: Our current definition of
CDA-freedom completely rules out the possibility that the
adversary influence any reference of interest that it cannot
write directly. In practice, it is possible that the deputy allows
the adversary to have controlled influence on a privileged
reference. The billing file from the compiler example at
the beginning of Section III is a good example. There, the
adversary (compiler invoker) can legitimately influence the
billing file, e.g., by changing the size of the source file, but
the deputy (compiler service) wants to limit this control by
allowing only legitimate billing values to be written to the
billing file.

To permit such controlled interaction between the adver-
sary and the deputy, we introduce a notion of endorsement
(on the lines of information flow endorsement [20]). We
allow a region to be declared endorsed (denoted by P
as opposed to P), and subsequently be taken out of the
purview of the CDA-freedom definition. The intuition is

to distinguish, via an endorsed region, a confused deputy
from a deputy which is acting on an attacker’s authority
on purpose. We propose the following definition of CDA-
freedom with endorsement (denoted by CDAF-E). CDAF-E
essentially states that for an authority context (EρA), heap
(H) and a reduction relation (→red), CDAF should hold for
all subsequences of region commands which do not include
any endorsed principal.

Definition 3 (CDA-freedom with endorsement). Context
EρA = ρ1{c1} ◦ . . . ◦ ρn{cn} is called CDA-free with
endorsement under heap H and semantics →red, written
CDAF-E(EρA ,H ,→red), if for every contiguous subse-
quence E′ρA = ρi{ck} ◦ . . . ◦ ρj{ck+m} of EρA such that
for all i ∈ {k, . . . , k +m}, ρi is not of the form P for any
P, we have CDAF(E′ρA ,H ,→red).

The parameter H in CDAF-E(EρA ,H ,→red) represents
any heap starting from which we wish to test non-endorsed
subsequences of region commands in EρA . It may sound odd
that we use the same heap to test all such subsequences,
but the intent is to universally quantify over H outside the
definition, so specifying a separate starting heap for each
subsequence is not useful.

Example 5 (Compiler service). We extend the compiler
service (Example 1) with the billing file. Assume that the
billing amount for a source file s is computed by the function
billing(s) and that the billing file is represented by the ref-
erence rB with ⊥ 6≥L O(rB). Then, we can write the com-
plete compiler as the context: E⊥ = ⊥{•} ◦ >{(!RrO) :=
compile(!RrS)} ◦ >{WrB := billing(!RrS)}. Note that
this context has the same CDA as the simplified one from
Example 1 (the adversary can confuse the compiler by
passing a privileged reference in rO). Correctly, this context
does not satisfy Definition 3. However, importantly, it does
not fail this definition because of the third region command
>{WrB := billing(!RrS)}, which writes a controlled
value derived from an adversary controlled reference rS to
a privileged reference rB . That region command is endorsed
by > and, hence, excluded from the purview of the defini-
tion. Instead, the context fails the definition due its first two
region commands ⊥{•} ◦ >{(!WrO) := compile(!RrS)},
which indeed have an undesirable CDA.

B. Capability semantics prevent some CDAs

Examples 2, 3 and 4 show that the capability semantics,
Cs, cannot prevent all CDAs even in our simple region calcu-
lus. In this subsection, we explore this point further and show
that under very strong restrictions on programs (contexts)
and heaps, Cs do to prevent all CDAs. We introduce some
terminology for discourse. Given an attacker region ρA, we
call a region ρ low integrity or low if ρA ≥L ρ. Dually, a
region ρ is high integrity or high if ρA 6≥L ρ. A reference
r is called low (high) if O(r) is low (high), i.e., if ρA can

(cannot) directly write the reference.
From our examples, it should be clear that if a high region

ends up possessing a high reference r in AIS , then Cs
alone may not prevent all CDAs because Cs’ checks are
limited to references only and, hence, an adversary could
confuse the high region by influencing values that the high
region writes to a high reference in AIS . Consequently, if we
wish to use Cs to prevent all CDAs, we must place enough
restrictions on contexts to ensure that high regions never end
up possessing high references from AIS (low references are
not a concern for preventing CDAs because these references
always satisfy clause 2 of Definition 2). The converse is
also trivially true: If no high region ever possesses a high
reference from AIS , then no high reference from AIS
can ever be written under Cs semantics, so clause 1 of
Definition 2 must hold for all high references in AIS .

There are three ways in which a high region may end up
possessing a high reference from AIS . First, the command
that starts running in the high region may have a hard-coded
high reference from AIS , as in Examples 2 and 3. Second,
the command in the high region may read the high reference
from another reference, as in Example 4. Third, the adver-
sary may pass the high reference through another reference,
as in Examples 1 and 5. Checks made by Cs prevent the
adversary from ever evaluating (let alone passing) a high
reference, so the third possibility is immediately ruled out
in Cs semantics. It follows, then, that if we can restrict our
language and heaps substantially to prevent the first two
possibilities, then Cs semantics will imply CDA-freedom.

To prevent the first two possibilities, we restrict initial
commands in high regions and the initial heap. Accordingly,
we create the following two definitions, which say, respec-
tively, that the commands in non-endorsed high regions and
the (initial) heap do not have high references from AIS .

Definition 4 (No interesting high references in high re-
gions). A context EρA has no interesting high references in
non-endorsed high regions, written nihrP(EρA), if EρA =
ρ1{c1}◦. . .◦ρn{cn} and for all i ∈ {1, . . . , n}, if ρA 6≥L ρi,
ρi 6= P and Wr ∈ ci, then either ρA ≥L O(r) or r 6∈ AIS .

Definition 5 (No interesting high references in heap).
A heap H has no interesting high references, written
nihrH (H , ρA) if for all r , H (r) = Wr ′ implies either
ρA ≥L O(r ′) or r ′ 6∈ AIS .

We now state the main result of this section: If the initial
heap has no interesting high references and the context has
no interesting high references in non-endorsed high regions,
then the context has no CDAs under Cs.

Theorem 4 (Cs prevents some CDAs). If nihrH (H , ρA)
and nihrP(EρA), then CDAF-E(EρA ,H ,→C).

Proof: We first show that the absence of high references
of AIS from the heap and non-endorsed high regions is

invariant under →C . This implies that no high reference
from AIS is ever written in the execution of EρA [cA]. Hence,
clause 1 of Definition 2 holds for all high references in AIS
and clause 2 holds for all low references in AIS .

We note that the restrictions in the condition of this
theorem are extremely strong. In the next section, we present
alternative mechanisms for obtaining CDA-freedom that
relax these restrictions, at the expense of more runtime
overhead. Also note that, if preventing CDAs were the only
objective, then Cs are very imprecise: They block many
programs that have no CDAs.

Example 6. Consider the context ⊥{•} ◦ >{Wr := 1} that
simply writes 1 to the reference r . Assume ⊥ 6≥L O(r).
Clearly, this context does not have a CDA as the adversary
can control neither the reference that is written (always r)
nor the value that is written (always 1), so clause 1 of the
CDA-freedom definition holds for all references. However,
when instantiated with any adversarial command cA that
computes a high reference, the resulting program will be
stopped by Cs.

IV. CDA PREVENTION USING PROVENANCE TRACKING

In this section, we describe two mechanisms other than
Cs for preventing CDAs. Both mechanisms relax the as-
sumptions needed for CDA prevention (the pre-conditions
of Theorem 4) and, at the same time, execute several
CDA-free programs like Example 6, which Cs block. We
present the mechanisms as two alternative semantics for
our calculus. Both semantics start from the same baseline
— the access control semantics (ACs) — and add checks
based on provenance tracking to prevent CDAs. Provenance
tracking, which is based on the extensively studied taint
tracking (e.g., [24]), augments ACs to label each computed
value with a principal, which is a lower bound on the
principals whose references have been read to compute the
value. Since code in region ρ can only write to references
below the principal corresponding to the region ρ, the
principal labeling a value is also a lower bound on the
principals whose code has influenced the value. With such a
labeling mechanism in place, CDAs can be prevented easily
by checking during reference assignment (rule A-Assign)
that an attacker-influenced value is not written to a high
reference.

Our two new semantics differ in how they compute labels.
Our first semantics, called the explicit-only provenance
semantics or EPs, tracks regions that have influenced a value
but ignores the effect of implicit influences due to control
flow. As a result, this semantics prevents CDAs only under
some assumptions, but these assumptions are still weaker
than those needed for preventing CDAs via Cs (i.e., the
assumptions of Theorem 4). Our second semantics, called
the full provenance semantics or FPs, tracks all influences
on a value, including implicit ones. This semantics prevents

all CDAs without additional assumptions. Since EPs does
not track implicit influences, it can be implemented far
more efficiently than FPs (this is well-known from work
on information flow control), which justifies our interest in
both semantics, not just FPs.

A. Explicit-only provenance semantics

The explicit-only provenance semantics (EPs) tracks, for
every computed value, the principals whose references have
affected the value. Only explicit influences, such as those
due to reference copying are tracked. EPs does not track
influence due to control constructs (branch conditions in
conditionals and loops). We start from the access control
semantics, ACs, and modify the expression evaluation judg-

ment 〈H , e〉
ρ

⇓A v to include a label (a principal) on the
output value v . This label is a lower bound on all principals
whose references have been read during the computation
of e . To avoid confusion, we denote labels with the letter
`, but readers should note that like P’s, labels are drawn
from Prin .

The revised judgment for expression evaluation is written

〈H , e〉
ρ

⇓EP v `. Its rules are shown in Figure 3. In rule
EP-Val, the expression e is already a value. Computation of
the result does not read any reference, so the label on the
output is > (the highest point of the lattice L). In rule EP-
Deref, the expression being evaluated has the form !e . In this
case, the semantics first evaluates e to the read capability of
a reference Rr and then dereferences r . The result could
be influenced by every region that was dereferenced in
computing r from e as well as O(r). Hence, the output
label is the meet or greatest lower bound (u) of the label of
r (denoted `r in the rule) and O(r).

The command and program evaluation relations of EPs
are written

ρ→EP and→EP , respectively. They use the rules
of ACs (Figure 2), except the rule for assignment, which
now makes an additional check to ensure that low-influenced
values are not written to high references. This revised rule,
EP-Assign, is also shown in Figure 3. In comparison to the
ACs rule, A-Assign, there is one additional last premise.
This premise checks that the label on the updated reference
(called `r) and the label on the value written to the reference
(called `v) are both above (higher integrity than) the princi-
pal that owns the reference. This ensures that if the updated
reference is high (unwritable by the adversary directly),
then the value written has no low (adversarial) influence.
Importantly, the check is made only if the executing region
is not endorsed.

As in Theorem 4, to show that EPs ensures CDA-
freedom, we must assume that the initial commands in high
regions do not contain high references from AIS (condition
nihrP(EρA)). However, the condition on the initial heap
in Theorem 4—that the heap contain no high references
from AIS—can now be weakened slightly: We only require

that high references in the initial heap not contain any high
references from AIS . Intuitively, we do not care about the
contents of the low references in the initial heap because
anything read from low references will carry a low label
(by rule EP-Deref) and, hence, cannot influence anything
written to a high reference (rule EP-Assign).

Definition 6 (No interesting high references in high heap).
A heap H has no interesting high references in high parts,
written nihrHH (H , ρA) if for all r , ρA 6≥L O(r) and
H (r) = Wr ′ imply either ρA ≥L O(r ′) or r ′ 6∈ AIS .

Note that nihrH (H , ρA) immediately implies
nihrHH (H , ρA) so the latter is a weaker property
and hence constitutes a weaker assumption.

Theorem 5 (EPs prevents some more CDAs).
If nihrHH (H , ρA) and nihrP(EρA), then
CDAF-E(EρA ,H ,→EP).

Proof: We first show that the absence of high references
of AIS from the high part of the heap and non-endorsed
high regions is invariant under →EP . This implies that no
high reference from AIS is ever written in the execution of
EρA [cA]. Hence, clause 1 of Definition 2 holds for all high
references in AIS and clause 2 holds for all low references
in AIS .

We now discuss the relative permissiveness of Cs and EPs
for CDA-prevention.

Example 7. This examples highlights the difference be-
tween the assumptions nihrHH (H , ρA) of Theorem 5
and nihrH (H , ρA) of Theorem 4. Consider the context
>{Wr := !(RrL)}, which doesn’t even contain a hole for the
adversary (and, hence, trivially, has no CDA). Consider the
adversary level ρA = ⊥, assume that ⊥ ≥L O(rL) = O(r)
and that we start from a heap H with H (rL) =

WrH with
⊥ 6≥L O(rH). Then, it is easy to see that nihrHH (H , ρA),
so the assumption of Theorem 5 does not rule this program
out, but it is not the case that nihrH (H , ρA), so the
assumption of Theorem 4 does rule this program out.

We saw earlier that Example 6 has no CDA, but is
halted by Cs. It can be easily checked that EPs allows the
example to execute to completion. Based on this, one may
ask whether EPs is strictly more permissive than Cs when
the program passes the conditions of Theorem 4 (and, hence,
also of Theorem 5). However, this is false as the following
example shows.

Example 8. Consider the context ρ{WrH := !RrL}, which
has no hole for the adversary and, hence, no CDA. Assume
that ρA = ρ and ρ ≥L O(rH) > O(rL). Then, since the
context copies a value from a reference rL to rH and the
owner of the former is strictly below the owner of the latter,
EPs will stop this context from executing. On the other hand,
Cs will allow this context to execute to completion.

EP-Val
〈H , v〉

ρ

⇓EP v>
EP-Deref

〈H , e〉
ρ

⇓A Rr `r Pr = O(r) v = H (r)

〈H , !e〉
ρ

⇓EP v `ruPr

EP-Assign
〈H , e1〉

ρ

⇓EP Wr `r ρ ≥L O(r) 〈H , e2〉
ρ

⇓EP v `v ρ 6= P =⇒ `r u `v ≥L O(r)

〈H , e1 := e2〉
ρ→EP 〈H [r 7→ v], skip〉

Figure 3. Explicit provenance semantics (all other rules are same as those of access control semantics, Figure 2)

Hence, EPs prevents all CDAs on a slightly larger lan-
guage fragment than Cs (Theorem 4 vs Theorem 5). How-
ever, the permissiveness of EPs and Cs on CDA-free pro-
grams in the common fragment is incomparable (Examples 6
and 8).

B. Full provenance semantics

We now show that by tracking complete provenance of
values, including implicit influences due to control flow, we
can enforce CDA-freedom for our entire calculus (without
any restrictions on contexts or heaps). To do this, we
build a full provenance semantics or FPs for our calculus.
FPs is based upon similar semantics for information flow
control [24], with minor adjustments to account for regions.
As in EPs, every computed value is labeled with a principal,
which is a lower bound on principals whose references (and
code) could have influenced the value. To track influence
due to control flow, we introduce an auxiliary label to the
semantic state. This label, called the program counter or
pc in information flow control literature, is a lower bound
on all regions that have influenced the reachability of the
current command. When we enter the body of a control
construct like if-then-else or while, we lower the pc to the
meet of the current pc and the label of the branch or loop
condition. When we exit the body of the control construct
we restore the pc back to its original value (not restoring the
pc would make the semantics less permissive). To enable
this restoration, we maintain a stack of pc’s and push the
new pc to the stack when we enter an if-then-else or while
construct. We pop the stack when we exit the construct. This
stack is denoted PC . Its topmost label is the current pc. At
the top-level, we start with PC = [>].

The rules for FPs are shown in Figure 4. The expression
evaluation judgment is identical to that in EPs; it has the

form 〈H , e〉
ρ

⇓FP v `. The judgment for reducing commands
is now modified to include the stack PC . It takes the form
〈H ,PC , c〉 ρ→FP 〈H ′,PC ′, c′〉. When entering the body
of an if-then-else or while construct (rules FP-if, FP-else
and FP-while 1), we push pc u ` onto PC , where pc is
the current topmost label on PC and ` is the label of the
branch or loop condition. We also add a marker (endif or
endwhile) to the code body to indicate when the body ends.
When this marker is encountered, we pop the stack PC

(rules FP-endif and FP-endwhile). By doing this, we ensure
that the top label on PC is a lower bound on the labels
of all branch/loop conditions that influence the control flow
at the current instruction. The most interesting rule of the
semantics is that for assignment (rule FP-Assign), which, in
addition to all checks made by the corresponding rule in EPs,
also checks that the current pc is above the owning region
of the reference being written (last premise). This additional
check ensures that an adversary cannot influence the contents
of high references even through control constructs, as in
Example 3.

The judgment for evaluating programs, 〈H ,PC ,P〉 →FP

〈H ′,PC ′,P ′〉, also carries PC but its rules do not modify
PC in any interesting way. It is an invariant that PC =
[>] at the beginning of the program’s execution and every
time a region’s command ends with skip. This explains why
PC = [>] in rule FP-Comp 2.

Next, we show that FPs enforces CDA-freedom with-
out any assumptions. Technically, the definitions of CDA-
freedom, Definition 2 and Definition 3, do not directly apply
to FPs because those definitions assume that the reduction
semantics →red rewrite pairs 〈H ,P〉, whereas the FPs re-
duction→FP rewrites triples 〈H ,PC ,P〉. However, we can
reinterpret 〈H ,P〉 in Definition 2 to mean 〈H , [>],P〉. With
that implicit change, we can prove the following theorem.

Theorem 6 (FPs prevent all CDAs).
CDAF-E(EρA ,H ,→FP) holds unconditionally.

Proof: We prove that FPs enforces a strong form of
information flow integrity (Definition 8), which in turn
implies CDA-freedom with endorsement (Theorem 7). To
prove the former, we build a simulation relation between
states of the form 〈H ,PC , c〉, as is standard in information
flow control [24].

We now discuss the relative permissiveness of FPs and
EPs for CDA-prevention.

Example 9. This example demonstrates a CDA-free context
that violates the assumptions of Theorem 5 and, hence, is
not in the fragment on which EPs enforces CDA-freedom.
Consider Example 7, but stipulate that ⊥ 6≥L O(rL). The
heap now violates nihrHH (H , ρA), hence, the resulting
example lies outside the fragment allowed by the assump-
tions of Theorem 5. However, the example will execute to

Expressions:

FP-Val
〈H , v〉

ρ

⇓FP v>
FP-Deref

〈H , e〉
ρ

⇓FP Rr `r Pr = O(r) v = H (r)

〈H , !e〉
ρ

⇓FP v `ruPr

Commands:

FP-if
〈H , e〉

ρ

⇓FP v ` v = tt

〈H , pc :: PC , if e then c1 else c2〉
ρ→FP 〈H , (pc u `) :: pc :: PC , c1; endif〉

FP-else
〈H , e〉

ρ

⇓FP v ` v = ff

〈H , pc :: PC , if e then c1 else c2〉
ρ→FP 〈H , (pc u `) :: pc :: PC , c2; endif〉

FP-while 1
〈H , e〉

ρ

⇓FP v ` v = tt

〈H , pc :: PC ,while e do c〉 ρ→FP 〈H , (pc u `) :: pc :: PC , c; endwhile;while e do c〉

FP-while 2
〈H , e〉

ρ

⇓FP v v = ff

〈H ,PC ,while e do c〉 ρ→FP 〈H ,PC , skip〉
FP-endwhile

〈H , pc :: PC , endwhile〉 ρ→FP 〈H ,PC , skip〉

FP-Assign

〈H , e1〉
ρ

⇓FP Wr `r 〈H , e2〉
ρ

⇓FP v `v

ρ ≥L O(r) ρ 6= P =⇒ `r u `v u pc ≥L O(r)

〈H , pc :: PC , e1 := e2〉
ρ→FP 〈H [r 7→ v], pc :: PC , skip〉

FP-endif
〈H , pc :: PC , endif〉 ρ→FP 〈H ,PC , skip〉

FP-Seq 1
〈H ,PC , c1〉

ρ→FP 〈H ′,PC ′c′
1〉

〈H ,PC , c1; c2〉
ρ→FP 〈H ′,PC ′, c′

1; c2〉
FP-Seq 2

〈H ,PC , skip; c2〉
ρ→FP 〈H ,PC , c2〉

Program:

FP-Prg 1
〈H ,PC , c〉 ρ→FP 〈H ′,PC ′, c′〉

〈H ,PC , ρ{c}〉 →FP 〈H ′,PC ′, ρ{c′}〉
FP-Comp 1

〈H ,PC ,P1〉 →FP 〈H ′,PC ′,P ′
1〉

〈H ,PC ,P1 ◦ P2〉 →FP 〈H ′,PC ′,P ′
1 ◦ P2〉

FP-Comp 2
〈H , [>], ρ{skip} ◦ P〉 →FP 〈H , [>],P〉

Figure 4. Full provenance semantics

completion in FPs.

On contexts that lie in the fragment allowed by EPs, FPs
is no more permissive than EPs. This is easy to see: FPs
makes additional checks for implicit influences, which EPs
does not. In fact, due to these checks, FPs is strictly less
permissive on the EPs fragment, as the following example
shows.

Example 10. Consider the context ρ{if (!RrA) then WrH :=
41 else WrH := 42} with ρA = ρ ≥L O(rH) > O(rA). This
code has no CDA since it has no hole for the adversary. FPs
will stop this program because a location of lower integrity
(rA) influences a location of higher integrity (rH) via control
flow. However, EPs will allow this program to execute to
completion because it does not track such influences.

Summary of examples and CDA-prevention: To sum-
marize, the three semantics Cs, EPs and FPs soundly enforce
CDA-freedom with endorsement for progressively larger
sublanguages, with FPs covering our entire language. How-
ever, for programs and heaps that satisfy the assumptions of
Cs, EPs and Cs are incomparable in permissiveness. On the
subset of programs and heaps that satisfy the assumptions
of EPs, EPs is strictly more permissive than FPs. The ac-
cess control semantics, ACs, is ineffective against confused
deputy attacks, even those with only explicit designation.
The following table summarizes how all our examples fare
on all four semantics. A and R mean that the semantics
would accept and reject (halt) the program respectively. For
programs with CDA, we write A or R to mean accept
or reject when the adversary tries to launch a CDA. NP

means that the example is outside the fragment on which
the semantics enforces CDA-freedom.

Example Has CDA? ACs Cs EPs FPs

1 CDA A R R R
2 CDA A NP R R
3 CDA A NP NP R
4 CDA A NP R R
5 CDA A R R R
6 no CDA A NP NP A
7 no CDA A NP A A
8 no CDA A A R R
9 no CDA A NP NP A
10 no CDA A A A R

V. RELATION TO INFORMATION FLOW INTEGRITY

Our formalization of CDA-freedom, Definitions 2 and 3,
is inspired by the notion of information flow integrity. Here,
we compare the two. A standard baseline definition for
information flow integrity is Goguen and Meseguer (GM)
style non-interference [25], which states that a program
satisfies integrity if the high parts of the final memory
obtained by executing the program cannot be influenced
by the low parts of the initial memory. Since Definition 2
talks about a program with holes, we modify GM-style
non-interference to take holes into account. This yields
Definitions 7 and 8 (these definitions are inspired by [22]).
For an attacker ρA, say that H1 and H2 are high-equivalent,
written H1 ∼ρA H2, if for all r such that ρA 6≥L O(r), it is
the case that H1(r) = H2(r).

Definition 7 (Non-interference without endorsement). A
context EρA has non-interference against active adversaries
under reduction semantics →red, written NI-A(EρA ,→red),
if for all heaps H1,H2,H

′
1,H

′
2 and commands cA, c

′
A,

if H1 ∼ρA H2, 〈H1,EρA [cA]〉 →∗red 〈H ′1, final〉 and
〈H2,EρA [c′A]〉 →∗red 〈H ′2, final〉, then H ′1 ∼ρA H ′2.

Definition 8 (Non-interference with endorsement). Context
EρA = ρ1{c1}◦. . .◦ρn{cn} has non-interference against ac-
tive adversaries with endorsement under reduction semantics
→red, written NI-A-E(EρA ,→red), if for every contiguous
subsequence E′ρA = ρi{ck} ◦ . . . ◦ ρj{ck+m} of EρA such
that for all i ∈ {k, . . . , k +m}, ρi is not of the form P for
any P, we have NI-A(E′ρA ,→red).

It turns out that Definition 7 is strictly stronger than Def-
inition 2 (and consequently Definition 8 is strictly stronger
than Definition 3). Intuitively, Definition 7 ensures that all
high references in AIS satisfy clause 1 of Definition 2 (all
low references trivially satisfy clause 2 in all four of our
semantics).

Theorem 7 (Non-interference implies CDA-freedom). For
→red ∈ {→A,→C ,→EP ,→FP }, NI-A-E(EρA ,→red) im-
plies CDAF-E(EρA ,H ,→red) for every H .

The converse of this theorem does not hold, as the follow-
ing counterexample shows. The reason is that the definition
of non-interference quantifies over two initial heaps H1 and
H2, while the definition of CDA-freedom does not.

Example 11. Consider the context EρA =
ρH{WrH := !RrA}, where ρA 6≥L O(rH) and
ρA ≥L O(rA). The context copies the contents of rA
to rH , so this context does not satisfy Definition 8.
Specifically, we can choose any H1 and H2 that agree
on all references except rA. Then, H1 ∼ρA H2. However,
the final heaps disagree on rH , so the final heaps are not
equivalent. On the other hand, this context trivially satisfies
Definition 3 since it has no hole for the adversary.

VI. RELATED WORK

Understanding precisely which security properties a ca-
pability system can enforce and how capabilities and access
control differ are long-standing research topics. We focus
our discussion only on work dealing with these two issues.

Using informal arguments, Miller et al. [11] compare four
system models for taking authorization decisions: the first
two models are access control as columns and capabilities
as rows of the Lampson matrix [6]. The third model is
capabilities as keys (as in the Amoeba operating system [4])
and the fourth model is capabilities as objects (as in the Joe-
E language [26]). Our capability semantics (Cs) can be seen
as an abstraction of either model 2 or a degenerate case of
model 4, while our access control semantics (ACs) are an
abstraction of model 1. Miller et al.’s comparison is based
on 7 properties A...G, where only property A is claimed
to be impossible to hold in access control as columns.
(Although properties B...G are, in practice, not implemented
in access control, there is no reason in theory not to have
an access control system complying with B...G). Starting
from this comparison, we decided to focus our formalization
of capabilities only taking property A into account. Miller
et al. discuss three “myths”: the equivalence myth, the
confinement or delegation myth, and the irrevocability myth.
In this paper, we only consider the equivalence myth.

The confinement myth deals with “capabilities cannot
limit the propagation of authority”. Miller et al. also discuss
CDAs in relation to capabilities. CDAs, first described in
the literature in 1988 [16], are related to property A — No
Designation without Authority — since authorization given
to one party T (the deputy) is used to access a resource
designated by a different party U (the adversary).

The topmost implication of Fig. 14 in [11] and other
works such as [16], [23] seem to suggest that CDAs
are impossible in capability systems with Property A. Our
contribution is to clarify the arguments of [11] and include
examples of CDAs that can happen with Property A and
those that cannot. Indeed, in some cases of CDAs, designa-
tion of a resource can be done implicitly by U, in contrast

to explicit designation which would clearly be prevented by
Property A.

Chander et al. [27] use state-transition systems to model
capabilities and access control. They model two versions
of capabilities, based on [1]. The first model is capabilities
as rows in the Lampson matrix and the second model is
capabilities as unforgeable tokens. None of these models
have property A. Hence, their capabilities are more similar
to our access control model than to our capabilities model.
In particular, in their second capabilities model where a
capability to access a resource r is an unforgeable token T(r),
there is nothing that prevents a subject s from designating r
even though s cannot generate a capability T(r). Moreover,
once s possesses T(r), s can pass this capability to other
subjects. In contrast, our capability semantics would prevent
this. With the goal of comparing both systems according
to their power of delegation, Chander et al. prove various
simulation relations between capabilities and access control.
One of their main results is the equivalence between access
control and capabilities viewed as rows of the Lampson
access matrix (without modeling property A). In contrast,
we show that the equivalence does not hold with property A.
Chander et al. also prove that there is no equivalence
between access control and capabilities when properties
of capabilities seen as unforgeable tokens are taken into
account. In their model, this is due to the impossibility of
revoking capabilities. We have not modeled revocation in our
calculus since it is not needed for exploring the equivalence
myth.

Maffeis et al. [12] formally connect capabilities that are
objects [2] to operational semantics of programming lan-
guages. Capability safety refers to the property of a language
that guarantees that a component must have a capability to
access a resource. They explicitly formalize property A (see
§V, Def. 8, cond. 1(b) of [12]) as a basic condition of an
object capability system. They do not directly explain how
property A can be modeled in an operational semantics,
which is central to our results. They also prove that Cajita, a
component of Caja [3]—an object capability language based
on JavaScript—is capability safe.

Murray et al. [28] define an object capability model in the
CSP process algebra. In their model, they do not formalize
property A and, in particular, they allow for delegation
of capabilities as in [27]. These points differ from our
model. Using a model checker, Murray et al. can detect
covert channels of illegal information flows [21]. Their
work focuses on the detection of information flow leaks.
Our CDA-freedom is similar to, but slightly weaker than,
information flow integrity [22] and our work is focused
on prevention, not detection. Our full provenance analysis
ensures information flow integrity (and thus CDA-freedom).

Reasoning about the correct use of capabilities, separating
security policies from implementations, has been studied
in [29] and [30]. Drossopoulou and Noble [29] analyze

Miller’s Mint and Purse example of [2] (in capabilities based
on JAVA as in, e.g., Joe-E [26]) using a formal specification
language. Building on object capabilities, Drossopoulou et
al. [31] propose special specification predicates in a spec-
ification language based on JavaScript and simpler than
the one of [29]. With these specification predicates they
can model risk and trust in systems having components
with different levels of trust. In their specification language,
they cannot directly express the idea of encapsulation of
objects. We conjecture that explicitly allowing encapsulation
of objects to appear in specifications should be tantamount
to assuming property A in object capability systems. Along
the same lines, Saghafi et al. [23] informally discuss a
relation between Property D of [11] and encapsulation in
order to compare capabilities with feature-oriented program-
ming. Dimoulas et al. [30] propose extensions to capability
languages that restrict the propagation of capabilities accord-
ing to declarative policies. By means of integrity policies,
they restrict components that may influence the use of a
capability. They do not model property A.

Birgisson et al. [32] propose secure information flow
enforcement by means of capabilities. They do so by propos-
ing a transformation from arbitrary source programs to a
language with capabilities. (In their experiments, the target
language is Caja [3].) They present formal guarantees of
information flow security [21] and permissiveness.

VII. CONCLUSION

We examine the relation between access control and
capability semantics in a simple language setting. We model
Miller et al.’s property A “no designation without authority”,
but without appealing to object encapsulation as in object
capability languages [2]. We also present the first extensional
characterization of freedom from confused deputy attacks
(CDAs) and relate it to information flow integrity. We clarify
which classes of CDAs capabilities (as a mechanism) can
and cannot prevent and stipulate the exact conditions under
which they can prevent all classes of CDAs. Furthermore, we
present alternate ways of preventing CDAs using provenance
tracking with fewer conditions.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their helpful
comments. This work was supported in part by the Deutsche
Forschungsgemeinschaft (DFG) grant “Information Flow
Control for Browser Clients” under the priority program
“Reliably Secure Software Systems” (RS3) and the ANR
project AJACS ANR-14-CE28-0008.

REFERENCES

[1] H. M. Levy, Capability-Based Computer Systems. Newton,
MA, USA: Butterworth-Heinemann, 1984.

[2] M. Miller, “Robust composition: Towards a unified approach
to access control and concurrency control,” Ph.D. dissertation,
Johns Hopkins University, 2006.

[3] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay,
“Safe active content in sanitized javascript.” [Online].
Available: http://code.google.com/p/google-caja

[4] A. S. Tanenbaum, R. van Renesse, H. van Staveren, G. J.
Sharp, and S. J. Mullender, “Experiences with the amoeba
distributed operating system,” Comm. ACM, 1990.

[5] Mozilla Developer Network, “Script security.” [Online].
Available: https://developer.mozilla.org/en-US/docs/Mozilla/
Gecko/Script security

[6] B. Lampson, “Protection,” Operating Systems Review, vol. 8,
no. 1, pp. 18–24, Jan. 1974.

[7] R. Sandhu, “Role-based access control,” Advances in Com-
puters, vol. 46, pp. 237–286, 1998.

[8] Ú. Erlingsson and F. B. Schneider, “IRM enforcement of
Java stack inspection,” in IEEE Symposium on Security and
Privacy (Oakland), 2000.

[9] A. Birgisson, M. Dhawan, U. Erlingsson, V. Ganapathy, and
L. Iftode, “Enforcing authorization policies using transac-
tional memory introspection,” in ACM Conference on Com-
puter and Communications Security (CCS), 2008.

[10] D. Garg and F. Pfenning, “Noninference in constructive
authorization logic,” in IEEE Computer Security Foundations
Workshop (CSFW), 2006.

[11] M. Miller, K.-P. Yee, J. Shapiro, and C. Inc, “Capability
myths demolished,” 2003. [Online]. Available: http://www.
erights.org/elib/capability/duals/myths.html

[12] S. Maffeis, J. C. Mitchell, and A. Taly, “Object capabilities
and isolation of untrusted web applications,” in IEEE Sympo-
sium on Security and Privacy (Oakland), 2010.

[13] S. Drossopoulou and J. Noble, “The need for capability
policies,” in Workshop on Formal Techniques for Java-like
Programs (FTfJP), 2013.

[14] L. Jia, S. Sen, D. Garg, and A. Datta, “A logic of programs
with interface-confined code,” in IEEE Computer Security
Foundations Symposium (CSF), 2015.

[15] D. Devriese, L. Birkedal, and F. Piessens, “Reasoning about
object capabilities with logical relations and effect parametric-
ity,” in IEEE European Symposium on Security and Privacy
(Euro S&P), 2016.

[16] N. Hardy, “The confused deputy (or why capabilities might
have been invented),” Operating Systems Review, vol. 22,
no. 4, pp. 36–38, 1988.

[17] OWASP, “Cross site request forgery.” [Online]. Avail-
able: https://www.owasp.org/index.php/Cross-Site Request
Forgery %28CSRF%29

[18] CERT, “Ftp bounce attacks.” [Online]. Available: http://www.
cert.org/historical/advisories/CA-97.27.FTP bounce.cfm

[19] L. Huang, A. Moshchuk, H. J. Wang, S. Schecter, and
C. Jackson, “Clickjacking: Attacks and defenses,” in USENIX
Security Symposium, 2012.

[20] P. Li, Y. Mao, and S. Zdancewic, “Information integrity
policies,” in Workshop on Formal Aspects in Security and
Trust (FAST), 2003.

[21] A. Sabelfeld and A. C. Myers, “Language-based information-
flow security,” IEEE Journal on Selected Areas in Communi-
cations, vol. 21, no. 1, pp. 5–19, 2003.

[22] C. Fournet and T. Rezk, “Cryptographically sound implemen-
tations for typed information-flow security,” in ACM Sym-
posium on Principles of Programming Languages (POPL),
2008.

[23] S. Saghafi, K. Fisler, and S. Krishnamurthi, “Features and
object capabilities: Reconciling two visions of modularity,”
in International Conference on Aspect-oriented Software De-
velopment (AOSD), 2012.

[24] G. Boudol, “Secure information flow as a safety property,” in
Workshop on Formal Aspects in Security and Trust (FAST),
2008.

[25] J. A. Goguen and J. Meseguer, “Security policies and secu-
rity models,” in IEEE Symposium on Security and Privacy
(Oakland), 1982.

[26] A. Mettler, D. Wagner, and T. Close, “Joe-E: A security-
oriented subset of Java,” in Network and Distributed System
Security Symposium (NDSS), 2010.

[27] A. Chander, J. C. Mitchell, and D. Dean, “A state-transition
model of trust management and access control,” in IEEE
Computer Security Foundations Workshop (CSFW), 2001.

[28] T. C. Murray and G. Lowe, “Analysing the information flow
properties of object-capability patterns,” in Formal Aspects in
Security and Trust (FAST), 2009.

[29] S. Drossopoulou and J. Noble, “How to break the bank:
Semantics of capability policies,” in International Conference
on Integrated Formal Methods (iFM), 2014.

[30] C. Dimoulas, S. Moore, A. Askarov, and S. Chong, “Declar-
ative policies for capability control,” in IEEE Computer
Security Foundations Symposium (CSF), 2014.

[31] S. Drossopoulou, J. Noble, and M. S. Miller, “Swapsies on
the Internet: First steps towards reasoning about risk and
trust in an open world,” in ACM Workshop on Programming
Languages and Analysis for Security (PLAS), 2015.

[32] A. Birgisson, A. Russo, and A. Sabelfeld, “Capabilities for
information flow,” in ACM Workshop on Programming Lan-
guages and Analysis for Security (PLAS), 2011.

Hybrid Monitoring of Attacker Knowledge
Frédéric Besson, Nataliia Bielova and Thomas Jensen

Inria, France

Abstract—Enforcement of noninterference requires
proving that an attacker’s knowledge about the initial
state remains the same after observing a program’s
public output. We propose a hybrid monitoring mech-
anism which dynamically evaluates the knowledge that
is contained in program variables. To get a precise esti-
mate of the knowledge, the monitor statically analyses
non-executed branches. We show that our knowledge-
based monitor can be combined with existing dynamic
monitors for non-interference. A distinguishing feature
of such a combination is that the combined monitor
is provably more permissive than each mechanism
taken separately. We demonstrate this by proposing a
knowledge-enhanced version of a no-sensitive-upgrade
(NSU) monitor. The monitor and its static analysis
have been formalized and proved correct within the
Coq proof assistant.

I. Introduction
Information-flow control provides a promise of a strong

information security property [24]. Today most research
has focused on monitors for noninterference [4], [5], [18],
[25], that block executions where secret inputs flow into
public outputs. Such flow can happen due to explicit or
implicit information flow. An explicit flow occurs when
secret information is stored in a public variable visible to
an attacker. An implicit flow happens when assignments
to public variables are made under secret control (i.e.,
following a test on a secret variable), like in Program 1.1

Program 11 l = 0; if (h) then l = 1; output l

There is an implicit flow from h to l because by observing
the value of l the attacker can deduce the secret value h.
Dynamic monitors control one execution of the pro-

gram and propagate a security label to each program
variable. If the monitor suspects a possible flow (explicit
or implicit) from secret inputs to a variable labeled as
public, it blocks the execution. Such purely dynamic in-
formation flow control was first proposed by Fenton [11]
and has recently regained interest [5], [25] for (at least)
two reasons. First, some languages, such as JavaScript,
are so dynamic that a precise static analysis is practi-
cally impossible. Therefore, an attractive alternative is
to resort to dynamic monitoring, either by extending an
interpreter for the language or by inlining a monitor in
the program. Second, even if a program may have some

This research has been partially supported by the French ANR
projects AJACS ANR-14-CE28-0008 and ANR-10-LABX-07-01 Lab-
oratoire d’excellence Comin Labs.

1In all examples, variables with names starting with “h” are secret,
and all the other variables are public.

insecure executions, there may be other executions that
are perfectly secure. While a static analysis would reject
such programs, dynamic monitors can identify and allow
some secure executions of insecure programs.
However, dynamic monitors also have several limita-

tions, due to the fact that they analyse only one exe-
cution of a program. As a result, they make the worst-
case assumption about what happens later on in the
current execution, and what could happen in other execu-
tions. Dynamic information flow control first proposed by
Zdancewic [25] and later used by Austin and Flanagan [4]
is based on the no-sensitive-upgrade (NSU) principle: it
halts an execution when a public variable gets assigned
under secret control. This principle severely limits the
permissiveness of dynamic monitors in certain cases.
• They may block executions too early: if later a vari-

able is updated, then there is no information leakage.

Program 21 if (h) then l = 1;
2 l = 0;
3 output l

Program 2 is secure but its execution is blocked by
NSU when h = true.

• If the variable is assigned the same value on both
branches, there is no leakage. Program 3 is secure but
NSU blocks all its executions.

Program 31 x = 1;
2 if (h) then l = 1 else l = x;
3 output l

The first problem of blocking execution too early was
addressed by the permissive-upgrade (PU) principle [5], by
introducing a special “partially leaked” label. The second
problem requires knowledge about other executions and
has motivated a strand of research in hybrid information
flow monitors that combine static and dynamic analysis.
Hybrid monitors (e.g. [7], [17], [18], [23]) analyse the

source code of each non-executed branch under secret con-
trol to detect possible implicit flows. A dynamic monitor
can be enhanced with a variety of static analyses. Le
Guernic et al. [17]–[19] proposed the first combination
of dynamic information flow monitors with static depen-
dency analyses. Besson et al. [7] extended this work to a
more sophisticated constant propagation and dependency
analysis. Recently, Hedin et al. have shown how to improve
their dynamic information flow analysis for JavaScript [14]
with a points-to analysis [12].

(a) from Hedin et al. [12]. (b) our result

Fig. 1: Relative permissiveness revisited.

Permissiveness. All the monitors discussed above
provably enforce noninterference, however some of them
may block more program executions than others. Intu-
itively, permissiveness defines how many program execu-
tions are accepted by the monitor even if the program
may be insecure. Hedin et al. [12] have proven that purely
dynamic and hybrid monitors are incomparable in their
permissiveness. For example, a dynamic NSU monitor
allows execution of Program 1 when h = false, while the
hybrid monitor stops it. On the other hand, the dynamic
NSU monitor will stop execution of Program 2 when
h = true while the hybrid monitor will allow it. Figure 1a
graphically shows the secure programs, and programs, for
which the static, dynamic and hybrid analysis identify as
secure all its executions (from Hedin et al. [12]).
In this paper, we propose a knowledge-based hybrid

monitor that is able to reach a level of permissiveness
that was deemed impossible for standard hybrid monitors.
Figure 1b graphically shows that all the executions of
all the secure programs that are accepted by dynamic
monitors, are also accepted by an enhanced version of our
knowledge-based hybrid monitor.
Modelling attacker knowledge. Basic information

flow control detects whether or not a program execution
may leak information, but will not provide a more pre-
cise description of what information is being leaked, or
equivalently, what knowledge an attacker gains from an
observation. However, switching to such knowledge-based
analysis can provide a finer control over information flow.
Previously [7], the authors have proposed a hybrid infor-
mation flow control that combines dynamic monitoring
and static analysis. This technique computes the leakage
of a concrete program execution by labeling every program
variable with a logical formula over the secret inputs. This
formula is a logical description of the knowledge that an
attacker can deduce about the initial state of the program
when observing the value of a variable.

Program 41 x = 0; y = 0;
2 if (h1) then y = 1;
3 if (h2) then x = 1 else x = y;
4 output x

Consider Program 4 and its execution when h1 = false
and h2 = true. When Program 4 outputs 1, the attacker

learns that either h1 or h2 was true:

Attacker knowledge: h1 ∨ h2

Given the same initial memory where h1 = false and
h2 = true, the hybrid monitor of Besson et al. [7] asso-
ciates the knowledge to the variable after analysing each
test: the first test on h1 fails, thus the value of y remains
unchanged and the knowledge of y is ¬h1; upon the second
test, the monitor concludes that the value of x is 1 in the
true branch and 0 in the false branch. As the values are
not the same, the knowledge of the output x = 1 might
depend on h2 and on the knowledge of y. Therefore, the
knowledge computed by the monitor is:

Approximated knowledge: ¬h1 ∧ h2

As is readily seen, the approximated knowledge is much
less precise than the real attacker knowledge. The reason
for this gap between estimated and actual knowledge is in
the choice of the model of knowledge domain. Intuitively,
the knowledge in [7] is limited to a set of environments
that can contribute to the current value of x.
A more expressive knowledge domain. In this pa-

per, we propose a more general representation of attacker
knowledge: the knowledge associated with a variable x is
the set of environments that lead to a particular value of x
for several possible values of x. In other words, the knowl-
edge in x groups the initial environments into equivalence
classes, such that two environments are equivalent if they
lead to the same value of x. This models much more of
the input-output relation of the program.
This new knowledge domain leads to several advantages

over the existing previous work [7]. The first advantage
is that it empowers the monitor to reason about several
executions, and hence to prove noninterference in more
cases than in previous work [7]. For a concrete example, see
Example 1 in Section IV-B. With the previous knowledge
representation in [7], we would infer that z depends on x
and y; while with the new representation we prove that x
and y do not interfere with z.
The second advantage of this more expressive knowl-

edge domain is that it enables a composition with other
monitors, and we demonstrate such composition with the
no-sensitive upgrade (NSU) monitor. The new knowledge
domain allows the hybrid monitor to reason about the
other executions that would be blocked by the other
dynamic monitor for non-executed paths. This leads to
a composition of monitors that is strictly more permissive
that each monitor separately. We summarise this result
in Figure 1b, showing that the knowledge-based hybrid
monitor accepts more secure executions than any purely
dynamic monitor it is built upon2.

2Notice that the permissiveness result with respect to static anal-
ysis is achieved by transitivity of permissiveness: a knowledge-based
hybrid monitor is provably more permissive than a standard hybrid
monitor, and a standard hybrid monitor is more permissive than a
static analysis of Hunt and Sands [15] (see Thm. 3 of [23]).

The third advantage is that the proposed knowledge do-
main allows us to design amore precise static analysis. Our
knowledge domain is used for both the dynamic analysis
of the executed branch and the static analysis of non-
executed branched. This gives a pleasant uniformity to the
theory and provides a more general framework, compared
to the ad-hoc static analyses for the non-executed branches
in [7].
Contributions.
• We propose a hybrid monitor that computes the

knowledge of the attacker. Our monitor combines a
dynamic analysis with a static analysis of the non-
executed branches. The knowledge domain allows the
monitor to compute an attacker’s knowledge more
precisely than in previous works [7].

• The knowledge-based hybrid monitor is proved to
be correct (it safely over-approximates the attacker’s
knowledge) and sound (it can be used to enforce non-
interference). The proof has been formalized in the
Coq proof assistant [1].

• The proposed monitor can be combined with existing
dynamic or hybrid monitors for non-interference. A
distinguishing feature of such a combination is that
the combined monitor is provably more permissive
than the monitor it builds upon.

• We have proposed an effective and symbolic repre-
sentation of knowledge and implemented the compu-
tation of knowledge as part of our Coq formalization.
The results reported in this paper are all computed
with this implementation.

II. Attacker knowledge and non-interference
A. Attacker model

We consider a classical attacker model, following the
definition of gadget attacker [6]. An attacker provides
the program source code and this program runs in an
environment that contains secret information, producing
some outputs, observable to the attacker.

B. Attacker knowledge
Given an observation at the end of an execution, an

attacker knowledge is the set of all possible input environ-
ments that can lead to that observation. This naturally in-
duces an equivalence relation on input environments. Lan-
dauer and Redmond [16] propose a lattice of equivalence
classes of environments for representing the knowledge of
an attacker. Askarov and Sabelfeld [3] and Askarov and
Chong [2] give a characterisation of non-interference in
terms of attacker knowledge. The remainder of this section
summarizes notions and results from these papers.

We assume a security policy in the form of a lattice of
two security levels ({L,H},v), where L v H and we use t
as the least upper bound. A labelling function Γ assigns
security levels to all program variables. We write ρL for
the L-projection of the environment ρ onto those variables
x whose level is lower than L, i.e., for which Γ(x) v L,

and in the future notations we drop an implicit labelling
function Γ. We write [ρ]L for the set of environments that
agree with ρ on low variables: [ρ]L = {ρ′ | ρL = ρ′L}.
The program semantics is given by a relation (P, ρ) ↓ v,

where P is a program that produces output v at the end
of the execution. This output is visible to the attacker.
The knowledge is defined as the set of low-equivalent
environments that can produce the same output v.

Definition 1 (Attacker knowledge). Given a program P ,
an initial environment ρ, and a final observation v, the
attacker knowledge is the set of environments that agree
with ρ on low variables and leads to the observation of v:

K↓(P, v, ρ) = {ρ′ | ρL = ρ′L ∧ (P, ρ′) ↓ v}.

Notice that a smaller knowledge set represents fewer
possible inputs that produce the same program output,
thus a smaller set corresponds to a bigger amount of
information. Therefore, a smaller knowledge set is a safe
approximation of the actual attacker knowledge.

C. Termination-Insensitive Noninterference
In the following, we describe the relationship between

knowledge and the standard notion of noninterference.
We shall focus on termination-insensitive noninterference
(TINI), and hence restrict attention to a termination-
insensitive version of knowledge that only considers envi-
ronments in which the program terminates and where the
program output is visible to the attacker. The knowledge
obtained just from observing termination, given an initial
observation ρL is called initial attacker knowledge.

Definition 2 (Initial attacker knowledge). Given program
P and an environment ρ, the initial attacker knowledge is:

I↓(P, ρ) = {ρ′ | ρL = ρ′L ∧ ∃v.(P, ρ′) ↓ v]}.

Later on, we omit the superscript ↓ when it can be inferred
from the context.
The security condition states that the attacker’s knowl-

edge should not grow with the new observation produced
by the program execution.

Definition 3 (Knowledge-based security for input en-
vironment ρ). Program P is secure for an initial input
environment ρ if whenever (P, ρ) ↓ v then

K(P, v, ρ) = I(P, ρ).

Notice that if the program P does not terminate in an
environment ρ, then P is considered secure for ρ. However,
the program still might be insecure for any other low-equal
environment, in which the program terminates.

The standard notion of termination-insensitive nonin-
terference (TINI) is stated by comparing pairs of low-
equivalent initial environments.

Definition 4 (TINI). A program P is termination-
insensitively noninterferent (TINI) if whenever ρ1

L = ρ2
L,

and (P, ρ1) ↓ v1 and (P, ρ2) ↓ v2, then v1 = v2.

Askarov and Sabelfeld [3, Prop. 2] have shown that there
is an equivalence between the knowledge-based security
and TINI for a lattice with two elements.

Lemma 1. A program P satisfies TINI if and only if P
is secure for all initial environments ρ.

III. Preliminary definitions
A. Language

We use a simple untyped imperative language extended
with a specific output command output x which evaluates
the variable x and outputs its value. This output is visible
to the attacker at security level L. All the commands of the
language are standard, except perhaps for the assume(e)
operator, which evaluates e and continues or halts an
execution depending on whether its value is true or false.
The syntax of this language is as follows:
P 3 P ::= c; output x E 3 e ::= n | x | e1 ⊕ e2 | ¬e
C 3 c ::= skip | x:= e | c1; c2 | assume(e) |

if e then c1 else c2 | while e do c

The set of expressions contains the usual numeric and
Boolean expressions. Every expression can be interpreted
as a boolean value, and hence conditional commands take
an arbitrary expression as condition. The exact interpre-
tation of expressions as booleans is, however, not essential
to the results in this paper and will be left unspecified. We
use ⊕ to denote an arbitrary binary operator.

An environment ρ ∈ Env = Var → V maps variables
to values. The big-step program semantics is presented
in Figure 2. The semantics of commands is denoted by a
binary relation (c, ρ) ↓ ρ′ meaning that command c when
executed in environment ρ will evaluate to ρ′ and the
semantics of programs is denoted by (P, ρ) ↓ v meaning
that program P when executed in environment ρ will
produce an output v.

skip (skip, ρ) ↓ ρ assign (x := e, ρ) ↓ ρ[x 7→ JeKρ]

seq
(c1, ρ) ↓ ρ′ (c2, ρ′) ↓ ρ′′

(c1; c2, ρ) ↓ ρ′′ assume
CJeKρ = tt

(assume(e), ρ) ↓ ρ

if
CJeKρ = α (cα, ρ) ↓ ρ′

(if e then ctt else cff , ρ) ↓ ρ′

while
(if e then c; while e do c else skip, ρ) ↓ ρ′

(while e do c, ρ) ↓ ρ′

output
(c, ρ) ↓ ρ′ JxKρ′ = v

(c; output x, ρ) ↓ v

where JxKρ = ρ(x) JnKρ = n Je1 ⊕ e2Kρ = Je1Kρ ⊕ Je2Kρ

Fig. 2: Language semantics

Let B denote the set of boolean values. To accommodate
the fact that any expression can be used as a condition, we

assume a function C : V→ B that specifies how each value
is interpreted as a boolean. C satisfies the following two
constraints which ensure that ¬e represents the negation
of the expression e and e = e′ models the fact that e and
e′ evaluates to the same value:

C(J¬eKρ) = ¬C(JeKρ) C(Je = e′Kρ) = (JeKρ = Je′Kρ)

B. Notations
Given sets A and V , we write V] for V ∪ {⊥,>}. In

domains of the form V] we write bvc to assert that v is an
element that is neither ⊥ nor >. For a function f ∈ A→
V], we write f(a) = bvc for f(a) = v ∧ v /∈ {⊥,>} and
f -1(v) = {a | f(a) = bvc} for the pre-image of v.
Given a domain V], we get a flat lattice (V],4,⊥,>)

such that ⊥ 4 x, x 4 > and bxc 4 bxc. Given x, y, we
write xg y (resp. xf y) the the least upper bound (resp.
greatest lower bound) of x and y. The ordering, least upper
bound and greatest lower bound are lifted to functions in
the standard pointwise fashion: f 4 g iff ∀x, f(x) 4 g(x);
(f g g)(x) = f(x)g g(x); (f f g)(x) = f(x)f g(x).
Given a unary operator o : V → W , we define an

operator o] : V] →W] as follows

o](x) = if x ∈ {⊥,>} then x else o(x).

Similarly, for a binary operator ⊕ : V → V → V we define
⊕] : V] → V] → V] as

x⊕] y =

 v1 ⊕ v2 if x = bv1c ∧ y = bv2c
⊥ if x = ⊥ ∨ y = ⊥
> otherwise.

We define a binary operator assume : B] → V] → V]

which returns its second argument if the first argument is
either true or >, and undefined otherwise.

assume(b, v) = if (b = true ∨ b = >) then v else ⊥.

Finally, we define a conditional operator if : B] → V] →
V] → V] built from assume, where ¬] is a standard
negation operator extended to the domain B]:

if (b, v, v′) = assume(b, v)g assume(¬]b, v′).

Given c : A → V] and f, g ∈ A → V], we write
Assume(c, f) and IF(c, f, g) for the assume and condi-
tional operators lifted to functions:

Assume(c, f)(a) = assume(C](c(a)), f(a))
IF(c, f, g)(a) = if (C](c(a)), f(a), g(a)).

where C] is the function C lifted to the domain V] → B].

IV. A hybrid knowledge-based monitor
Our hybrid information flow analysis computes the

knowledge of a program’s input-output behaviour that
the attacker obtains by observing the result of a given
execution of the program. More precisely, we shall define
the domain K of knowledge to be the set of functions
K that maps environments ρ to values v, with the in-
tention that K(ρ) = v if the program when started in

initial environment ρ will either produce an output v or
not terminate. If the hybrid monitor from initial state ρ
calculates final value v and knowledge K, then K-1(v) is a
safe approximation of the set of all the environments that
produce v. This set will allow us to safely approximate the
attacker’s knowledge (see Theorem 1).

Definition 5 (Knowledge). The domain K of knowledge
is defined by:

K = Env → V].

Notice that the monitor may compute knowledgeK ∈ K
that will map an environment to ⊥ or >. This is due to the
presence of the static analysis. If K(ρ) = ⊥ then the static
analysis has established that computation started in ρ will
not terminate. On the other hand, K(ρ) = > means that
approximations in the static analysis made it impossible
for the monitor to determine what value will result from
an execution starting in ρ. This means that ρ cannot be
added to the knowledge setK−1(v) for any possible output
v. Recall that a knowledge analysis may always safely
under-approximate the knowledge set K−1(v) of output
v, so having K(ρ) = > for some ρ makes the knowledge
analysis more conservative than an analysis that is capable
of determining the exact output for ρ.

A. Monitor semantics
We now define a hybrid knowledge monitor that com-

bines a dynamic monitor with a static analysis. The hybrid
monitor executes the program and, at the same time, com-
putes an over-approximation of the knowledge of the initial
state that can be deduced from the current state at a given
point in the execution. The semantic state of the hybrid
monitor is thus a pair (ρ, κ), where the first component is
either an environment Env containing the current values
of the variables, or an empty environment, ·, that will
be used by the static analysis. The second component
κ ∈ Var → K is an environment containing the knowledge
present in each variable. At branching points, the monitor
will execute one branch and will statically analyse the
other, non-executed branch. This static analysis will help
refining the computation of the actual knowledge stored
in variables.

Given a concrete initial environment ρ, the initial state
of the hybrid monitor init(ρ) is such that each variable x
has the knowledge of the current value of x in the initial
environment: init(ρ) = (ρ, κ0) with κ0 = λx.λρ′.ρ′(x). To
see this, suppose that the program immediately outputs
the value v of variable x i.e. v = ρ(x). The set of
environments {ρ′ | ρ′(x) = v} that produce v is modeled
exactly by κ0(x)-1(v).
From the initial state, the monitor executes according

to the rules of Figure 3. The concrete execution and the
static analysis are combined into one reduction relation
⇓. The rules skip and seq are standard. For the other
language constructs, there are two rules: a dynamic rule
describing the monitored execution of the construct, and

a static rule describing the static analysis of it. The dy-
namic rules will operate on environments with the actual
values of the variables. The static analysis, on the other
hand, is intended to provide information about all other
possible executions so it will not have information about
concrete values. In the formalization, this means that the
static rules apply only when the environment is undefined
(denoted by ·).
The two rules assignDyn and assignStat for assign-

ment use the function L_Mκ to evaluate the knowledge
about the initial environment contained in the value of
the expression e. The function takes the current knowledge
environment κ as parameter. In addition, the dynamic rule
updates the value of x in the environment ρ.
The rule ifDyn describes the monitored execution of

conditional statements of form if e then ctt else cff . The
outcome of the test α is the value of the expression
e computed in the environment ρ and the appropriate
branch is executed with that environment, producing a
new environment ρ′ and a new knowledge environment
κα. The non-executed branch cᾱ is statically analysed,
using an undefined environment of values and the current
knowledge environment. The knowledge environment κᾱ
obtained from this static analysis must be combined with
the knowledge environment from the execution κα. To this
end, we construct the function IF(LeMκ, κtt , κff) that uses
a conditional operator IF(c, f, g) from Section III-B. We
later show that in programs without loops the IF operator
allows us to precisely model the attacker’s knowledge.
For the while loop, the dynamic rules whileDynTrue

and whileDynFalse are standard unfolding semantic
rules that apply when the environment is defined. The
static rule whileStat states that any s′ whose knowledge
safely approximates the knowledge before entering the
loop (condition s 4 s′) as well as the knowledge after
executing the body of the loop (condition s1 4 s′) is a
valid result of the static analysis of the loop. The rule
leaves room for an actual implementation to compute more
or less precise approximations of the attacker knowledge
after a loop. Our implementation (Section VII) employs
an iterative fixpoint computation to this end.

We do not define a rule for analysing the output com-
mand output x, because it does not change the knowledge
of any variable. The output x command is important
because it is at this point that we must decide what to
output and, hence, what security property to enforce. In
Section V, we shall propose rules for the output command
that will enforce enforce non-interference.

B. Examples
To illustrate the expressive power of our hybrid monitor,

we provide a number of examples. They show when the
monitor computes precise knowledge but also limitations
due to the static analysis of loops. They also illustrate
the role played by the static detection of termination.

skip
(skip, s) ⇓ s

seq
(c1, s) ⇓ s′ (c2, s′) ⇓ s′′

(c1; c2, s) ⇓ s′′

assignDyn
JeKρ = v LeMκ = e]

(x := e, (ρ, κ)) ⇓ (ρ[x 7→ v], κ[x 7→ e]])
assignStat

LeMκ = e]

(x := e, (·, κ)) ⇓ (·, κ[x 7→ e]])

assumeDyn
CJeKρ = tt

(assume(e), (ρ, κ)) ⇓ (ρ,A(LeMκ, κ))
assumeStat

(assume(e), (·, κ)) ⇓ (·,A(LeMκ, κ))

ifDyn
CJeKρ = α (cα, (ρ, κ)) ⇓ (ρ′, κα) (cᾱ, (·, κ)) ⇓ (·, κᾱ)

(if e then ctt else cff , (ρ, κ)) ⇓ (ρ′, IF(LeMκ, κtt , κff))

ifStat
(ctt , (·, κ)) ⇓ (·, κtt) (cff , (·, κ)) ⇓ (·, κff)

(if e then ctt else cff , (·, κ)) ⇓ (·, IF(LeMκ, κtt , κff))

whileDynTrue
CJeKρ = tt (if e then c; while e do c else skip, s) ⇓ s′ s = (ρ, κ)

(while e do c, s) ⇓ s′

whileDynFalse
CJeKρ = ff (if e then while e do c else skip, s) ⇓ s′ s = (ρ, κ)

(while e do c, s) ⇓ s′

whileStat
(assume(e); c, s′) ⇓ s1 s1 4 s

′ s 4 s′ (assume(¬e), s′) ⇓ s′′ s = (·, κ)
(while e do c, s) ⇓ s′′

where LxMκ = κ(x) LnMκ = λρ.bnc Le1 ⊕ e2Mκ = λρ.Le1Mκ(ρ)⊕] Le2Mκ(ρ)

IF(c, κ1, κ2)(x) = IF(c, κ1(x), κ2(x)) A(c, κ)(x) = Assume(c, κ(x))

(ρ, κ) 4 (ρ′, κ′) iff κ 4 κ′ ∧ ρ = ρ′

Fig. 3: Hybrid knowledge analysis semantics.

Program 51 if h then z := x + y
2 else z := y - x;
3 output z

Example 1 (Precise knowledge computation). For
Program 5, the hybrid monitor computes κ(z) =
λρ.if (CJhKρ, Jx+ yKρ, Jy − xKρ). The program is loop-free
and therefore κ(z) is a function which encodes exactly the
function computing the final value of z from the initial
environment. Suppose that the final value of z is 1, the
knowledge of the output 1 is obtained by κ(z)-1(1) = {ρ |
if (CJhKρ, Jx+ yKρ, Jy − xKρ) = 1}.
Suppose that initially h = true, x = 0 and y = 1. As

a result, L-equivalent environments are {ρ | ρ(x) = 0 ∧
ρ(y) = 1}3. This program is indeed secure for the given
initial environment (see Definition 3) since all L-equivalent
environments output the value 1. Notice that all of them
are included in κ(z)-1(1): if x = 0 and y = 1 then the
condition if (h, x + y, y − x) = 1 always holds: if (h, 0 +
1, 1− 0) = 1⇔ if (h, 1, 1) = 1⇔ 1 = 1.

3As z is set in both branches, its initial value is irrelevant.

Notice that both dynamic monitors and the standard
hybrid monitors block all executions of this program either
because there is a low assignment under a high security
context in both branches, or because an output variable z
explicitly depends on h. We will show in Section VI-C that
this power of proving non-interference allows our monitor
to be more permissive than other monitors.

Example 2 (Detection of loop non-termination). Inter-
estingly, our monitor may be more precise than other
monitors even in the presence of loops in a high security
context. Consider Program 6.

Program 61 l := 0;
2 if h then skip
3 else while true do l := 1;
4 output l

When h is true, the purely dynamic monitors would ac-
cept this execution, while the previous hybrid monitors [7],
[18] would block it since the hybrid monitor would detect
that a value of l might change in the non-executed branch.
However, our monitor is able to detect the nontermi-

nation of the while loop. On line 2, we apply the IfDyn

rule, and compute κ(l) = λρ.if (CJhKρ, κ0(l), κ′′(l)), where
κ0(l) = λρ.0 and κ′′ is computed by the WhileStat
rule. The first three premises of this rule ensure that
in state s′ = (⊥, κ′), we have κ′(l) = λρ.> since l is
updated in the loop body. However, the forth premise
((assume(¬e), s′) ⇓ s′′) ensures that κ′′(l) = λρ.⊥ thus
being able to conclude that whenever h is false, the
program does not terminate.

Example 2 shows that our static analysis allows us
to detect non-termination of the loops in some cases.
Notice that this capability does not give us soundness
for termination-sensitive noninterference, but gives more
precision for termination-insensitive noninterference. In
contrast, the knowledge monitor in our previous work [7] is
not able to prove termination-insensitive noninterference
for Example 2 since its static analysis only determines that
the output l may depend on the secret h.

C. Limitations
Our hybrid monitor is not always capable of computing

the exact knowledge. A fundamental reason is that the
knowledge is computed for each variable independently.
Therefore, it cannot express a relation, e.g., the equality
of variables.

Example 3 (Imprecise knowledge computation). For Pro-
gram 7 and its execution when h = true, our static analysis
does not infer that, at the end of the loop y is equal to x.
Hence, it fails at deducing that in the other branch y is 0.

Program 71 y = 1; x = N;
2 if h then skip;
3 else while x > 0 do x = x-1; y = x;
4 output y

When h is true, we statically analyse the while-loop. The
loop invariant is s′ = (·, κ′), where κ′ defines a knowledge
for each variable. To model the fact that x is decremented
at each iteration, the static analysis computes

κ′(x) =
j

0≤n≤N
λρ.n = λρ.>.

This information is propagated towards y by the assign-
ment y = x and we get κ′(y) = λρ.>. At the end of the
loop, the test ¬x > 0 i.e., x = 0 – providing x is a natural
integer – allows to recover the fact that x is necessarily
0. However, as the equality between x and y is not
propagated, the value of y cannot be recovered. As a result,
the final knowledge in y is κ(y) = λρ.if (CJhKρ, 1,>), while
the real attacker knowledge is λρ.if (CJhKρ, 1, 0).

As a result of the imprecise knowledge computation,
the static analysis is not always capable to detect the
loop termination. If we have κ(x)(ρ) = ⊥, we know for
certain that the program does not terminate for initial
environment ρ. However, if κ(x)(ρ) = v for some v, there
is no certainty. The program either terminates and the
value is indeed v or the program does not terminate.

Said otherwise, any non-terminating execution from initial
environment ρ can soundly approximated by κ(x)(ρ) = v.

Example 4 (Non-detection of loop non-termination).
Consider the program obtained as the sequential com-
position of Program 7 followed by Program 8. This new
composed program is noninterferent (TINI) since it either
outputs 1 or does not terminate.

Program 81 x = 1;
2 while y = 0 do x = 1;
3 output x

After an execution of the Program 7 in the initial
environment where h = true, the computed knowledge in
variable y is κ(y) = λρ.if (CJhKρ, 1,>).
The static analysis of the while loop detects that the

value of x in the loop body is always 1 and the knowledge
in variable x is κ(x) = λρ.1. However, since the knowl-
edge in y is not precise, the static analysis is unable to
determine the non-termination of the loop.

V. Correctness and Soundness
Given a monitor’s knowledge κ, a variable x and its

value v, we can express the set of possible environments
that can produce v as the inverse of κ: κ(x)-1(v). The
Monitor Correctness Theorem 1 states that this set of
environments intersected with the low-equivalence class
[ρi]L is a correct approximation of the attacker knowledge
for environment ρi, as defined in Definition 1.

Theorem 1 (Monitor Correctness). Let c ∈ C, ρ, ρ′ ∈
Env, κ ∈ Var → K and assume that (c, init(ρ)) ⇓ (ρ′, κ).
Then for all v ∈ V, x ∈ Var and ρi ∈ Env,

κ(x)-1(v) ∩ [ρi]L ⊆ K(c; output x, v, ρi).

Proof sketch. The Correctness Theorem is a consequence
of a more general, inductive invariant. It states that if we
are given sound knowledge κ about a program c0 executed
in environment ρ then monitoring another program c
with κ as initial knowledge will produce final knowledge
κ′ which is sound for the sequential composition c0; c
when executed in environment ρ. To state this invariant,
we define the predicate soundK which states that the
knowledge κ ∈ Var → K is sound for an execution of
program c in initial environment ρi. Formally, we write
soundK (c, ρi, κ) if for all v ∈ V, x ∈ Var and ρf ∈ Env,

ρi ∈ κ(x)-1(v)
∧

(c, ρi) ↓ ρf

⇒ ρf (x) = v.

The invariant can then be stated as follows:
(c, (ρ0, κ)) ⇓ (ρ1, κ

′)
∧

soundK (c0, ρ, κ)

⇒ soundK (c0; c, ρ, κ′).

The proof of this invariant is by structural induction
over the relation ⇓ and by case analysis over the hybrid

monitoring rules of Figure 3. Instantiating this invariant
with c0 = skip and κ = κ0, we get that

(c, init(ρ)) ⇓ (ρ′, κ)⇒ ∀ρi.soundK (c, ρi, κ).

Theorem 1 then follows from the observation that
all knowledge that is sound according to the predicate
soundK is a subset of the attacker knowledge, as defined
in Definition 1. Formally, if soundK(c, ρ, κ)) then

κ(x)-1(v) ∩ [ρ]L ⊆ K(c; output x, v, ρ). �

We complete the semantics of a hybrid monitor with an
additional rule to deal with outputs, presented below. The
output rule uses the NI (ρ,K, v) predicate that uses the
knowledge K to check whether all low-equal initial envi-
ronments would either produce the same value v or would
not terminate (indicated by a value ⊥). In Section VII-D
we describe how to efficiently implement the computation
of predicate NI . This predicate is defined by

NI (ρ,K, v) 4= [ρ]L ⊆ K-1(v) ∪K-1(⊥).
The rule for output is then given by:

outNI
(c, init(ρ)) ⇓ (ρ′, κ) ρ′(x) = v NI (ρ, κ(x), v)

(c; output x, ρ) ⇓ v

With this output rule, we have the property of a
knowledge-based hybrid monitor that the monitor either
accepts the output of a program, or blocks.

Lemma 2. If a knowledge-based hybrid monitor produces
a value v for a program P from an initial environment ρ,
then the original program P computes the same value:

(P, init(ρ)) ⇓ v ⇒ (P, ρ) ↓ v.

We can then prove (using Theorem 1) that the
knowledge-based hybrid monitor completed with an out-
put rule outNI enforces knowledge-based security.

Theorem 2 (Monitor Soundness). A program P , moni-
tored by a knowledge-based hybrid monitor with output rule
outNI, is TINI under the monitor semantics ⇓: whenever
ρ1

L = ρ2
L and (P, init(ρ1)) ⇓ v1 and (P, init(ρ2)) ⇓ v2, then

v1 = v2.

Example 5 (Permissiveness). Program 6 of Example 2
demonstrates when our analysis is able to detect non-
termination of the program. Our monitor computes the
knowledge in variable l as κ(l) = λρ.if (CJhKρ, 0,⊥). Then,
when a variable l is to be output, the outNI rule ensures
that on all possible low-equal environments, either the
program outputs 0 or does not terminate – the predicate
NI holds.

Given that our monitor is sometimes able to model when
the program does not terminate, it might be tempting to
enforce termination-sensitive noninterference (TSNI). To
achieve it, one could substitute the NI predicate with
a TSNI predicate requiring that in all the low-equal

memories either the program terminates producing v, or
it does not terminate:

TSNI (ρ,K, v) 4= [ρ]L ⊆ K-1(v) ∨ [ρ]L ⊆ K-1(⊥).

The problem with this approach is that whenever
κ(x)(ρ) = v, there is no certainty that the program
terminates, since v approximates ⊥.

Example 6 (TSNI counterexample). The composed pro-
gram from Example 4 is TINI but not TSNI since it
terminates on h = true and does not terminate when
h = false. The hybrid monitor computes the knowledge
in x as κ(x) = λρ.1 that would satisfy TSNI predicate,
however this would not be a sound enforcement of TSNI.

VI. Combination with other monitors
We now show how an existing dynamic monitor based on

security levels can be combined with our knowledge-based
hybrid monitor. The combined monitor will admit more
executions than each of the monitors taken in separation,
and will still be secure. To compare the precision of
monitors, Hedin et al. [12] propose the notion of “per-
missiveness” that compares a set of program executions
accepted by two monitors and defines a monitor to be more
permissive if it accepts a strictly bigger set of executions.
Hedin et al. [12] observe that purely dynamic moni-

tors (e.g., NSU [4]) and simple hybrid monitors (e.g., Le
Guernic et al. [18]) are not necessarily comparable with
respect to their permissiveness. For example, the execution
of Program 1 in environment h = false is accepted by
a dynamic monitor NSU because the test is false, but it
is rejected by a hybrid monitor since the static analysis
concludes that there might be a leak on the non-executed
branch. On the other hand, NSU rejects an execution of
Program 2 when h = true (because of a sensitive upgrade
on line 1), while a hybrid monitor accepts it (because the
security level of l is downgraded to L on line 2).

A. Hybrid monitor reusing an inlined monitor
We assume that a monitor based on security levels (for

example, a purely dynamic monitor), is inlined in the
program following the inlining technique simultaneously
proposed by Chudnov and Naumann [10] and Russo and
Sabelfeld [20]. Here, a program c is transformed into a
program c̃, where each variable x has a shadow variable x̃
representing the security label of x. The monitoring is not
intrusive in the sense that the values of x are the same for
c and c̃. In other words, the computation of security levels
has no impact on the computed values. We will present
the instantiation to NSU in Section VI-B below.

Given a program P = c; output x, the monitor usually
decides to output x if the label of x is lower or equal than
the level L4. A hybrid monitor can choose to mimic the

4Usually, this condition is pc u Γ(x) v L, however the program
counter pc is at the lowest level L because our programs only produce
output outside conditionals and while-loops.

t-skip G,S ` skipB skip
t-seq

∀i = 1..2.G, S ` ci B c̃i
G,S ` c1; c2 B c̃1; c̃2

t-if
S(x) = x̃ y /∈ dom(S) ∪ rng(S) ∧ y /∈ G ∀i = 1..2.(y :: (pc :: G)), S ` ci B c̃i

(pc :: G), S ` if x then c1else c2 B y := x̃ t pc; if x then c̃1else c̃2

t-while
S(x) = x̃ y /∈ dom(S) ∪ rng(S) ∧ y /∈ G (y :: (pc :: G)), S ` cB c̃

(pc :: G), S ` while x do cB y := x̃ t pc; while x do (c̃; y := x̃ t y)

t-assign
S ` eB ẽ S(x) = x̃ c̃ = if pc v x̃ then x̃ = ẽ t pc else ∀y ∈ Var .S(y) = B

pc :: G,S ` x := eB c̃;x := e

Fig. 4: NSU inlining transformation

original behaviour of the inlined monitor by introducing
the following output rule outL:

outL
(c̃, init(ρ)) ⇓ (ρ′, κ) ρ′(x) = v ρ′(x̃) v L

(c̃; output x), ρ ⇓ v

This rule ensures that the inlined monitor only outputs
a value v when the security level of the variable x is below
L. We make one assumption about the inlined monitor
viz., that it correctly computes the security labels of the
variables that can be used to enforce noninterference.

Assumption 1 (Correct labels of inlined monitor). Con-
sider a program P = c̃; output x. If it outputs a value v
according to the following output rule:

outL
(c̃, ρ) ↓ ρ′ ρ′(x) = v ρ′(x̃) v L

(c̃; output x), ρ ↓ v

Then the label of variable x is computed correctly in the
final environment ρ′, meaning

K(P, v, ρ) = I(P, ρ).

As a consequence, a hybrid monitor only using the outL
output rule soundly enforces noninterference.

To gain more precision, the hybrid monitor can first use
its own knowledge about the output variable x (applying
the rule outNI), and only if it is unable to prove non-
interferfence, it can then try to apply the default output
rule outL of the inlined monitor.

We can gain even more precision by reasoning about
the knowledge contained in the shadow variables. This
will allow the monitor to output certain values, even if
neither the rule outNI nor the rule outL holds. The
idea is to provide the knowledge-based monitor with the
extra information that certain variables would never be
output because the dynamic monitor would block them.
Environments that lead to an output that is certain to be
blocked by the dynamic monitor can be disregarded when
computing the set of possible outcome of the program.
Concretely, we add a new security level B (“will be blocked

by the monitor”), such that H @ B. An additional output
rule outH exploits this new label. It requires that:
• the value of x can be output (because ρ(x̃) @ B), and
• all the environments that will not be blocked by a

monitor, written NotB(K̃), and low-equal to ρ would
produce the same value v.

Formally, we get the following output rule outH that
combines information computed by the hybrid monitor
and the inlined dynamic monitor.

outH

(c̃, init(ρ)) ⇓ (ρ′, κ) ρ′(x) = bvc
ρ′(x̃) 6v L ρ′(x̃) @ B single(ρ, κ(x), κ(x̃), v)

(c̃; output x), ρ ⇓ v

The predicate single ensures that we only produce a single
unique value. It exploits the new blocked level B and is
defined as follows.

single(ρ,K, K̃, v) 4= ([ρ]L ∩NotB(K̃)) ⊆ K-1(v)
NotB(K̃) 4= (Env\K̃-1(B)).

With this rule, the combination of the hybrid monitor and
a dynamic monitor can be strictly more permissive than
either of them.

B. Application to NSU
In the No-Sensitive Upgrade monitor (NSU) [4], [25] an

assignment to a variable is allowed only if the program
counter level pc is lower than the level of the assigned
variable l. Otherwise, the execution is stopped.
Figure 4 presents an inlining transformation for NSU.

The inlining technique uses the transformation judgement
G,S ` c B c̃, where S : vars(c) → Var maps each
variable of c into its shadow variable S(x) which contains
the current security level of x; and G is a finite list of
variables that store the current pc. S ` e B ẽ means that
ẽ is an expression for the level join of shadow variables of
the variables in e (see [10, Fig. 9]).
NSU enforces termination-insensitive noninterfer-

ence [4], so the proposed transformation indeed satisfies
Assumption 1. The only difference in our presentation

of inlining is that we do not write an explicit divergence
operation (such as while (true) skip), but rather
assign the highest security level B to all the variables (see
t-assign rule); and still allow the computation x := e.
The following short example demonstrates in a concise

manner how the knowledge-based hybrid monitor that
reuses NSU is more permissive than NSU.

Program 91 l = 1; if h then l = 0;
2 output h

Example 7. All the executions of Program 9 are blocked
by NSU since the program tries to output a high variable
h on a low channel. However our knowledge-based hybrid
monitor combined with NSU accepts its execution when
h = false. Following the idea of NSU, the monitor trans-
forms an information channel into a termination channel.
When h = false, the hybrid monitor is able to compute
that the other initial environment ρ′, where h = true
will get a B label (κ(h̃)(ρ′) = B) and therefore will not
be output (unless the rule outNI holds). Therefore, the
output is accepted by the outH rule because the single
predicate ensures that all the executions not blocked by
the monitor (where h = false) will compute the same
value.

C. Soundness and Permissiveness

We now prove the main soundness result for the hybrid
monitor that executes a program with an inlined security
monitor. In the following, we write HM (Output) for our
hybrid monitor using a set of output rules Output ⊆
{outNI,outL,outH}.

Theorem 3. All the executions of a program P =
(c̃; output x), monitored by a knowledge-based hybrid mon-
itor HM ({outNI,outL,outH}) are secure for all envi-
ronments ρ.

Remark that a hybrid monitor using a smaller set of
output rules is also sound. This fact will be useful to prove
the relative precision of hybrid monitors.

A monitor A is more permissive than a monitor B if it
stops less monitored executions (suppresses less outputs).
Following Hedin et al. [12], a productive environment for
a monitor M and a program P , written EM (P) is a set
of environments for which the monitor does not stop, i.e.,
EM (P) = {ρ | ∃v.(P, ρ) ⇓M v}. Thus, EM is a family of
productive sets indexed by programs for the monitor M .

Definition 6. A monitor A is at least as permissive as a
monitor B if EB ⊆ EA.

Theorem 4 (Hierarchy of hybrid monitors). Consider a
program P = c; output x and a program P̃ = c̃; output x

that is instrumented by a sound dynamic monitor for non-
interference. The following precision results hold:

EHM({outNI})(P) = EHM({outNI})(P̃)
EHM({outNI})(P̃) ⊆ EHM({outNI,outL})(P̃)
EHM({outL})(P̃) ⊆ EHM({outNI,outL})(P̃)
EHM({outNI,outL})(P̃) ⊆ EHM({outNI,outL,outH})(P̃)

Theorem 4 shows that the combination of our hybrid
monitor with a dynamic monitor is more precise than each
of them taken separately. Moreover, as the output rule
outH requires a cooperation between both, our best hy-
brid monitor HM ({outNI,outL,outH}) is more precise
than a direct parallel composition of both, which can be
obtained as HM ({outNI,outL}).

Example 8. Consider again a Program 9. When h =
false, the knowledge-based hybrid monitor (EHM({outNI}))
is not able to prove noninterference and the level of h is
H, and hence the output is blocked. However, the more
precise monitor EHM({outNI, outL, outH}) ensures that h is
output since the single predicate ensures that the monitor
always produces the same output.

VII. Implementation
The knowledge-based hybrid monitor has been imple-

mented and proved correct [1] using the Coq proof as-
sistant. Here, we describe the main data structures and
algorithms used for computing knowledge.
Knowledge about initial environments is formalized us-

ing knowledge functions K ∈ K. One algorithmic chal-
lenge is to find an efficient algorithm for extracting the
knowledge from such a function K i.e. computing K-1(v)
for some v. We present a concrete representation for a
class of knowledge functions that is closed under all the
operations needed by the hybrid monitor. With this rep-
resentation, a logical formula representing the knowledge
of an output v is computed in linear time.

A. Concrete domain of knowledge functions
The domain of the monitor K = Env → V]

is encoded with the symbolic domain K[⊂ P(F ×
E) × F where E is the set of program expres-
sions and F is the following set of boolean formulae:
F 3 φ ::= φ ∧ φ | φ ∨ φ | ¬φ | e | tt | ff (here e ∈ E is
a program expression seen as a boolean, see Section III-A).
A pair (f, e) ∈ F×E denotes a knowledge which returns

the value of the expression e when the formula f holds in
the initial environment and > otherwise. The last element
φ ∈ F of K[specifies when the knowledge is ⊥. Given an
element K = (S, φ) ∈ K[, we write KS for the set of pairs
S and Kφ for the formula φ. The denotation of K ∈ K[

in the knowledge domain K is then obtained by:

{|K|} = (
k

(f,e)∈KS

f 7→ e)
k
Kφ 7→ ⊥

where ψ 7→ e = λρ.if JψKρ then JeKρ else >

true[K] =
∨

(f,e)∈KS (f ∧ e)
false[K] =

∨
(f,e)∈KS (f ∧ ē)

top[K] = ¬(true[K] ∨ false[K] ∨Kφ)
K@ψ = ({(ψ ∧ f, e) | (f, e) ∈ KS},Kφ ∨ ¬ψ)
K1

b
K2 = (K= ∪K12 ∪K21,K

φ
1 ∧K

φ
2), where

K= =
{

(f1 ∧ f2 ∧ e1 = e2, e1)
∣∣∣∣ (f1, e1) ∈ KS

1
(f2, e2) ∈ KS

2

}
Kij = {(fi ∧Kφ

j , ei) | (fi, ei) ∈ KS
i }

Fig. 5: Implementation of the conditional operator.

Our domain K[also requires well-formedness conditions.
Given (S, φ) ∈ K[, we add the constraint that any two
pairs (f, e) and (f ′, e′) from S must satisfy that if both f
and f ′ hold then the expressions e and e′ evaluate to the
same value. Moreover, for any (f, e) ∈ S, the conjunction
of f and φ does not hold. All the operators needed by the
hybrid monitor preserve this property.

Example 9. We illustrate below the symbolic encoding
of basic knowledge functions.

{|(∅,ff)|} = λρ.> {|(∅, tt)|} = λρ.⊥
{|{(true, n)},ff)|} = λρ.n

For Program 3, we get the following knowledge in l in
the end of the program:

({(h, 1); (¬h, x); (x = 1, x)},ff)

The knowledge is well-formed since if any two formulae
among h,¬h or x = 1 hold at the same time, the
corresponding expressions evaluate to the same value.

B. Implementation of operators
The assignment rules assinDyn and assignStat com-

pute the knowledge of an expression using a function L_Mκ.
We show how to implement this function for a new domain
of knowledge K[below:

LxMκ = κ(x) LnMκ = ({(tt, n)},ff)
Lk1 ⊕ k2Mκ = (S, Lk1Mφκ ∨ Lk2Mφκ) where

S =
{

(f1 ∧ f2, e1 ⊕ e2)
∣∣∣∣ (f1, e1) ∈ Lk1MSκ

(f2, e2) ∈ Lk2MSκ

}
One key operator is the conditional operator IF which

combines the knowledge from different execution paths.
The IF and assume operators can be rewritten using more
basic operators, defined in Figure 5:

Assume(c, l) = l@true[c]g l@top[c]
IF(c, l, r) = l@true[c]g r@false[c]g (l g r)@top[c]

Theorem 5. The operators over K[exactly model the
operators over K. In particular, we have

{|LeMκ|} = LeMλx.{|κ(x)|}
{|K1 gK2|} = {|K1|}g {|K2|}
{|IF(c, e1, e2)|} = IF({|c|}, {|e1|}, {|e2|})

C. Static analysis of loops
The only place where the specification of the hybrid

monitor is not directly executable is the rule WhileStat.
The implementation of this rule requires an iterative fix-
point computation in order to infer an invariant of the loop
body. The domain K[does not satisfy the finite ascending
chain condition. Therefore, a widening operator is needed
to ensure convergence and speed up computations. Our
widening limits the number of distinct expressions which
can occur in formulae. To remove an expression e from
a formula f , we compute the formula f+ ∧ f− where f+

is obtained by substituting e for tt and f− is obtained
by substituting e for ff . The obtained formula is by
construction stronger which ensures the soundness of the
transformation. Remember that (f 7→ e) returns > when
f does not hold. By bounding the number of expressions
to some fixed constant k, and because formulae have a
normal, our fixpoint iteration operates over a finite domain
of boolean formulae. This ensures convergence.

D. Effective proof of non-interference
To get an effective enforcement and implement the rules

outNI and outH, we need a decision procedure for the
predicates NI and single. These predicates can be encoded
as logic formulae f ∈ F. To get a decidable enforcement,
the logic needs to be decidable. As propositional logic is
decidable, the decidability depends only on the language
of expressions E. It will hold, for instance, for decidable
fragment of arithmetic such as linear integer arithmetics
or bit-vector arithmetics.
The logic translation is syntax-directed and defined by

the function 〈·〉:

〈K-1(v)〉 =
∨

(f,e)∈KS f ∧ e = v 〈K-1(⊥)〉 = Kφ

〈[ρ]L〉 =
∧
{x|Γ(x)vL} x = ρ(x)

The inverse function K-1(v) represents the knowledge of
the output v. Given the output value v and a symbolic
knowledge K ∈ K[, 〈K-1(v)〉 builds a disjunction where
all the expressions are constrained to be equal to v. The
equivalence class [ρ]L of a initial environment ρ is obtained
by a conjunction of equality constraints stating that a low
variable x, should have the value of ρ(x). Set operations ∪,
∩ and \ have a standard encoding and set inclusion can
be done by checking entailment. Theorem 6 states that
the security predicates NI and single can be checked by
checking that their logic encoding is a tautology.

Theorem 6. The logic translation of security predicates
is sound and complete.

NI (ρ,K , v) iff 〈[ρ]L〉 ⇒ 〈K-1(v)〉 ∨ 〈K-1(⊥)〉
single(ρ,K, K̃, v) iff 〈[ρ]L〉 ∧ 〈NotB(K̃)〉 ⇒ 〈K-1(v)〉

E. Experiments
From our Coq development, we have extracted an Ocaml

proof-of-concept implementation [1]. We have extracted

five programs from this paper and used our implemen-
tation to compute the approximated knowledge. These
programs were selected to demonstrate the difference in
monitors with respect to the attacker knowledge approx-
imation and permissiveness. For these five programs, we
provide the actual knowledge gained by an attacker by
observing an output and the approximation computed by
different monitors, including the best hybrid monitor of
Besson et al. [7], called HM(Val+Comb). For enforcement
of noninterference, we compare the permissiveness of a
knowledge-based hybrid monitor HM (Section IV), the
standard NSU and their combination (Section VI).

For each program, we analyse an execution for a given
initial environment presented in column 2 of Figure 6a.
The actual knowledge of the attacker is a formula over the
high variables, that we present in column K(Pi, v, ρ). For
columns HM(Val+Comb) and HM, we highlight in light
grey the knowledge that was not computed precisely.

For the majority of programs the hybrid monitor HM is
able to compute the exact knowledge of the attacker. Only
for Program P7, our monitor approximates the knowledge
of the attacker due to the its static analysis limitation. For
Programs P4 and P5, our hybrid monitor is strictly more
precise than the hybrid monitor of Besson et al.

Figure 6b gives an insight into permissiveness of
the monitors, where HM stands for HM({outNI}),
NSU stands for HM({outL}) and HM+NSU stands for
HM({outNI,outL,outH}). Given a program execution
described in the second column of Figure 6a, we write a
3 if the value is output and a 7 if the monitor blocks
the execution. All the presented program executions are
rejected by NSU except for P1 and P7. The execution
of P5 is proved noninterferent by the hybrid monitor
HM, while rejected by NSU. Program P9 illustrates the
case where neither HM nor NSU alone is able to ensure
termination-insensitive noninterference whereas their com-
bination HM+NSU does. As explained in Section VI-B,
the key insight is to exploit the knowledge that other
interfering executions would be blocked.

VIII. Discussion
1) Scalability: The formal development and implemen-

tation of our hybrid monitor are given for a minimalistic
imperative language. A relevant question is whether our
core monitor could be efficiently implemented for a full-
fledged language. Core dynamic monitors have already
been adapted to very dynamic languages. For instance,
the JSFlow project [13] implements a dynamic informa-
tion flow monitor for JavaScript. Hedin et al. [12] also
proposed a hybrid monitor that covers a large subset of
JavaScript. For hybrid monitors, the main challenge is
to mitigate the overhead incurred by the static analysis.
Note that it is always possible to trade precision for
efficiency – for instance by making an aggressive use of
widening operators (see Section VII-C). At the extreme,
static analysis can even be momentarily switched off if

it is deemed too costly or unfeasible. In that case, the
computed knowledge for the non-executed branch would
be λρ.> i.e. the absence of knowledge which is sound
but imprecise. Regarding functions, a reasonable trade-off
could be to limit the static analysis to the current function
boundaries i.e intra-procedural analysis. Yet, getting the
desired trade-off between precision and efficiency requires
more investigation.
2) Extension to programs with I/O and strategies: The

proposed approach can be extended to programs with
I/O and strategies [8]. We could define a special global
variable that contains all the knowledge of the previous
outputs and each new input would immediately contain
that knowledge. Like this, we could track the knowledge
that would be an upper bound for any possible strategy.
The current representation would not change in this case.

IX. Related work
Zdancewic [25] proposed the no-sensitive-upgrade prin-

ciple for dynamic information flow control that halts exe-
cution if a program assigns to low variables under secret
control. Austin and Flanagan [4], [5] extended this to per-
missive upgrade which takes the future use of the assigned
variable into account before halting the execution. Hybrid
monitors for information flow control combine static and
dynamic program analysis [17], [18], [21], [23]. One of the
first techniques was proposed by Le Guernic et al. [18]
where the static analysis only performs syntactic checks
on non-executed branches. Russo and Sabelfeld [23] intro-
duced a generic framework of hybrid monitors, where non-
executed branches are analysed syntactically and formally
proved that the permissiveness of such monitors is incom-
parable with the purely dynamic monitors. In a follow-up
work, Le Guernic [17] presented a more permissive static
analysis, that ignores possible branches that depend only
on public variables. Besson et al. [7] enhance a dynamic
monitor with static constant propagation and dependency
analysis, and show how this leads to a hierarchy of increas-
ingly more permissive hybrid monitors. Their knowledge is
represented by the domain F×V. As explained in Section I,
the present work improves permissiveness of the hybrid
monitor from [7]: 1) we have a strictly more expressive
domain: an element (f, v) ∈ F × V is exactly modelled in
our domain by the knowledge ({(f, v)},ff); 2) we have the
advantage of capturing certain forms of non-termination.
With respect to dynamic monitors, permissiveness of the
proposed monitor is incomparable (see Fig. 6b), however
it has the power to achieve a strictly higher level of per-
missiveness by combination with the dynamic monitors.
Chudnov et al. [9] propose a hybrid monitor for rela-

tional logic. An interesting feature of the work is that the
monitor is obtained from a constructive soundness proof.
In this work, we consider a specific property (namely ter-
mination insensitive non-interference). Yet, our knowledge
analysis is not geared to noninterference and could help
discharging more general assertions of relational logic.

(Pi, ρ) ↓ v K(Pi, v, ρ) HM(Val+Comb) HM
P1 (l = 0, h = ff) ↓ 1 ¬h ¬h ¬h
P4 (h1 = ff , h2 = tt) ↓ 1 h1 ∨ h2 ¬h1 ∧ h2 h1 ∨ h2
P5 (h = tt, x = 0, y = 1) ↓ 1 tt h tt
P7 (h = tt) ↓ 1 tt h h
P9 (h = ff) ↓ ff h h h

(a) Computation of Knowledge

HM NSU HM + NSU
P1 7 3 3

P4 7 7 7

P5 3 7 3

P7 7 3 3

P9 7 7 3

(b) Permissiveness of Enforcement

Fig. 6: Experimental results

In a recent paper, Hedin et al. [12] extend a dynamic
information flow monitor for core JavaScript with a static
points-to analysis that can approximate the potential
write targets in regions with a high security context. The
dynamic monitor is based on NSU and prevents implicit
flows by forbidding all side effects with targets that are
below the security context. The static analysis is used
to raise the security labels of the potential write targets
to the level of the context before entering this context.
This prevents the monitor from stopping when writing to
a low target. Interestingly, the static analysis need not
be sound or complete, as the dynamic monitor ensures
that the hybrid monitor is sound. Precision only affects
the permissiveness of the monitor. Their hybrid monitor
is more precise than a static information flow analysis such
as that of Hunt and Sands [15]. However, they also make
the observation that "with the above definition of relative
permissiveness, a hybrid monitor cannot subsume a purely
dynamic monitor" [12, Thm. 3]. This is not contradictory
with our findings because they only consider a particular
static analysis. We conjecture that their “NSU + points-
to” monitor can benefit from our extension with knowledge
computation in order to obtain a monitor that subsumes
their dynamic monitor.

The notion of attacker knowledge was first proposed by
Askarov and Sabelfeld [3] and then used by Askarov and
Chong [2] to study enforcement of noninterference when
the security policy changes over time, and for different
kind of attackers. The notion of knowledge here is used to
state the security conditions but the enforcement mecha-
nism does not compute the knowledge explicitly.

In the area of purely static information flow analy-
sis, Hunt ans Sands [15] proposed a flow-sensitive type
system for non-interference that was later proven to be
less permissive than a standard hybrid monitor [23, Thm.
3]. Müller et al. [22] generalize the type system of Hunt
and Sands using the technique of self-composition. They
define an abstract weakest precondition calculus for self-
composed program that computes logical formulae de-
scribing dependencies and equalities between variables.

X. Conclusions
We propose a hybrid monitor to compute the knowledge

that an attacker obtains by observing a program output.
The monitor is hybrid since it statically analyses non-

executed branches. Our symbolic representation of at-
tacker knowledge is powerful and subsumes existing hybrid
monitoring approaches. We show that a knowledge-based
monitor can be combined with any dynamic monitor for
noninterference resulting in an enforcement mechanism
that is more permissive than each mechanism taken sep-
arately. Therefore, our monitor is able to reach a level
of permissiveness that was deemed impossible for the
previous hybrid monitors [23].
In this paper we have laid the foundations for designing

knowledge-based hybrid monitors. There are several ways
in which this work can be further expanded.
The language studied here is voluntarily kept minimal-

istic and there are interesting semantic questions linked
to how to monitor knowledge for more advanced program-
ming languages with features such as objects, arrays and
higher-order functions.
Our monitor statically analyses non-executed branches

and the theory explains how this integration is designed.
However, the current development can go much further
and integrate traditional static analyses. In particular,
more precise numeric analyses, ranging from constant
propagation to polyhedral analysis, would allow the moni-
tor to prove more equalities between variables and, hence,
improve permissiveness. Other analyses such as points-
to analysis would be required for the extension to the
language features mentioned above.

References

[1] Formalisation of the Hybrid Monitor in Coq. Supplementary
material.

[2] A. Askarov and S. Chong. Learning is change in knowledge:
Knowledge-based security for dynamic policies. In CSF’12,
pages 308–322. IEEE, 2012.

[3] A. Askarov and A. Sabelfeld. Gradual release: Unifying declas-
sification, encryption and key release policies. In S&P’07, pages
207–221. IEEE, 2007.

[4] T. H. Austin and C. Flanagan. Efficient purely-dynamic infor-
mation flow analysis. In PLAS’09, pages 113–124, 2009.

[5] T. H. Austin and C. Flanagan. Permissive dynamic information
flow analysis. In PLAS’10, pages 3:1–3:12. ACM, 2010.

[6] A. Barth, C. Jackson, and J. C. Mitchell. Securing frame
communication in browsers. CACM, 52:83–91, 2009.

[7] F. Besson, N. Bielova, and T. Jensen. Hybrid information flow
monitoring against web tracking. In CSF’13, pages 240–254.
IEEE, 2013.

[8] S. Chong. Required information release. Journal of Computer
Security, 20(6):637–676, 2012.

[9] A. Chudnov, G. Kuan, and D. A. Naumann. Information flow
monitoring as abstract interpretation for relational logic. In
CSF’14, pages 48–62. IEEE, 2014.

[10] A. Chudnov and D. A. Naumann. Information Flow Monitor
Inlining. In CSF’10, pages 200–214. IEEE, 2010.

[11] J. S. Fenton. Memoryless subsystems. Comput. J., 17(2):143–
147, 1974.

[12] D. Hedin, L. Bello, and A. Sabelfeld. Value-sensitive Hybrid
Information Flow Control for a JavaScript-like Language. In
CSF’15. IEEE, 2015.

[13] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. JSFlow:
tracking information flow in javascript and its apis. In SAC’14,
pages 1663–1671. ACM, 2014.

[14] D. Hedin and A. Sabelfeld. Information-flow security for a core
of JavaScript. In CSF’12, pages 3–18. IEEE, 2012.

[15] S. Hunt and D. Sands. On flow-sensitive security types. In
POPL’06, pages 79–90. ACM, Jan. 2006.

[16] J. Landauer and T. Redmond. A lattice of information. In
IEEE, editor, CSFW’93, pages 65–70, 1993.

[17] G. Le Guernic. Precise Dynamic Verification of Confidentiality.
In Proc. of the 5th International Verification Workshop, volume
372 of CEUR Workshop Proc., pages 82–96, 2008.

[18] G. Le Guernic, A. Banerjee, T. Jensen, and D. Schmidt.
Automata-based Confidentiality Monitoring. In ASIAN’06,
volume 4435 of LNCS, pages 75–89. Springer, 2006.

[19] G. Le Guernic and T. Jensen. Monitoring Information Flow.
In A. Sabelfeld, editor, Workshop on Foundations of Computer
Security - FCS’05, Proceedings of the 2005 Workshop on Foun-
dations of Computer Security (FCS’05), pages 19–30. DePaul
University, 2005.

[20] J. Magazinius, A. Russo, and A. Sabelfeld. On-the-fly inlining
of dynamic security monitors. In SEC’10, pages 173–186, 2010.

[21] S. Moore and S. Chong. Static analysis for efficient hybrid
information-flow control. In CSF’11, pages 146–160, 2011.

[22] C. Müller, M. Kovács, and H. Seidl. An analysis of Universal
Information Flow based on Self-composition. In CSF’15. IEEE,
2015.

[23] A. Russo and A. Sabelfeld. Dynamic vs. Static Flow-Sensitive
Security Analysis. In CSF’10, pages 186–199. IEEE, 2010.

[24] A. Sabelfeld and A. C. Myers. Language-based information-flow
security. IEEE Journal on Selected Areas in Communication,
21(1):5–19, 2003.

[25] S. A. Zdancewic. Programming languages for information
security. PhD thesis, Cornell University, 2002.

