
Projet Ajacs

Deliverable WP3

Enforcement mechanisms for
JavaScript and modular analyses

for APIs
December 2017



This deliverable includes the following articles describing work done on WP3
during the last 18 months.

• Using JavaScript Monitoring to Prevent Device Fingerprinting,
Frdric Besson, Nataliia Bielova, Thomas Jensen.

• Spot the Difference: Secure Multi-Execution and Multiple Facets,
Nataliia Bielova, Tamara Rezk.

• DOM: Specification and Client Reasoning, Azalea Raad, Jos Fragoso
Santos, Philippa Gardner.

• Verified Models and Reference Implementations for the TLS 1.3
Standard Candidate, Karthikeyan Bhargavan, Bruno Blanchet, Nadim
Kobeissi.

• Formal Modeling and Verification for Domain Validation and
ACME, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Nadim Kobeissi.

• Automated Verification for Secure Messaging Protocols and their
Implementations: A Symbolic and Computational Approach,
Nadim Kobeissi, Karthikeyan Bhargavan, Bruno Blanchet.

• On the Content Security Policy Violations Due to the Same-
Origin Policy, Dolire Francis Som, Nataliia Bielova, Tamara Rezk.

• Type Abstraction for Relaxed Noninterference, Raimil Cruz, Tamara
Rezk, Bernard Serpette, ric Tanter.

• Control What You Include ! Server-Side Protection against
Third Party Web Tracking, Dolire Francis Som, Nataliia Bielova, and
Tamara Rezk.



Using JavaScript
Monitoring to Prevent
Device Fingerprinting
(/en106/special/using-
javascript-monitoring-
to-prevent-device-
fingerprinting)
Special Theme (/En106/special) % Hits: 1694

by Nataliia Bielova, Frédéric Besson and Thomas Jensen (Inria)

Today’s Web users are continuously tracked as they browse the Web. One
of the techniques for tracking is device fingerprinting that distinguishes
users based on their Web browser and operating system properties. We
propose solutions to detect and prevent device fingerprinting via runtime
monitoring of JavaScript programs.

The use of sophisticated web tracking technologies has grown
enormously in the last decade. Advertisement companies and tracking
agencies are collecting increasing amounts of data about Web users in
order to better advertise their products. Social media plugins also collect
data to learn about online habits and preferences of their users. In the last
five years, researchers have started to examine the mechanisms used for
Web tracking. Recent research has shown that advertising agencies and
networks use a wide range of techniques in order to track users across the
Web.

Web tracking via cookies is well known. Cookies are stored in a user’s
browser so that the tracking script can immediately recognise the user.
However, another group of tracking techniques, called ‘device
fingerprinting’, does not require storing anything in a user’s browser.
Fingerprinting scripts make a snapshot of the configuration of the Web
browser and operating system properties and then are able to distinguish
a particular user from all other website visitors. Unlike cookies, this
technique also works perfectly across sites, meaning that the tracker will
know all the web sites that the user has visited if this tracker’s script is
present on these sites. The Panopticlick project  [L1] by Electronic Frontier
Foundation was the first to demonstrate the power of fingerprinting in
2010. Since then, researchers have found new ways to distinguish Web
users, for example through HTML5 Canvas fingerprinting, which was
discovered only in 2012.

Next issue: January 2018
Special theme:
Quantum Computing
Call for the next issue (/call)

 (/images

/stories/EN106/EN106.epub)
This issue in ePub format
(/images/stories/EN106

/EN106.epub)

Powered by Publish for Free



Figure 1: Device fingerprinting: a fingerprinting script collects data about
Web browser and operating system properties, such as Web browser
version, list of installed plugins, screen resolution, time zone etc., encodes
it into a string and sends it back to fingerprinter.com.

Within the French ANR projects Seccloud (Security of cloud programming)
and AJACS (Analyses of JavaScript Applications: Certification and
Security), in INRIA, we have proposed a new solution to protect Web users
from being fingerprinted. We are developing a tool that formally
guarantees that the scripts run in a browser are not fingerprinting the user.
This can be done either by detecting and blocking tracking scripts, or by
modifying their tracking behaviour. To do so, we developed a monitor that
analyses a potentially tracking script, and computes how much
fingerprinting information this script collects. The more information it
collects, the more easily it can distinguish the user from all other visitors.

As a first step, we have developed a methodology to analyse how much
identifiable information a tracker may learn about a user through an
execution of a script. While a script runs, it collects some data about the
Web browser and operating system configuration and sends this data
back to the server. How much identifiable information did the tracker learn
by observing this data? We have shown that this problem can be stated as
an information-flow problem that answers the question: what is the
probability that a server can identify a user after analysing the output of
the script? If the probability is low, the user is unlikely to be tracked. If the
probability is high, this is a tracking script trying to identify the user.

We have also developed a quantitative information flow monitor [1]
computing how much the tracker learns when running a script in the user’s
browser. The monitor uses a combination of dynamic and static analysis
and over-approximates on-the-fly the amount of information that is learnt
by running the script. If the amount of information is below a threshold, it
is safe to send the output to the server. Otherwise, counter-measures
need to be taken, such as shutting down the connection or providing
forged but credible output. The theoretical foundations of such browser
randomisation were developed in [2].

Next, we recently proposed a new version of a quantitative information
flow monitor that is more precise in computing the knowledge of the
tracker [3]. This new version expresses the monitoring of attacker
knowledge in a general framework of semantics-based program analysis,
and shows how a knowledge monitor can be combined with existing
monitoring techniques for information flow control, such as the ‘no-
sensitive-upgrade’ principle.

Link:
[L1] https://panopticlick.eff.org/ (https://panopticlick.eff.org/)

References:
[1] F. Besson, N. Bielova, T. Jensen: “Hybrid Information Flow Monitoring
Against Web Tracking”, IEEE CSF 2013.
[2] F. Besson, N. Bielova, T. Jensen: “Browser Randomisation against

Get the latest issue to your
desktop

 (/?format=feed&
type=rss)



Fingerprinting: A Quantitative Information Flow Approach”, NordSec 2014.
[3] F. Besson, N. Bielova, T. Jensen: “Hybrid Monitoring of Attacker
Knowledge”, IEEE CSF 2016.

Please contact:
Nataliia Bielova, Inria, France
+33  4 92 38 77 87
nataliia.bielova@inria.fr (mailto:nataliia.bielova@inria.fr)

ERCIM News is licensed under a Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/). You are free to share — copy and redistribute the material in any
medium or format, as long as the author(s) and the source are credited.
ERCIM articles (sections "special theme" and "research and innovation) are referenced by DBLP (http://dblp.uni-
trier.de/db/journals/ercim/index.html)
ERCIM News is a joint publication of  CNR (https://www.ercim.eu/cnr)  CWI (https://www.ercim.eu/cwi)
 Fraunhofer (https://www.ercim.eu/fhg)  FNR (https://www.ercim.eu/fnr)  FORTH (https://www.ercim.eu/forth)

 INESC (https://www.ercim.eu/inesc)  INRIA (https://www.ercim.eu/inria)  ISI (https://www.ercim.eu/isi)
 NTNU (https://www.ercim.eu/ntnu)  SBA (https://www.ercim.eu/sba)  SICS (https://www.ercim.eu/sics)
 SZTAKI (https://www.ercim.eu/sztaki)  UCY (https://www.ercim.eu/ucy)  UWAW (https://www.ercim.eu
/uwaw)  VTT (https://www.ercim.eu/vtt) © ERCIM 2016 | legal information (http://www.ercim.eu/about/legal)



Spot the Difference: Secure Multi-Execution and
Multiple Facets

Nataliia Bielova and Tamara Rezk

Université Côte d’Azur, Inria, France
name.surname@inria.fr

Abstract. We propose a rigorous comparison of two widely known dy-
namic information flow mechanisms: Secure Multi-Execution (SME) and
Multiple Facets (MF). Informally, it is believed that MF simulates SME
while providing better performance. Formally, it is well known that SME
has stronger soundness guarantees than MF.
Surprisingly, we discover that even if we approach them to enforce the
same soundness guarantees, they are still different. While modeling them
in the same language, we are able to precisely identify the features of
the semantics that lead to their differences. In the process of comparing
them, we also discovered four new mechanisms that share features of MF
and SME. We prove that one of them simulates SME, which was falsely
believed to be true for MF.

1 Introduction

Information flow security [22] is an important guarantee for computer systems.
A common security guarantee, called noninterference, requires that the secret
inputs to the program do not influence (flow into) public outputs. In recent
years, with the growing impact of highly dynamic languages such as JavaScript,
a significant number of dynamic mechanisms [2–4, 12, 15, 19, 24] were proposed
for information flow control and enforcement of noninterference.

A dynamic information flow mechanism is sound if it ensures equal observ-
able outputs when executions start in equal observable inputs. In other words,
a sound dynamic mechanism must detect all insecure executions and enforce
noninterference by modifying the insecure executions. An important property of
dynamic mechanisms is transparency [6,13]. A dynamic mechanism is transpar-
ent if it does not modify the executions of the program that are already secure.
In other words, a transparent mechanism does not have any “false positives”
when it comes to detecting secure executions.

Secure Multi Execution (SME) [12] and Multiple Facets (MF) [4] are two
dynamic sound mechanisms to enforce noninterference. For brevity, we call these
mechanisms SME monitor and MF monitor.

The main idea behind SME is to execute a program multiple times, one for
each security level. Each execution receives only input visible to its level, and a
default value for inputs that should not be visible. In this way, executions cannot
depend on non observable inputs. Moreover, SME uses a low priority scheduler



so that non-termination does not depend on high inputs. This allows SME to
prevent information leaks due to program non-termination.

The main idea behind MF is to execute a program using faceted values, one
facet for each security level. When a facet possesses nothing to be observed, there
is a special value to signal this. Moreover, based on the Fenton strategy [14], MF
also skips assignment to public variables in a context that depends on a secret
to prevent implicit information flows.

By appropriately manipulating the faceted values, a single execution of MF
is claimed to simulate the multiple executions of SME with the primary benefit
of being more performant [1, 4, 25]:

“Faceted evaluation is a technique for simulating secure multi-execution
with a single process” – from [25, p. 4]
“Austin and Flanagan [6] show how secure multi-execution can be opti-
mized by executing a single program on faceted values” – from [15, p.15]

One of the two formally studied differences between SME and MF before this
work is their soundness guarantee. SME enforces the soundness guarantee of
Termination-Sensitive Noninterference (TSNI), by preventing information flows
when a program has a different termination behaviour based on a secret input.
However, MF is only proven to enforce Termination-Insensitive Noninterference
(TINI), a weaker information flow policy [22] that does not prevent leaks due to
program non-termination. For transparency, SME has been proved to be TSNI
precise [12,27], a flavour of monitor transparency which means that SME outputs
without changes any execution of a noninterferent program. In contrast, MF is
recently demonstrated not to be TINI precise [9].

In this work, we investigate if the generalized belief on the equivalence of
SME and MF can be formally supported by appropriate hypotheses. Hence, we
raised the following questions:

– Are these monitors essentially different or do they become semantically
equivalent when adapted to the same soundness guarantees ?

– Can SME and MF actually be adapted to other soundness guarantees?

Our contributions are the following:

– A formal demonstration of the differences between SME and MF in a simple
programming language. We underline their different guarantees in Section 4.

– A comparison of different SME-based and MF-based monitors with respect
to soundness and transparency. We have discovered four new monitors:

• SME-TINI monitor, based on SME, which enforces a weaker termination-
insensitive noninterference policy than SME.

• MFd monitor, based on MF, which is semantically equivalent to SME-
TINI (Section 5).

• MFd-TSNI monitor, based on MFd, semantically equivalent to the orig-
inal SME (Section 6).

• MF-TSNI monitor, based on MF, which enforces a stronger termination-
sensitive noninterference policy than original MF.



The comparison of the guarantees of all the monitors described in this paper
is summarized in Fig. 8 (Section 8). The companion technical report [8] includes
all the proofs as well as more details and a formalization of the MFd-TSNI
monitor in a language with input and output channels as the one of [12].

2 Soundness and Transparency

The syntax of the language to demonstrate our technical results is:

(programs) P ::= skip | x:= e | P1; P2 | if x then P1 else P2 | while x do P
(expressions) e ::= v | x |e1 ⊕ e2

The language’s expressions include constants or values (v), variables (x) and
operators (⊕) to combine them. We present the standard big-step deterministic
semantics denoted by (P, µ) ⇓ µ′, where P is the program, and µ is a memory
mapping variables to values (Fig. 1).

skip
(skip, µ) ⇓ µ

assign
(x := e, µ) ⇓ µ[x 7→ JeKµ]

seq
(P1, µ) ⇓ µ′ (P2, µ′) ⇓ µ′′

(P1; P2, µ) ⇓ µ′′

if
JxKµ = α (Pα, µ) ⇓ µ′

(if x then Ptrue else Pfalse, µ) ⇓ µ′ while
(if x then P ; while x do P else skip, µ) ⇓ µ′

(while x do P, µ) ⇓ µ′

where JxKµ = µ(x), JvKµ = v and Je1 ⊕ e2Kµ = Je1Kµ ⊕ Je2Kµ

Fig. 1: Language semantics

Noninterference We assume a two-element security lattice with L ⊑ H and
a security environment Γ that maps program variables to security levels. By
µL we denote the projection of the memory µ on low variables, according to an
implicitly parameterized security environment Γ . We first define noninterferent
executions, following [9].

Definition 1 (Termination-Sensitive Noninterference for µL). Given a
semantics relation ⇓, program P is termination-sensitive noninterferent for an
initial low memory µL, written TSNI ⇓(P, µL), if and only if for all memories
µ1 and µ2, such that µ1

L = µ2
L = µL we have ∃µ′.(P, µ1) ⇓ µ′ ⇒ ∃µ′′.(P, µ2) ⇓

µ′′ ∧ µ′
L = µ′′

L .

Program P is termination-sensitive noninterferent, written TSNI ⇓(P ), if all
its executions are TSNI, that is, for all µL, TSNI ⇓(P, µL) holds.

Example 1. Consider Program 1, where variable h can take only two possible
values: 0 and 1.

Program 11 l = 1; if h = 1 then (while true do skip)



If an attacker observes that l=1, she learns that h was 0, and if she doesn’t see
any program output (divergence), then she learns that h was 1. TSNI captures
this kind of information leakage, hence TSNI doesn’t hold.

A weaker security condition, called termination-insensitive noninterference
(TINI ), allows information leakage through program divergence.

Definition 2 (Termination-Insensitive Noninterference for µL). Given a
semantics relation ⇓, program P is termination-insensitive noninterferent for an
initial low memory µL, written TINI ⇓(P, µL), if and only if for all µ1 and µ2,
such that µ1

L = µ2
L = µL, we have ∃µ′.(P, µ1) ⇓ µ′ ∧ ∃µ′′.(P, µ2) ⇓ µ′′ ⇒ µ′

L = µ′′
L .

Program P is termination-insensitive noninterferent, written TINI ⇓(P ), if
all its executions are TINI, that is, for all µL, TINI ⇓(P, µL) holds1.

Termination-insensitive noninterference is a strictly weaker property than
termination-sensitive noninterference [22]. For example, Program 1 is insecure
with respect to TSNI, however it is secure with respect to TINI since whenever
a program execution terminates, it always finishes in a memory with l=1.

Monitor Soundness and Transparency To define a sound monitor for
termination-sensitive (resp., -insensitive) noninterference, we only substitute the
semantics relation ⇓ with the monitor semantics relation ⇓M in the definitions
of TINI and TSNI. Instead of using a subscript ⇓M (e.g., in TINI ⇓M

) for a
semantics of a monitor M , we will use a subscript M (e.g., TINI M ).

Definition 3 (Soundness). Monitor M is termination-sensitive (resp., -insen-
sitive) sound if for all programs P , TSNI M (P ) (resp., TINI M (P )).

A number of works on dynamic information flow monitors try to analyse
transparency of monitors. Intuitively, transparency describes how often a moni-
tor accepts (doesn’t block or modify) secure program executions without chang-
ing the original semantics. Different approaches have been taken to compare
transparency of monitors (see [9] for a survey): in this work, we adhere to the
standard meaning [6, 13] of “transparency” as the capability of a monitor to
accept secure executions and use the term “precision” as the capability to ac-
cept all executions of secure programs. To formally define transparency, we first
define a predicate A(P, µ, M) (where A stands for “accepted”) that holds if:

– whenever a program P terminates for an initial memory µ, then the monitor
M will also terminate on µ, producing the same final memory as the original
program: ∃µ′. (P, µ) ⇓ µ′ ⇒ (P, µ) ⇓M µ′, and

– whenever a program P does not terminate for an initial memory µ (denoted
by ⊥), then the monitor does not terminate for µ: (P, µ) ⇓ ⊥ ⇒ (P, µ) ⇓M ⊥.

1 In the following, we don’t write the semantics relation ⇓ when we mean the original
program semantics and the semantics is clear from the context.



The notion of transparency for TSNI (TINI) requires a monitor to accept all
the TSNI (TINI) executions of a program. Our choice of transparency definition
is based on the original literature on runtime monitors [6,13], which requires that
if a program execution is secure (noninterferent), then the monitor must accept
this execution without modifications. Our definition is similar to the one of [21],
which considers both terminating and nonterminating executions, however it
differs because we don’t require the set of executions accepted by a monitor and
the set of noninterferent executions to be equal.

Definition 4 (Transparency). Monitor M is TSNI (resp., TINI) transparent
if for any program P , and any memory µ, TINI (P, µL) ⇒ A(P, µ, M) (resp.,
TSNI (P, µL) ⇒ A(P, µ, M)).

3 SME and MF Original Semantics

In order to compare SME and MF, we first model them in the same language
defined in Section 2. The semantics relation of a command P is denoted by
Γ ⊢ (P, µ) ⇓M µ′ where Γ is a security environment, and M is the name of the
monitor and ⇓M relates a program configuration and a memory. Both SME and
MF monitors have deterministic semantics.

Secure Multi-Execution (SME) Devriese and Piessens proposed secure multi-
execution (SME) [12]. The idea of SME is to execute the program multiple times:
one for each security level. SME has two mechanisms to enforce noninterference:

– Each execution receives only inputs visible to its security level and a fixed
default value for each input that should not be visible to the execution. This
default value predefines a so-called “default” execution, so that under SME
all the interferent executions would behave like a “default” execution.

– A low priority scheduler ensures that lower executions do not depend on
the termination of higher executions. Therefore, the low priority scheduler
ensures that the program termination based on a secret input does not in-
fluence a public output, and hence enforces TSNI.

SME
(P, µ|Γ ) ⇓ µ2 µ1 =

{
µ′ if ∃µ′.(P, µ) ⇓ µ′

⊥ otherwise
Γ ⊢ (P, µ) ⇓SME µ1 ⊙Γ µ2

where

µ|Γ (x) =
{

defH Γ (x) = H

µ(x) Γ (x) = L
µ1 ⊙Γ µ2(x) =

{
µ1(x) Γ (x) = H

µ2(x) Γ (x) = L

Fig. 2: Secure Multi-Execution semantics (SME)

The SME adaptation for the while language, taken from [9], is given in Fig. 2,
with executions for levels L and H. The µ|Γ function substitutes the values of
all the high variables in µ with the default value defH , such that all the insecure
program executions will behave as an execution predefined by defH .



Example 2 (SME imitates “default” executions). Consider the following program
and assume that the SME’s default value is defH=0.

Program 21 l = 1; if h = 0 then l = 0

A “default” execution would take defH value instead of a real high value and
compute the final memory with l=0. This program is not TINI, and therefore
all its executions will terminate under SME with the memory where l=0.

In our SME semantics, the special runtime value ⊥ represents the idea that no
value can be observed (notice that original programs use only standard values).
We overload the symbol to also denote a memory that maps every variable to ⊥.
Using memory ⊥ we simulate the low priority scheduler of SME in our setting:
if the high execution does not terminate, the low observer will still see the low
part of the memory in the SME semantics. In this case all the high variables,
whose values should correspond to values obtained in the normal execution of the
program, are given value ⊥. We model the final memory by a merging function
⊙Γ that combines high and low parts of two final memories from high and low
executions. Notice that even though the semantics becomes non computable, this
model allows us to prove the same results as for the original SME and further
use it for comparison with MF.

Example 3 (SME prevents leakage through non-termination). Consider Program 3:

Program 31 if l = 0 then (while h=0 do skip)
2 else (while h=1 do skip)

This program is TINI but not TSNI. Assume µ = [h=1, l=0] and that the
default high value used by SME is defH=1. The program terminates on memory
µ, producing l=0, however there exists a memory µ′ = [h=0, l=0], low-equal
to µ, on which the original program doesn’t terminate, thus leaking secret in-
formation through non-termination. SME prevents such leakage, because SME
terminates on both memories µ and µ′ producing l=0.

Multiple Facets (MF) Austin and Flanagan [4] proposed multiple facets
(MF). In MF, each variable is mapped to several values or facets, one for each
security level: each value corresponds to the view of the variable for an observer
at different security level. The main mechanisms used by MF are the following:

– MF uses a special value ⊥ to signal that a variable contains no information
to be observed at a given security level.

– MF uses the Fenton strategy [14] that skips sensitive upgrades. A sensitive
upgrade is an assignment to a low variable in a high security context that
may cause an implicit information flow. If there is a sensitive upgrade, MF
semantics does not update the observable facet. Otherwise, if there is no sen-
sitive upgrade, MF semantics updates it according to the original semantics.



MF
(P, µ ↑Γ ) ↓MF µ̂

Γ ⊢ (P, µ) ⇓MF µ̂ ↓Γ

skip
(skip, µ̂) ↓MF µ̂

assign
(x := e, µ̂) ↓MF µ̂[x 7→ [e]µ̂]

seq
(P1, µ̂) ↓MF µ̂′ (P2, µ̂′) ↓MF µ̂′′

(P1; P2, µ̂) ↓MF µ̂′′

if-bot
[x]µ̂ = ⟨α : ⊥⟩ (Pα, µ̂) ↓MF µ̂′

(if x then Ptrue else Pfalse, µ̂) ↓MF µ̂′ ⊗ µ̂

if-val
[x]µ̂ = ⟨α1 : α2⟩ α2 ̸= ⊥ (Pα1 , µ̂) ↓MF µ̂1 (Pα2 , µ̂) ↓MF µ̂2

(if x then Ptrue else Pfalse, µ̂) ↓MF µ̂1 ⊗ µ̂2

while
(if x then P ; while x do P else skip, µ̂) ↓MF µ̂′

(while x do P, µ̂) ↓MF µ̂′

where

µ ↑Γ (x) =
{

⟨µ(x) : ⊥⟩ if Γ (x) = H

⟨µ(x) : µ(x)⟩ if Γ (x) = L
µ̂ ↓Γ (x) =

{
µ̂(x)1 if Γ (x) = H

µ̂(x)2 if Γ (x) = L

and µ̂1 ⊗ µ̂2(x) = ⟨µ̂1(x)1 : µ̂2(x)2⟩

Fig. 3: Multiple Facets semantics (MF)

Our adaptation of MF semantics is given in Fig. 3, where we use the following
notation: a faceted value, denoted v̂ = ⟨v1 : v2⟩, is a pair of values v1 and v2.
The first value presents the view of an observer at level H and the second value
the view of an observer at level L. In the syntax, we interpret a constant v as
the faceted value ⟨v : v⟩. The evaluation of faceted expressions is strict in ⊥ – if
an expression contains ⊥ then it evaluates to ⊥ – and it is defined as follows:

[v̂]µ̂ = v̂ [x]µ̂ = µ̂(x) [e1 ⊕ e2]µ̂ = [e1]µ̂ ⊕ [e2]µ̂

where ⟨v1 : v′
1⟩ ⊕ ⟨v2 : v′

2⟩ = ⟨v1 ⊕ v2 : v′
1 ⊕ v′

2⟩.
Faceted memories, ranged over by µ̂, are mappings from variables to faceted

values. A function µ ↑Γ creates a faceted memory from a memory µ using the
labelling function Γ , and function µ̂ ↓Γ erases facets from the faceted memory
µ̂ and returns a normal memory µ. We use the notation µ̂(x)i (i ∈ {1, 2})
for the first or second projection of a faceted value stored in x. Similar to the
formalisation of SME, the special runtime value ⊥ represents the idea that no
value can be observed (program syntax only uses standard values). Moreover,
MF skips any operation that depends on a value ⊥ (see rule if-bot in Fig. 3).

Example 4 (MF uses ⊥ to signal “no information”). Consider the following pro-
gram, that copies the secret from h to low variable l : l = h . Given an initial
environment µ= [h=1, l=0], the function µ ↑Γ creates a faceted memory µ̂,
where h = ⟨1 : ⊥⟩. After assignment, the variable l will contain the faceted
value of h, that will be projected to the ⊥ value using the function µ̂ ↓Γ to erase
facets in the end of the execution.



Example 5 (MF “skips” sensitive upgrades). Consider Program 4.

Program 41 l = 0; if h = 1 then l = 1 else l = 2

In MF, the L facet of variable l will be the initial value of variable l since MF
will not update a low variable in a high context. Therefore, all the executions of
Program 4 are modified by MF, producing the final memory with l=0.

4 Differences between SME and MF

Even though MF is claimed to simulate SME, the example below demonstrates
that even in a simple language, SME and MF semantics are different.

Example 6 (SME and MF semantics are different). Consider Program 5 and an
initial memory [h=0, l=0].

Program 51 l = 0;
2 if h = 0 then l = 1;
3 if l = 1 then l = 2 else l = 3

This program terminates in MF with the final memory where l=3 because
the value of l is not updated due to a sensitive upgrade. In contrast, under SME
with defH = 0, the program terminates with the final memory where l=2.

Projection Theorem of MF For MF semantics, a Projection Theorem [4,
Thm. 1] states that a computation over a 2-faceted memory simulates 2 non-
faceted computations, one per each security level. The theorem uses a projection
of a faceted memory into a normal memory using the following functions (simpli-
fied for our setting), where Lev represents either a high viewer H or a low viewer
L, so that H(⟨v1 : v2⟩) = v1, L(⟨v1 : v2⟩) = v2, and Lev(µ̂) = λx.Lev(µ̂(x)).

The Projection Theorem states that whenever the monitor terminates2 for
some memory µ̂, Γ ⊢ (P, µ̂) ↓MF µ̂′, then for any viewer Lev,

(P, Lev(µ̂)) ⇓ Lev(µ̂′).

The Projection Theorem may resemble to an equivalence between SME and MF
semantics, however, as we have shown above, MF is not equivalent to SME.

Example 7 (Projection Theorem of MF doesn’t imply equivalence to SME). Con-
sider Program 6 and an initial memory µ=[h=1, l=1]. This program is TINI and
TSNI and SME would terminate in the memory µ′ = [h=1, l=0].

Program 61 if h = 0 then l = 0 else l = 0

2 Notice that the original program semantics in [4] already contains rules that deal
with special ⊥ values, that skip any operation that involves a ⊥ value.



The Projection theorem is based on the assumption that MF terminates
on a given initial faceted memory. We use the function µ ↑Γ that creates a
faceted memory from a normal memory µ given a security labelling Γ . The
obtained memory is µ̂ = [h = ⟨1 : ⊥⟩, l = ⟨1 : 1⟩]. Upon a faceted execution of
the program, the final faceted memory is µ̂′ = [h = ⟨1 : ⊥⟩, l = ⟨0 : 1⟩].

For a viewer at level H, the initial projected memory is H(µ̂) = [h=1, l=1],
and the final projected memory is H(µ̂′)=[h=1, l=0], which corresponds to the
original final memory µ′. However, only a viewer a level H is able to see this
memory, while a viewer at level L will see a different memory.

For a viewer at level L, the projected initial memory is L(µ̂) = [h=⊥, l=1],
and the final projected memory is also L(µ̂′) = [h=⊥, l=1], since the mechanism
of MF skips the sensitive upgrades and the value of l is not changed. It means
that a viewer at level L will see l=1 in MF, however will see l=0 in SME.

Soundness Monitors that enforce TSNI and TINI are comparable with re-
spect to soundness thanks to the fact that TSNI is a stronger guarantee than
TINI [22]. SME was previously proven TSNI sound [12], and therefore SME is
also TINI sound. Example 3 demonstrated how SME enforces TSNI and hence
TINI soundness. In contrast, MF was previously proven TINI sound [4], however
it is unable to enforce TSNI.

Example 8 (MF is not TSNI sound). Consider Program 1. When h=1, the MF
semantics will diverge because the faceted value of h is ⟨1 : ⊥⟩ and the premises
of the if-bot rule are not satisfied (the program diverges on line 3). However
when h=0, the MF semantics will terminate with final memory where l=1.

Transparency Devriese and Piessens [12, Thm. 2] have proven that SME is
TSNI precise, meaning that for TSNI secure programs, all their executions are
not modified by SME.

Theorem 1 ( [12, Thm. 2]). SME is TSNI precise, meaning that for any
program P , the following holds: TSNI (P ) ⇒ ∀µ. A(P, µ, SME).

In this paper, we prove a more fine-grained guarantee for SME, which is TSNI
transparency. Notice that TSNI transparency is stronger than TSNI precision
because it requires that the monitor not only does not modify any executions of
secure programs, but also secure executions of insecure programs.

Theorem 2. SME is TSNI transparent.

Example 9. Consider Program 7. This program is not TSNI, however there are
TSNI-secure executions of this program when initially l=1. For an initial memory
where l=1, and for any default high value defH , SME will terminate in a final
memory, where l=1, like the original program.

Program 71 if l=0 then (while h=0 do skip)



SME-TINI
(P, µ|Γ ) ⇓ µ2 (P, µ) ⇓ µ1

Γ ⊢ (P, µ) ⇓SMETINI µ1 ⊙Γ µ2

Fig. 4: SME semantics for TINI (SME-TINI)

Example 10 (MF is not TSNI and not TINI transparent). Consider Program 6,
which is TSNI secure, and an initial memory [h=1, l=1]. The MF semantics will
modify this execution. Since the test depends on a high variable h, the if-bot
rule will be used to evaluate the conditional, and only the high facet of the
value in l will be updated, getting the value 0, while the low facet will not be
updated, hence the new faceted value of l is ⟨0 : 1⟩. Following the definition
of the ↓Γ function, the final memory will contain l=1 because Γ (l) = L, while
the original program would terminate in the memory where l=0. Hence, this is
a counter example for TSNI and TINI transparency of MF.

5 SME vs MF by downgrading SME to TINI

The first reason for SME and MF to be incomparable is that SME enforces
termination-sensitive noninterference (TSNI), whereas MF enforces a weaker
version of noninterference called termination-insensitive noninterference (TINI).
To formally compare SME and MF, we modify SME semantics in order for SME
to enforce the same version of noninterference as MF, which is TINI.

SME that enforces TINI (SME-TINI) We propose a version of SME, that
we call SME-TINI and present its semantics in Fig. 4. SME-TINI runs the pro-
gram multiple times like SME, but it does not have a low priority scheduler and
hence is not sensitive to termination leaks.

Example 11 (SME-TINI does not enforce TSNI). Consider Program 1 and a de-
fault value for SME is defH = 0. In an initial memory where h=1, the program
will diverge in the SME-TINI semantics whereas it will terminate with the mem-
ory l=1 in the SME semantics. In an initial memory where h=0, the program
will terminate with l=1 in both SME-TINI and SME semantics. This example
shows that, in contrast to SME, SME-TINI does not enforce TSNI.

Theorem 3. SME-TINI is TINI sound.

Example 12 (SME-TINI is TINI sound). Consider Program 4 and an initial
memory [h=1,l=0]. SME-TINI with defH = 0 enforces TINI by always termi-
nating in a final memory where l=2.

However, differently from original SME, SME-TINI does not provide trans-
parency guarantee.



MFd
(P, µ ↑def

Γ ) ↓MF µ̂

Γ ⊢ (P, µ) ⇓MFd µ̂ ↓Γ

Fig. 5: Multiple Facets with default (MFd).

Example 13 (SME-TINI is not TINI transparent). Consider Program 3, an ini-
tial memory µ=[h=0, l=1] and defH=1. The original program terminates on
memory µ= [h=0, l=1]. Though program is TINI, SME-TINI does not termi-
nate on µ because its low execution does not terminate since defH=1.

Surprisingly, we find out that even if we downgrade SME to only enforce
TINI, and SME-TINI and MF now have the same soundness guarantees, still
SME-TINI and MF semantics are different.

Example 14 (SME-TINI and MF semantics are different). Consider again Pro-
gram 4 and an initial memory [h=1, l=0]. SME-TINI with defH = 0 enforces
TINI by always producing an output 2, however MF does not execute an alter-
native else-branch, and keeps an initial value of l, terminating with the final
memory where l=0.

The main reason for a different semantics now is the way in which SME-
TINI and MF treat insecure executions: while SME forces all insecure executions
to behave like the “default” executions, MF uses the Fenton strategy to skip
sensitive upgrades.

Multiple Facets with Default (MFd) To propose a version of MF that has
the same semantics as SME-TINI, we replace the ⊥ value of MF with defH as the
default high value (this is exactly as the default of SME). In fact, there is a maybe
different default high value for each high variable, so in fact defH is a vector of
variables but for simplicity of presentation (and without loss of generality), we
call it a default value and use only one high variable in our examples.

The new version of MF, that we call MFd, uses the semantics rules of MF,
and instead of a µ ↑Γ function that creates a faceted memory in the MF rule,
it uses a µ ↑def

Γ function, that is defined as follows:

µ ↑def
Γ (x) =

{
⟨µ(x) : µ(x)⟩ if Γ (x) = L

⟨µ(x) : defH⟩ if Γ (x) = H

Therefore, the MFd semantics is presented with only one rule shown in Fig. 5.
Since the MFd semantics never introduces a runtime value ⊥, the MFd rules
do not include the rule if-bot of the original MF semantics (Fig. 3). Notice
that, the fact that the rule if-bot is not included implies that one of the bases
of original MF, which is to skip sensitive upgrades as originally proposed by
Fenton [14], is made obsolete.

Theorem 4. MFd is TINI sound.



To prove that MFd is equivalent to SME-TINI, we first propose the following
definition of an equivalence relation on two monitor semantics.

Definition 5. A monitor A is semantically equivalent to a monitor B, written
A ≈ B, if and only if for all programs P , all memories µ and µ’, and all labelling
functions Γ , the following holds:

Γ ⊢ (P, µ) ⇓A µ′ ⇐⇒ Γ ⊢ (P, µ) ⇓B µ′.

Theorem 5. MFd ≈ SME-TINI.

Example 15 (MFd and SME-TINI semantics are equivalent). Consider Program 4
and an initial memory [h=1, l=0]. SME-TINI with defH = 0 always terminates
in a final memory where l=2. MFd also terminates in a final memory with l=2,
because differently from original MF, it does not skip the sensitive upgrades but
rather uses the results of the “default” execution, like SME.

6 SME vs MF by upgrading MFd to TSNI

By analysing SME and MF semantics, we concluded that they are different
for two reasons. First, SME enforces TSNI, while MF enforces TINI. In the
previous section we have downgraded SME to enforce a weaker property TINI,
however the resulting SME-TINI monitor was not semantically equivalent to
MF. Therefore, we have found the second reason for their difference: while SME
is using a default value for high variables in the low execution, MF uses special
runtime values ⊥, allowing the execution of some branches to be skipped.

In the previous section we proposed a new version of MF, called MFd, that
solves the second difference of SME and MF, but does not solve the first one:
MFd does not have the same strong soundness guarantee, TSNI, that original
SME has. Therefore, we propose modifications to the MFd semantics in order
for MFd to enforce TSNI.

We propose a new monitor, that we call MFd-TSNI, and present its semantics
in Fig. 6. The main difference between MFd and MFd-TSNI is the embedding of
a low priority scheduler to schedule with priority the low facet in the execution.
This can be observed in the rules if-val and if-bot-val. The rule if-val simu-
lates the idea behind the low priority scheduler from original SME. The symbol
⊥ is overloaded to denote a memory that maps every variable to ⊥ when the
high execution does not terminate. We illustrate the efficiency of MFd-TSNI in
enforcing TSNI in the following example.

Example 16. Consider Program 8 which is not TSNI and initial memory µ=
[h=1, l=1], the default value used to create a faceted memory is defH= 0.

Program 81 if h=1 then (while true skip);
2 if h=0 then l=0



MFd-TSNI
(P, µ ↑def

Γ ) ↓MF T µ̂

Γ ⊢ (P, µ) ⇓MFdT µ̂ ↓Γ

skip
(skip, µ̂) ↓MF T µ̂

assign
(x := e, µ̂) ↓MF T (µ̂[x 7→ [e]µ̂])

seq
(P1, µ̂) ↓MF T µ̂′ (P2, µ̂′) ↓MF T µ̂′′

(P1; P2, µ̂) ↓MF T µ̂′′

if-bot-val
[x]µ̂ = ⟨⊥ : α⟩ α ̸= ⊥ (Pα, µ̂) ↓MF T µ̂′

(if x then Ptrue else Pfalse, µ̂) ↓MF T ⊥ ⊗ µ̂′

if-val

[x]µ̂ = ⟨α1 : α2⟩ α1 ̸= ⊥

α2 ̸= ⊥ (Pα2 , µ̂) ↓MF T µ̂2 µ̂1 =
{

µ̂′ if ∃µ̂′.(Pα1 , µ̂) ↓MF T µ̂′

⊥ otherwise
(if x then Ptrue else Pfalse, µ̂) ↓MF T µ̂1 ⊗ µ̂2

while
(if x then P ; while x do P else skip, µ̂) ↓MF T µ̂′

(while x do P, µ̂) ↓MF T µ̂′

Fig. 6: Multiple Facets semantics with default for TSNI (MFd-TSNI)

An initial value of h in the new faceted memory µ̂ is h=⟨1 : 0⟩, while l = ⟨1 :
1⟩. Upon the first test, the if-val rule is applied. This rule first requires that the
execution corresponding to the low facet terminates, which is the case and the
final faceted memory after the first test is µ̂2 = µ̂. However, the program does
not terminate if we use the high facet of h, therefore all the program variables
get assigned to ⊥ in a memory µ̂1. After the combination of memories, we get
the final memory after the first test, which is µ̂1 ⊗ µ̂2, where h = ⟨⊥ : 0⟩ and l
= ⟨⊥ : 1⟩.

Upon the second test, the if-bot-val rule is applied since the high facet of
variable h is now ⊥. Therefore, MFd-TSNI executes only one branch where h=0
and computes the final memory where l = ⟨0 : 0⟩.

We prove that the new monitor MFd-TSNI is semantically equivalent to
original SME.

Theorem 6. MFd-TSNI ≈ SME.

As a direct consequence of the semantical equivalence to SME, MFd-TSNI is
TSNI sound and TSNI transparent. Notice that MFd was not transparent.
Theorem 7. MFd-TSNI is TSNI sound and TSNI transparent.

Example 17 (MFd-TSNI is TINI sound and TSNI sound). Consider Program 4
and defH = 0. For any initial memory, MFd-TSNI always terminates in final
memory where l=2, thus enforcing TINI and TSNI.

Example 18 (MFd-TSNI is TSNI transparent). Consider again Program 7. For
the initial memory where l=1, and for any default high value defH , MFd-TSNI
will terminate in a final memory, where l=1, like the original program.



MF-TSNI
(P, µ ↑Γ ) ↓MF T µ̂

Γ ⊢ (P, µ) ⇓MFT µ̂ ↓Γ

if-bot
[x]µ̂ = ⟨α : ⊥⟩ α ̸= ⊥ µ̂1 =

{
µ̂′ if ∃µ̂′.(Pα, µ̂) ↓MF T µ̂′

⊥ otherwise
(if x then Ptrue else Pfalse, µ̂) ↓MF T µ̂1 ⊗ µ̂

if-bot-bot
[x]µ̂ = ⟨⊥ : ⊥⟩

(if x then Ptrue else Pfalse, µ̂) ↓MF T µ̂

Fig. 7: Additional rules for the Multiple Facet semantics for TSNI (MF-TSNI)

MF that enforces TSNI Given the technique we used to upgrade MFd to
MFd-TSNI to enforce termination-sensitive noninterference, in this section we
show how to upgrade the original MF in order to enforce TSNI using the same
low priority scheduler.

The new monitor, that we call MF-TSNI, uses the ↑Γ function from MF to
create a faceted memory, and uses all the rules of MFd-TSNI, with additional
two rules to incorporate the possibility of having a special ⊥ value in the low
facet of the faceted value. We present these additional rules in Fig. 7.

We now prove that the new MF-TSNI monitor indeed enforces termination-
sensitive noninterference.

Theorem 8. MF-TSNI is TSNI sound.

Example 19 (MF-TSNI is TSNI sound and TINI sound). Consider Program 1.
When h=1, the if-bot rule of MF-TSNI (Fig. 7) will construct a memory µ̂1,
where all the variables are assigned to ⊥ value since the high facet execution
does not terminate. Therefore, MF-TSNI will terminate with the final memory
where l = ⟨⊥ : 1⟩. When h=0, the MF-TSNI will terminate in the final memory
where l = ⟨1 : 1⟩, thus enforcing TINI and TSNI.

MF-TSNI is not TSNI transparent for the same reason that MF is not TSNI
transparent: the Fenton strategy of skipping sensitive upgrades prevents a mech-
anism from being transparent.

Example 20 (MF-TSNI is not TSNI transparent). Consider again Program 6,
which is TSNI and TINI. For an initial memory where l=1, MF-TSNI will ter-
minate in a final memory, where l=1, thus being not transparent.

7 Related Work

We present only SME and MF closely related work. We refer to [22, 23] for a
wider overview on information flow properties, to [6,13,18] for a wider overview
on transparency properties of monitors, and to [9, 17] for a wider overview on
information flow monitors.



Originally, Secure Multi-Eexecution is presented in a while language featur-
ing input/output commands and channels [12]. An output command produces a
value that is queued in the output channel. An input command reads a value that
is read from the input channel. We model SME as in [9], in a while language
without channels. Instead of channels, we use memories mapping variables to
values. To simulate an input (resp. output) command, our language reads (resp.
writes) a variable from memory. In the original SME semantics [12], a configu-
ration contains a pool of threads, one thread for each level. Then, a scheduler
selects to execute first all steps of the lower level threads. Hence, all outputs of a
low execution appear first in the output channel in the original SME semantics.
The low priority scheduler is simulated in our model by the only rule of Fig. 2.
In this rule, the low thread executes to the end to obtain the low part of the
final memory and, if the high thread does not terminate, the high part of the final
memory is ⊥. Hence, the semantics becomes non computable. With the current
model we can at least prove the same results as in the original SME monitor,
and further use it for comparison with MF. Notice that, at the cost of simplicity
we could have used the original SME language and semantics in order to have
computability (we have modelled the MFd-TSNI monitor in the original SME
language as a proof of concept in the companion technical report [8]).

SME is proved to be TSNI sound in Theorem 1 of [12]. Kashyap et al. [16]
investigate different strategies for SME to also enforce several flavours of time-
sensitive noninterference. Intuitively, time-sensitive noninterference is stronger
than termination-sensitive noninterference because it requires that two execu-
tions starting in low-equal memories must terminate within the same number
of program execution steps. Other works [10, 20, 26] have proposed other infor-
mation flow properties, declassification properties, for modified SME monitors.
We do not study in this work SME-based monitors for declassification. SME is
proved to be TSNI precise in Theorem 2 of [12]. Notice that TSNI precision is
a weaker property than transparency since a program which is not secure may
still have some secure executions.

TSNI transparency does not hold for original SME because the low priority
scheduler may reorder outputs compared to the original program semantics,
letting outputs of low executions appear first in the output channel. Zanarini
et al. [27] propose a modification to SME in order to prove a version of TSNI
transparency (In fact, they prove a property called CP precision in Theorem 23
of [27], which is a weaker notion that TSNI transparency because it recognizes as
secure a program that silently diverges on one branch, and terminates without
producing any outputs on the other branch). In contrast, we can prove TSNI
transparency in our SME model (and also CP precision) without need of the
SME modifications proposed in Zanarini et al. because reordering is not visible
in our model due to the lack of output channels, and intermediate outputs.

Zanarini et al. [27] also prove a version of TINI transparency for their TSNI
sound SME-based monitor (Theorem 22 of [27]). Using our notations, their no-
tion of TINI transparency is different from ours since if an execution is secure,
if the original program terminates in a final memory µ and if the monitor ter-



minates in final memory µ′, then µ and µ′ should be low equal (in fact, they
prove a property called ID-transparency in Theorem 22 of [27], which recognizes
as transparent a monitor that always diverges).

SME is also shown TSNI sound and TSNI precise for a language featuring
dynamic code evaluation [5] and adapted to reactive systems [7]. SME is imple-
mented in a real browser called FlowFox [11], and SME guarantees via program
transformations are implemented in JavaScript and Python [5].

Originally, Multiple Facets is presented in a lambda calculus with muta-
ble reference cells and reactive input/output [4]. In contrast, we model MF in
an imperative while language without mutable references. Moreover, since our
language features memories that map variables to values, we use security envi-
ronments as a means to create faceted values in our MF model. As we do, the
original MF semantics [4] uses the special value ⊥ in order to model the Fenton
strategy [14], which roughly means to skip sensitive upgrades [2, 28] to prevent
implicit flows.

MF is also modelled in [9] using an imperative while language as ours. The
semantics in [9] uses security environments and program counters in order to
implement the Fenton strategy. Our formalisation is simpler since we use facets
and ⊥ to do this, as in [4]. MF is proved to be TINI sound in Theorem 2 of [4]
and also is extended to declassification and proved sound in Theorem 6 of [4].

Transparency guarantees of MF are studied in [9]. It was first shown that
MF is not TINI transparent (more precisely, TINI transparency is called true
transparency in [9]). Using a notion of false transparency, it is then shown that
MF can accept more insecure executions than any other information flow mon-
itor with the exception of SME (Table 1 of [9]). Moreover, Theorems 3 and
4 of [4] prove that MF generalizes no-sensitive upgrade monitor (NSU) [2, 28]
and permissive-upgrade monitor (PU) [3]. These theorems imply that MF is
relatively more transparent than NSU and PU [9].

MF has been implemented in JavaScript as a Firefox browser extension [4]
and also as a Haskell Library using monads [25].

8 Conclusion

We have formally compared SME, MF, and other mechanisms derived from
them. We present a summary of the comparison in Fig. 8.

Soundness Transparency
TINI TSNI TINI TSNI

SME 3 3 7 3

MF 3 7 7 7

SME-TINI 3 7 7 7

MFd 3 7 7 7

MFd-TSNI 3 3 7 3

MF-TSNI 3 3 7 7

Fig. 8: Summary of our results

We have first downgraded SME
to enforce only TINI, and pro-
posed a new version of MF,
called MFd, which is indeed se-
mantically equivalent to a TINI
version of SME. We then up-
graded the MFd monitor to
enforce TSNI and proposed a
new monitor that we call MFd-
TSNI. We have proven that



MFd-TSNI is semantically equivalent to SME, and therefore enjoys the same
TSNI soundness and TSNI transparency guarantees as SME. Finally, we propose
to upgrade MF semantics so that it can also enforce termination-sensitive nonin-
terference (TSNI). The new monitor, that we call MF-TSNI, is not semantically
equivalent to MFd-TSNI, and is not TSNI transparent. Both SME [10, 20, 26],
and MF [4] have been extended to handle declassification, a security property
more versatile than noninterference. It is left as future work to understand if our
results generalize to declassification properties in order to compare SME and
MF.

Acknowledgment

We would like to thank Frank Piessens on valuable feedback on earlier versions
of this paper and anonymous reviewers who helped us to improve the paper.
This work has been partially supported by the ANR project AJACS ANR-14-
CE28-0008.

References

1. T. Austin, K. Knowles, and C. Flanagan. Typed faceted values for secure informa-
tion flow in haskell. Technical Report UCSC-SOE-14-07, University of California,
Santa Cruz, 2014.

2. T. H. Austin and C. Flanagan. Efficient purely-dynamic information flow analysis.
In PLAS’09, pages 113–124, 2009.

3. T. H. Austin and C. Flanagan. Permissive dynamic information flow analysis. In
PLAS’10, pages 3:1–3:12. ACM, 2010.

4. T. H. Austin and C. Flanagan. Multiple facets for dynamic information flow. In
Proc. of the 39th Symposium of Principles of Programming Languages. ACM, 2012.

5. G. Barthe, J. M. Crespo, D. Devriese, F. Piessens, and E. Rivas. Secure multi-
execution through static program transformation. In Formal Techniques for Dis-
tributed Systems - Joint 14th IFIP WG 6.1 International Conference, FMOODS
2012 and 32nd IFIP WG 6.1 International Conference, FORTE, 2012.

6. L. Bauer, J. Ligatti, and D. Walker. Edit Automata: Enforcement Mechanisms for
Run-time Security Policies. International Journal of Information Security, 4(1-
2):2–16, 2005.

7. N. Bielova, D. Devriese, F. Massacci, and F. Piessens. Reactive non-interference
for a browser model. In Proc. of the 5th International Conference on Network and
System Security (NSS 2011), pages 97–104. IEEE, 2011.

8. N. Bielova and T. Rezk. Spot the Difference: Secure Multi-Execution and Multiple
Facets Technical Report. https://goo.gl/b7yoQ9.

9. N. Bielova and T. Rezk. A taxonomy of information flow monitors. In International
Conference on Principles of Security and Trust (POST 2016), volume 9635, pages
46–67. Springer, 2016.

10. I. Bolosteanu and D. Garg. Asymmetric secure multi-execution with declassifi-
cation. In International Conference on Principles of Security and Trust (POST
2016), volume 9635, pages 24–45. Springer, 2016.



11. W. De Groef, D. Devriese, N. Nikiforakis, and F. Piessens. Flowfox: a Web Browser
with Flexible and Precise Information Flow Control. In Proc. of the 19th ACM
Conference on Communications and Computer Security, pages 748–759, 2012.

12. D. Devriese and F. Piessens. Non-interference through secure multi-execution. In
Proc. of the 2010 Symposium on Security and Privacy, pages 109–124. IEEE, 2010.

13. U. Erlingsson. The Inlined Reference Monitor Approach to Security Policy En-
forcement. PhD thesis, Cornell University, 2003.

14. J. S. Fenton. Memoryless subsystems. Comput. J., 17(2):143–147, 1974.
15. D. Hedin, L. Bello, and A. Sabelfeld. Value-sensitive hybrid information flow

control for a javascript-like language. In IEEE 28th Computer Security Foundations
Symposium, CSF, 2015.

16. V. Kashyap, B. Wiedermann, and B. Hardekopf. Timing- and termination-sensitive
secure information flow: Exploring a new approach. In Security and Privacy (SP),
2011 IEEE Symposium on, pages 413–428, 2011.

17. G. Le Guernic. Confidentiality Enforcement Using Dynamic Information Flow
Analyses. PhD thesis, Kansas State University and University of Rennes 1, 2007.

18. J. Ligatti, L. Bauer, and D. Walker. Enforcing Non-safety Security Policies with
Program Monitors. In Proc. of the 10th European Symposium on Research in Com-
puter Security, volume 3679 of LNCS, pages 355–373. Springer-Verlag Heidelberg,
2005.

19. A. G. A. Matos, J. F. Santos, and T. Rezk. An Information Flow Monitor for a
Core of DOM - Introducing References and Live Primitives. In Trustworthy Global
Computing - 9th International Symposium, TGC, 2014.

20. W. Rafnsson and A. Sabelfeld. Secure multi-execution: Fine-grained,
declassification-aware, and transparent. In 2013 IEEE 26th Computer Security
Foundations Symposium, 2013.

21. W. Rafnsson and A. Sabelfeld. Secure multi-execution: Fine-grained,
declassification-aware, and transparent. Journal of Computer Security, 24(1):39–
90, 2016.

22. A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE
Journal on Selected Areas in Communication, 21(1):5–19, 2003.

23. A. Sabelfeld and D. Sands. Declassification: Dimensions and principles. Journal
of Computer Security, 17(5):517–548, 2009.

24. J. F. Santos and T. Rezk. An Information Flow Monitor-Inlining Compiler for
Securing a Core of Javascript. In ICT Systems Security and Privacy Protection -
29th IFIP TC 11 International Conference, SEC 2014, 2014.

25. T. Schmitz, D. Rhodes, T. H. Austin, K. Knowles, and C. Flanagan. Faceted
dynamic information flow via control and data monads. In International Confer-
ence on Principles of Security and Trust (POST 2016), volume 9635, pages 3–23.
Springer, 2016.

26. M. Vanhoef, W. D. Groef, D. Devriese, F. Piessens, and T. Rezk. Stateful de-
classification policies for event-driven programs. In IEEE 27th Computer Security
Foundations Symposium, CSF 2014, pages 293–307, 2014.

27. D. Zanarini, M. Jaskelioff, and A. Russo. Precise enforcement of confidentiality for
reactive systems. In IEEE 26th Computer Security Foundations Symposium, pages
18–32, 2013.

28. S. A. Zdancewic. Programming languages for information security. PhD thesis,
Cornell University, 2002.



DOM: Specification and Client Reasoning

Azalea Raad, José Fragoso Santos and Philippa Gardner

Imperial College London

Abstract. We present an axiomatic specification of a key fragment of
DOM using structural separation logic. This specification allows us to
develop modular reasoning about client programs that call the DOM.

1 Introduction

The behaviour of JavaScript programs executed in the browser is complex. Such
programs manipulate a heap maintained by the browser and call a wide range of
APIs via specific objects in this heap. The most notable of these is the Document
Object Model (DOM) API and the DOM document object, which are used to
represent and manipulate the web page. JavaScript programs must run uniformly
across all browsers. As such, the English standards of JavaScript and DOM
are rather rigorous and are followed closely by browser vendors. While there
has been work on formal specifications of JavaScript [14], including mechanised
specifications [4], and some work on the formal specification of DOM [9,22] and
on the verification of JavaScript programs [7], we are not aware of any work on
the verification of JavaScript programs that call the DOM.

The W3C DOM standard [1] describes an XML update library used by all
browsers. This English standard is written in an axiomatic style that lends itself
well to formalisation. The first formal axiomatic DOM specification has been given
in [9,22], using context logic (CL) [6,5], which extends ideas from separation logic
(SL) [19] to complex data structures. However, this work has several shortcomings.
First, it is not simple to integrate SL reasoning about e.g. C [19], Java [16] and
JavaScript [7] with the DOM specifications in CL. The work in [9,22] explores
the verification of simple client programs manipulating a variable store and
calling the DOM. It does not verify clients manipulating a standard program
heap. Second, this specification does not always allow compositional client-side
reasoning. Finally, this specification makes simplifying choices (e.g. with live
collections), and does not always remain faithful to the standard.

We present a faithful axiomatic specification of a key fragment of the DOM
and verify substantial client programs, using structural separation logic (SSL)
introduced in [25,8]. SSL provides fine-grained reasoning about complex data
structures. The SSL assertion language contains the commutative separating
conjunction (∗), as in SL, that serves to split the DOM tree into smaller subtrees.
By contrast, the CL assertion language contains the non-commutative separating
application (•), that splits the DOM tree into a tree context with a hole applied
to a partial DOM tree. These two operators are not compatible with each other.



2

In particular, the integration of the CL DOM specification with an SL-based
program logic involves extending the program logic to include a frame rule for the
separating application. By contrast, the integration of our SSL DOM specification
with an SL-based program logic requires no extensions. We can reason about
DOM client programs written in e.g. C, Java and JavaScript, by simply using a
combination of the appropriate SL-based program logic for reasoning about the
particular programming language and our DOM axioms. We illustrate this by
verifying several realistic ad-blocker client programs written in JavaScript, using
the program logic of [7]. Our reasoning abstracts the complexities of JavaScript,
simply using standard SL assertions, an abstract variable store predicate, and
JavaScript heap assertions. It is thus straightforward to transfer our ideas to
other languages, as we show in §3.

As the authors noted in [9,22], CL does not always allow for local reasoning. As
we demonstrate in§2, it also does not provide compositional reasoning. In contrast,
SSL provides both local and compositional client reasoning. We demonstrate this
by presenting a simple client program which can be specified using a single SSL
triple whose precondition captures its intuitive footprint, compared to six CL
triples, whose preconditions are substantially larger than the footprint.

The DOM English standard [1] is written in an axiomatic style, allowing
for a straightforward comparison of our formal axiomatic specification with the
standard. A typical way to justify an axiomatic specification of a library is to
compare it against an operational semantics, as in [9,22,25] for DOM. However,
this approach seems unsuitable as it involves inventing an operational semantics
for the library, even though the standard is written in an axiomatic style. Instead,
we justify our specification with respect to a reference implementation that can
be independently tested. In [17] we present a JavaScript implementation of our
DOM fragment, and prove its correctness with respect to our specification.

Related work There has been much work on simple models of semi-structured
data, following the spirit of DOM, such as [6,2,3] (axiomatic, program logic)
and [20] (operational, information flow). We do not detail this work here. Instead,
we concentrate on axiomatic and operational models, with a primary focus on
DOM. Smith et al. developed an axiomatic specification of the DOM [9,22] in
CL [6,5], as discussed above. Others have also studied operational models of
DOM. Lerner et al. were the first to formalise the DOM event model [13]. This
model is executable and can be used as an oracle for testing browser compliance
with the standard. Unlike our work, this model was not designed for proving
functional properties of client programs, but rather meta-properties of the DOM
itself. The main focus of this work is the event dispatch model in DOM. Rajani et
al. [18] have developed an operational model for DOM events and live collections,
in order to study information flow. We aim to study DOM events in the future.

There has been much work on type analysis for client programs calling the
DOM. Thiemann [24] developed a type system for establishing safety properties
of DOM client programs written in Java. He extended the Java type system
of [10] with recursion and polymorphism, and used this extension to specify the
DOM data structures and operations. Later, Jensen et al. added DOM types



3

to JavaScript [12,21,11], developing a flow sensitive type analysis tool TAJS.
They used DOM types to reason about control and data flow in JavaScript
applications that interact with the DOM. Recently, Park et al. developed a
framework for statically analysing JavaScript web applications that interact with
the DOM [15]. As with TAJS, this framework uses configurable DOM abstraction
models. However, the proposed models are significantly more fine-grained than
those of TAJS in that they can precisely describe the structure of DOM trees
whereas TAJS simply treats them as black boxes. In [23], Swamy et al. translate
JavaScript to a typed language and type the DOM operations. The DOM types are
intentionally restrictive to simplify client analysis (e.g. modelling live collections
as iterators in [23]). In contrast, there has been little work on the verification
of programs calling the DOM. Smith et al. [9,22] look at simple client programs
which manipulate the variable store and the DOM. However, their reasoning is
not compositional, as previously discussed and formally justified in §2.

Outline In §2, we summarise our contributions. In §3, we present our DOM
specification and describe how our specification may be integrated with an
arbitrary SL-based program logic. In §4, we verify a JavaScript ad-blocker client
program which calls the DOM, and we finish with concluding remarks.

2 Overview

2.1 A Formal DOM Specification

The W3C DOM standard [1] is presented in an object-oriented (OO) and language-
independent fashion. It consists of a set of interfaces describing the fields and
methods exposed by each DOM datatype. A DOM object is a tree comprising a
collection of node objects. DOM defines twelve specialised node types. As our goal
is to present our specification methodology, we focus on an expressive fragment
of DOM Core Level 1 (CL1) that allows us to create, update, and traverse DOM
documents. We thus model the four most commonly used node types: document,
element, text and attribute nodes. Additionally, we model live collections of nodes
such as the NodeList interface in DOM CL1-4 (discussed in §3.5). Our fragment
underpins DOM Core Levels 1-4. As shown in [22], it is straightforward to extend
this fragment to the full DOM CL1 without adding to the complexity of the
underlying program logic. It will be necessary to extend the program logic as
we consider additional features in the higher levels of the standard (e.g. DOM
events). However, these features will not affect the fragment specified here. We
proceed with an account of our DOM fragment, hereafter simply called DOM.

DOM nodes Each node in DOM is associated with a type, a name, an optional
value, and information about its surroundings (e.g. its parent, siblings, etc.).
Given the OO spirit of the standard, each node object is uniquely identified by its
reference. To capture this more abstractly (and admit non-OO implementations),
we associate each node with a unique node identifier. As mentioned earlier, the
standard defines twelve different node types of which we model the following



4

#document 7

html 12

head 10

#text 5

Lorem

body 4

ad 9

img 3

width 17

#text 23

800px

src 13

#text 1

goo.gl/K4S0d0

img 8

article 6

#text 11

ipsum
img 2

D

(a)

#document 7

html 12

head 10

#text 5

Lorem

body 4

ad 9

x img 8

article 6

#text 11

ipsum
img 2

D x

img 3

y

src 13

#text 1

goo.gl/K4S0d0

y

width 17

#text 23

800px

(b)

Fig. 1: A complete DOM heap (a); same DOM heap after abstract allocation (b)

four. Document nodes represent entire DOM objects. Each DOM object contains
exactly one document node, named #document, with no value and at most a
single child, referred to as the document element. In Fig. 1a, the document node
is the node with identifier 7 (with document element 12). Text nodes (named
#text) represent the textual content of the document. They have no children and
may have arbitrary strings as their values. In Fig. 1a, node 5 is a text node with
string data “Lorem”. Element nodes structure the contents of a DOM object.
They have arbitrary names (not containing the ‘#’ character), no values and an
arbitrary number of text and element nodes as their children. In Fig. 1a, node
12 is an element node with name “html” and two children with identifiers 10 and
4. Attribute nodes store information about the element nodes to which they are
attached. The attributes of an element must have unique names. Attribute nodes
may have arbitrary names (not containing the ‘#’ character) and an arbitrary
number of text nodes as their children. The value of an attribute node is given
by concatenating the values of its children. In Fig. 1a, the element node with
identifier 3 has two attributes: one with name “width”, identifier 17, and value
“800px” (i.e. the value of text node 23); and another with name “src”, identifier
13, and value “goo.gl/K4S0d0” (i.e. the value of text node 1).

DOM operations The complete set of DOM operations and their axioms
are given in [17]. In §3, we present the axioms for the operations used in
the examples of this paper. Here, we describe the n.getAttribute(s) and
n.setAttribute(s,v) operations and their axioms to give an intuitive account
of SSL. The n.getAttribute(s) operation inspects the attributes of element
node n. It returns the value of the attribute named s if it exists, or the empty
string otherwise. For instance, given the DOM tree of Fig. 1a, when variable n



5

holds value 3 (the element node named “img”, placed as the left child of node
“ad”), and s holds “src”, then r = n.getAttribute(s) yields r=“goo.gl/K4S0d0”.

Intuitively, the footprint of n.getAttribute(s) is limited to the element
node n and its “src” attribute. To describe this footprint minimally, we need to
split the element node at n away from the larger surrounding DOM tree. To do
this, we introduce abstract DOM heaps that store abstract tree fragments. For
instance, Fig. 1a contains an abstract DOM heap with one cell at address D and a
complete abstract DOM tree as its value. It is abstract in that it hides the details
of how a DOM tree might be concretely represented in a machine. Abstract heaps
allow for their data to be split by imposing additional instrumentation using
abstract addresses. Such splitting is illustrated by the transition from Fig. 1a to
Fig. 1b. The heap in Fig. 1a contains a complete tree at address D. This tree can
be split using abstract allocation to obtain the heap in Fig. 1b with the subtree
at node 3 at a fresh, fictional abstract cell x, and an incomplete tree at D with a
context hole x indicating the position to which the subtree will return. Since we
are only interested in the attribute named “src”, we can use abstract allocation
again to split away the other unwanted attribute (“width”) and place it at a
fresh abstract cell y as illustrated in Fig. 1b. The subtree at node 3 and its “src”
attribute correspond to the intuitive footprint of n.getAttribute(s). Once the
getAttribute operation is complete, we can join the tree back together through
abstract deallocation, as in the transition from Fig. 1b to 1a.

Using SSL [25], we develop local specifications of DOM operations that only
touch the intuitive footprints of the operations. The assertion language comprises
DOM assertions that describe abstract DOM heaps. For example, the DOM
assertion α 7→ img3[β� src13[#text1[goo.gl/K4S0d0]],∅] describes the abstract
heap cell at x in Fig. 1b, where α and β denote logical variables corresponding to
abstract addresses x and y, respectively. It states that the heap cell at abstract
logical address α holds an “img” element with identifier 3, no children (∅)
and a set of attributes described by β � src13[#text1[goo.gl/K4S0d0]], which
contains a “src” attribute (with identifier 13 and value “goo.gl/K4S0d0”) and
other attributes to be found at abstract logical address β. The attributes of a
node are grouped by the commutative � operator. When we are only interested
in the value of an attribute, we can write an assertion that is agnostic to the
shape of the text content under the attribute. For instance, we can write α 7→
img3[β� src13[t],∅] ∗ val(t, goo.gl/K4S0d0) to state that attribute 13 contains
some text content described by logical variable t, and that the value of t (i.e. the
value of the attribute) is “goo.gl/K4S0d0”. Assertion val(t, goo.gl/K4S0d0) is
pure in that it contains no resources and merely describes the string value of t.

Using SSL triples, we can now locally specify r = n.getAttribute(s) as1:store(n : n, s : s, r : −)
∗α 7→ s′n[β � sm[t], γ]
∗ val(t, s′′)

 r = n.getAttribute(s)

store(n : n, s : s, r : s′′)
∗α 7→ s′n[β � sm[t], γ]
∗ val(t, s′′)

 (1)

1 It is possible to combine multiple cases into one by rewriting the pre- and postcondi-
tions as a disjunction of the cases and using logical variables to track each case. For
clarity, we opt to write each case separately.



6{
store(n : n, s : s, r : −)
∗ α 7→ s′n[a, γ] ∗ out(a, s)

}
r = n.getAttribute(s)

{
store(n : n, s : s, r : “ ”)
∗ α 7→ s′n[a, γ] ∗ out(a, s)

}
(2)

SSL triples have a fault-avoiding, partial-correctness interpretation as in other
separation logics: if an abstract DOM heap satisfies the precondition then either
the operation does not terminate, or the operation terminates and the resulting
state will satisfy the postcondition. Axiom (1) captures the case when n contains
an attribute named s; axiom (2) when n has no such attribute. The precondition
of (1) contains three assertions. Assertion store(n :n,s :s,r :−) describes a variable
store where program variables n, s and r have logical values n, s and an arbitrary
value (−), respectively.2 Assertion α 7→ s′n[β � sm[t], γ] describes an abstract
DOM heap cell at the logical abstract address α containing the subtree described
by assertion s′n[β � sm[t], γ]. This assertion describes a subtree with a single
element node with identifier n and name s′. Its children have been framed off,
leaving behind the context hole γ (using abstract allocation as in the transition
from Fig. 1a to 1b, then framing off the cell at γ). It has an attribute named
s with identifier m and text content t, plus (potentially) other attributes that
have been framed off, leaving behind the context hole β. This framing off of the
children and attributes other than s captures the intuition that the footprint
of n.getAttribute(s) is limited to element n and attribute s. Lastly, assertion
val(t, s′′) states that the value of text content t is s′′. The postcondition of (1)
declares that the subtree remains the same and that the value of r in the variable
store is updated to s′′, i.e. the value of the attribute named s.

The precondition of (2) contains the assertion α 7→ s′n[a, γ] where, this time,
the attributes of the element node identified by n are described by the logical
variable a. With the precondition of (1), all other attributes can be framed off
leaving context hole β. With the precondition of (2) however, the attributes are
part of the intuitive footprint since we must check the absence of an attribute
named s. This is captured by the out(a, s) assertion. The postcondition of (2)
declares that the subtree remains the same and the value of r in the variable store
is updated to the empty string “ ”, as mandated by the English specification.

The n.setAttribute(s,v) operation inspects the attributes of element node
n. It then sets the value of the attribute named s to v if such an attribute exists
(3). Otherwise, it creates a new attribute named s with value v and attaches it
to node n (4). We can specify this English description as1:store(n : n, s : s, v : s′′)
∗α 7→ s′n[β � sm[t], γ]
∗ δ 7→ ∅g

 n.setAttribute(s,v)

∃r. store(n : n, s : s, v : s′′)
∗α 7→ s′n[β�sm[#textr[s′′]], γ]
∗ δ 7→ t

 (3)

{
store(n : n, s : s, v : s′′)
∗α 7→ s′n[a, γ] ∗ out(a, s)

}
n.setAttribute(s,v)

{
∃m,r.store(n : n, s : s, v : s′′)
∗α 7→ s′n[a�sm[#textr[s′′]], γ]

}
(4)

Recall that attribute nodes may have an arbitrary number of text nodes as their
children where the concatenated values of the text nodes denotes the value of the

2 Since DOM may be called by different client programs written in different languages,
store denotes a black-box predicate that can be instantiated to describe a variable
store in the client language. Here, we instantiate it as the JavaScript variable store.



7

attribute. As such, when n contains an attribute named s, its value is set to v by
removing the existing children (text nodes) of s, creating a new text node with
value v and attaching it to s (axiom 3). What is then to happen to the removed
children of s? In DOM, nodes are not disposed of: whenever a node is removed, it
is no longer a part of the DOM tree but still exists in memory. To model this, we
associate the document object with a grove designating a space for the removed
nodes. The δ 7→ ∅g assertion in the precondition of (3) simply reserves an empty
spot (∅g) in the grove. In the postcondition the removed children of s (i.e. t)
are moved to the grove. Similarly, when n does not contain an attribute named
s, a new attribute named s is created and attached to n. The value of s is set to
v by creating a new text node with value v and attaching it to s (axiom 4).

Comparison with existing work [9,22] In contrast to the commutative
separating conjunction ∗ in SSL, context logic (CL) and multi-holed context logic
(MCL) use a non-commutative separating application • to split the DOM tree
structure. For instance, the C •α P formula describes a tree that can be split into
a context tree C with hole α and a subtree P to be applied to the context hole.
The application is not commutative; it does not make sense to apply a context to
a tree. In [9,22], the authors noted that the appendChild axiom was not local, as
it required more than the intuitive footprint of the operation. What they did not
observe was that CL client reasoning is not compositional. Consider a program C
that copies the value of the “src” attribute in element p to that of q:

C , s = p.getAttribute("src"); q.setAttribute("src",s)

Let us assume that p contains a “src” attribute while q does not. Using SSL,
we can specify C as follows, where S, store(p:p,q:q,s:−) ∗ val(t, s1) ∗ out(a, s),
P ,sp[γ1 � srcn[t], f1], Q,s′q[a, f2] and Q′,s′q[a� sm[#textr[s1]], f2]:{

S ∗ α 7→ P ∗ β 7→ Q
}
C
{
∃m,r. S ∗ α 7→ P ∗ β 7→ Q′} (5)

Observe that the p and q elements may be in one of three orientations with
respect to one another: i) p and q are not related and describe disjoint subtrees;
ii)q is an ancestor of p; and iii) p is an ancestor of q. All three orientations are
captured by (5). In contrast, using MCL (adapted to our notation) C is specified
as follows where i-iii correspond to the three orientations above.

i)
{
S ∗

(
(C•αP )•βQ

)}
C
{
∃m,r. S ∗

(
(C•αP )•βQ′)}

ii)
{
S ∗

(
Q•αP

)}
C
{
∃m,r. S ∗

(
Q′•αP

)}
iii)
{
S ∗

(
P•αQ

)}
C
{
∃m,r. S ∗

(
P•αQ′)}

When p and q are not related, the precondition of (i) states that the DOM tree
can be split into a subtree with top node q, and a tree context with hole variable
β satisfying the C •α P formula. This context itself can be split into a subcontext
with top node p and a context C with hole α. The postcondition of (i) states that
q is extended with a “src” attribute, and the context C •α P remains unchanged.
This specification is not local in that it is larger than the intuitive footprint of C.
The only parts of the tree required by C are the two elements p and q. However,
the precondition in (i) also requires the surrounding linking context C: to assert



8

that p and q are not related (p is not an ancestor of q and vice versa), we must
appeal to a linking context C that is an ancestor of both p and q. This results
in a significant overapproximation of the footprint. As either C or P , but not
both, may contain context hole β, (i) includes the behaviour of (iii), which can
thus be omitted. We have included it as it is more local.

More significantly however, due to the non-commutativity of • we need to
specify (ii) and (iii) separately. Therefore, the number of CL axioms of a client
program may grow rapidly as its footprint grows. Consider the program C′ below:

C′ , s = p.getAttribute("src"); s’ = r.getAttribute("src");

q.setAttribute("src", s+s’)

with its larger footprint given by the distinct p, q, r. When p and q contain a
“src” attribute and r does not, we can specify C′ in SSL with one axiom similar to
(5). By contrast, when specifying C′ in MCL, not only is locality compromised in
cases analogous to (i) above, but we need eight separate specifications. Forgoing
locality, as described above, we still require six specifications. This example
demonstrates that CL reasoning is not compositional for client programs.

2.2 Verifying JavaScript Programs that Call the DOM

We demonstrate how to use our DOM specification to reason about client programs
that call the DOM. Our DOM specification is agnostic to the choice of client
programming language. In contrast to previous work [9,22], our DOM specification
integrates simply with any SL-based program logic such as those for Java [16]
and JavaScript [7]. Here, we choose to reason about JavaScript client programs.

We study a JavaScript image sanitiser that sanitises the “src” attribute of an
element node by replacing its value with a trusted URL if the value is blacklisted.
To determine whether or not a value is blacklisted, a remote database is queried.
The results of successful lookups are stored in a local cache to minimise the
number of queries. In §4, we use this sanitiser to implement an ad blocker that
filters untrusted contents of a web page. The code of this sanitiser, sanitiseImg,
is given in Fig. 2. It inspects the img element node for its “src” attribute (line 2).
When such an attribute exists (line 3), it consults the local cache (cache) to
check whether its value (url) is blacklisted (line 4). If so, it changes its value to
the trusted cat value. If the cache lookup is unsuccessful (line 6), the database
is queried by the isBlackListed call (line 7). If the value is deemed blacklisted
(line 8), the value of “src” is set to the trusted cat value (line 9), and the local
cache is updated to store the lookup result (line 10). Observe that sanitiseImg
does not use JavaScript-specific constructs (e.g. eval) and simply appeals to the
standard language constructs of a while language. As such, it is straightforward
to transform this proof to verify sanitiseImg written in e.g. C and Java.

The behaviour of sanitiseImg is specified in Fig. 2. The specifications in
(6)-(9) capture different cases of the code as follows: in (6) img has no “src”
attribute (i.e. the conditional of line 3 fails); in (7) the value of “src” is blacklisted
in the local cache (line 5); in (8) the value is blacklisted and the cache has no



9

st , store(img:n,cat:s2,cache:c,url:−,isB:−) Pout , α 7→sn[a,γ]∗out(a,“src”)

P , α 7→sn[β � srcm[t],γ] ∗ val(t, s1) ∗ δ 7→∅g Q , ∃r.α 7→sn[β � srcm[#textr[s2]], γ] ∗ δ 7→t{
st ∗ Pout

}
sanitiseImg(img,cat)

{
st ∗ Pout

}
(6){

st ∗ P ∗ (c, s1) 7→1 ∗ isB(s1)
}

sanitiseImg(img,cat)
{

st ∗Q ∗ (c, s1) 7→1 ∗ isB(s1)
}

(7){
st ∗ P ∗ (c, s1) 7→0 ∗ isB(s1)

}
sanitiseImg(img,cat)

{
st ∗Q ∗ (c, s1) 7→1 ∗ isB(s1)

}
(8){

st ∗P ∗(c, s1) 7→0 ∗ ¬isB(s1)
}

sanitiseImg(img,cat)
{

st ∗P ∗(c, s1) 7→0 ∗ ¬isB(s1)
}

(9)

{
store(url:s1, isB:−) ∗ isB(s1)

}
isB=isBlackListed(url)

{
store(url:s1, isB:1) ∗ isB(s1)

}{
store(url:s1, isB:−) ∗ ¬isB(s1)

}
isB=isBlackListed(url)

{
store(url:s1, isB:0) ∗ ¬isB(s1)

}
{

store(img :n, cat :s2, cache :c, url :−, isB :−) ∗ P ∗ (c, s1) 7→0 ∗ isB(s1)
}

1. sanitiseImg(img,cat) , {
2. url = img.getAttribute("src");{

store(img:n, cat:s2, cache :c, url:s1 , isB:−) ∗ P ∗ (c, s1) 7→0 ∗ isB(s1)
}

3. if (url){ // img has an attribute named “src”
4. isB = cache.url;{

store(img :n,cat :s2,cache :c, url :s1,isB :0)∗P ∗ (c, s1) 7→0 ∗ isB(s1)
}

5. if (isB){ img.setAttribute("src",cat) } // url is in cache (thus blacklisted)
6. else { // url is not in cache{

store(img :n, cat :s2, cache :c, url :s1, isB :0)∗P ∗(c, s1) 7→0 ∗ isB(s1)
}

7. isB = isBlackListed(url);{
store(img :n, cat :s2, cache :c, url :s1, isB :1) ∗ P ∗(c, s1) 7→0 ∗ isB(s1)

}
8. if (isB){ // url is blacklisted{

store(img :n, cat :s2, cache :c, url :s1, isB :1) ∗ P ∗(c, s1) 7→0 ∗ isB(s1)
}

9. img.setAttribute("src",cat);{
store(img :n, cat :s2, cache :c, url :s1, isB :1) ∗Q ∗ (c, s1) 7→0 ∗ isB(s1)

}
10. cache.url = 1{

store(img :n,cat :s2, cache :c, url :s1, isB :1) ∗Q ∗ (c, s1) 7→1 ∗ isB(s1)
}

11. } } } }
{

store(img :n, cat :s2, cache :c, url :−, isB :−) ∗Q ∗ (c, s1) 7→1 ∗ isB(s1)
}

Fig. 2: The specifications of sanitiseImg (above); a proof sketch of (8) (below)

record of it (lines 9-10); and in (9) the value is not blacklisted and the cache has
no record of it (i.e. the conditional of 8 fails). We focus on (8) here; the remaining
ones are analogous. The precondition of (8) consists of four assertions: the st
captures the values of program variables; the P describes an element with an
attribute named “src” and value s1; the (c, s1) 7→0 asserts that the s1 field of
cache c holds value 0 (i.e. value s1 may or may not be blacklisted but the cache
has no record of it); and isB(s1) states that s1 is blacklisted. This last assertion is
used in the isBlackListed call of line 7 with its behaviour as specified in Fig. 2.
A proof sketch of specification (8) is given in Fig. 2. At each proof point, we have
highlighted the effect of the preceding command, where applicable.

3 A Formal DOM Specification

We give our formal axiomatic specification of DOM, comprising the DOM model
in §3.1 eliding some details about DOM live collections until §3.5, the DOM



10

assertions in §3.2, the framework for reasoning about DOM client programs in
§3.3, the DOM axioms in §3.4, and DOM live collections in §3.5.

3.1 DOM Model

We model DOM heaps (e.g. Fig. 1) as mappings from addresses to DOM data.
To this end, we assume a countably infinite set of identifiers, n∈Id, a designated
document identifier associated with the document object, d∈ Id, a countably
infinite set of abstract addresses, x∈AAdd, and a designated document address
D, where the sets Id, AAdd and {D} are pairwise disjoint.

DOM data DOM nodes are the building blocks of DOM data. Formally, we
write: i) #textn[s]fs for the text node with identifier n and text data s; ii) sn[a, f ]tsfs
for the element node with identifier n, tag name s, attribute set a, and children
f ; iii) sn[tf ]ts for the attribute node with identifier n, name s, and children tf ;
and iv) #docd[e]tsfs & g for the document object with the designated identifier d,
document element e (or ∅e for no document element) and grove g, ignoring the
fs and ts for now. DOM nodes can be grouped into attribute sets, forests, groves,
and text forests, respectively ranged over by a, f , g and tf . An attribute set
represents the attribute nodes associated with an element node and is modelled
as an unordered, possibly empty collection of attribute nodes. A forest represents
the children of an element node, modelled as an ordered, possibly empty collection
of element and text nodes. A grove is where the orphaned nodes are stored. In
DOM, nodes are never disposed of and whenever a node is removed from the
document, it is moved to the grove. The grove is also where newly created nodes
are placed. The document object is thus associated with a grove, modelled as
an unordered, possibly empty collection of text, element and attribute nodes. A
text forest represents the children of an attribute node, modelled as an ordered,
possibly empty collection of text nodes. We associate each node with a set of
forest listeners, fs; we further associate element and document nodes with a set
of tag listeners, ts . We delay the motivation for these listeners until §3.5 when we
model live collections. DOM data may be either incomplete with context holes
(e.g. x), or complete with no context holes. Notationally, data written in bold
may contain context holes; regular font indicates the absence of context holes.

Definition 1. The sets of strings s∈S, texts t∈T, elements e∈E, documents
doc∈D, attribute sets a∈A, forests f ∈F, groves g∈G, and text forests tf ∈TF,
are defined below where x∈AAdd, n∈Id, fs∈P (Id) and ts∈P (S×Id):

s ::=∅s |c |s1.s2 t ::=#textn[s]fs e ::=sn[a, f ]tsfs a ::=∅a |x |sn[tf ]fs |a1 � a2

doc ::= #docd[∅e]tsfs & g | #docd[e]tsfs & g | #docd[x]tsfs & g

f ::=∅f |x | t |e | f1⊗f2 g ::=∅g |x | t |e |sn[tf ]fs |g1⊕g2 tf ::=∅tf |x | t |tf1�tf2

where the operations ., �, ⊗, � and ⊕ are associative with identities ∅s, ∅tf ,
∅f , ∅a and ∅g, respectively; the � and ⊕ operations are commutative; and all
data are equal up to the properties of ., �, ⊗, � and ⊕. Data does not contain



11

repeated identifiers and abstract addresses; element nodes contain attributes with
distinct names. The set of DOM data is d∈Data,E ∪ F ∪ TF ∪ A ∪G ∪ D.

When the type of data is clear from the context, we drop the subscripts for
empty data and write e.g. ∅ for ∅f . We drop the forest and tag listeners when
not relevant to the discussion and write e.g. sn[a, f ] for sn[a, f ]tsfs . Given the
set of DOM data Data, there is an associated address function, Adds(.), which
returns the set of context holes present in the data. Context application d1 ◦x d2

denotes the standard substitution of d2 for x in d1 (d1[d2/x]) provided that
x ∈ Adds(d1) and the result is well-typed, and is otherwise undefined.

DOM heaps A DOM heap is a mapping from addresses, x∈Addr,AAdd ]
{D}, to DOM data. DOM heaps are subject to structural invariants to ensure
that they are well-formed. In particular, a context hole x must not be reachable
from the abstract address x in the domain of the heap. For instance, {x 7→
sn[∅,y],y 7→ s′m[∅,x]} is not a DOM heap due to the cycle. We capture this by
the reachability relation  defined as: x y ⇐⇒ y ∈ Adds(h(x)), for heap h
and address x ∈ Addr. We write  + to denote the transitive closure of  .

Definition 2. The set of DOM heaps is: h∈DOMHeap⊆({D}⇀D) ∪ (AAdd
fin
⇀ Data) provided that for all h ∈ DOMHeap and x ∈ Addr the following hold:

1. identifiers and context holes are unique across h;
2. ¬∃x. x + x;
3. context holes in h are associated with data of correct type:

∀x,y. y ∈ Adds(h(x)) ∧ y ∈ dom(h)⇒ ∃d. h(x) ◦y h(y)=d

DOM Heap composition, • : DOMHeap×DOMHeap ⇀ DOMHeap, is the stan-
dard disjoint function union provided that the resulting heap meets the constraints
above. The empty DOM heap, 0, is a function with an empty domain.

Definition 3. The abstract (de)allocation relation, ≈: DOMHeap×DOMHeap,
is defined as follows where ∗ denotes the reflexive transitive closure of the set.

≈,
{

(h1,h2), (h2,h1) ∃x,d1,d2,x. h1(x)=(d1◦xd2) ∧ h2=h1[x 7→d1]•[x 7→d2]
}∗

During abstract allocation (from h1 to h2), part of the data d2 at address
x is split and promoted to a fresh abstract address x in the heap leaving the
context hole x behind in its place. Dually, during abstract deallocation (from h2

to h1) the context hole x in DOM data d1 is replaced by its associated data d2

at abstract address x, removing x from the domain of the heap in doing so.

3.2 DOM Assertions

DOM assertions comprise heap assertions describing DOM heaps such as those in
Fig. 1. DOM heap assertions are defined via DOM data assertions describing the
underlying DOM structure such as nodes, forests and so forth. As we show later,
pure assertions such as out(a, s) in §2 are derived assertions defined in Fig. 4.



12

Definition 4. The DOM assertions, ψ∈DOMAsst, and DOM data assertions,
φ∈DOMDAsst, are defined as follows where α,a,n, · · · denote logical variables.

ψ ::=D 7→ φ | α 7→ φ DOM heap assertions

φ ::=false | φ1⇒φ2 | ∃x. φ | v | α | φ1 ◦α φ2 | ♦α classical|context hole

|#textn[φ]f |sn[φ1,φ2]ef |sn[φ]f |#docn[φ1]ef &φ2|∅e nodes|empty doc. element

| ∅s | φ1.φ2|∅a | φ1 � φ2|∅f | φ1 ⊗ φ2 strings|attr. sets|forests

| ∅g | φ1 ⊕ φ2|∅tf | φ1 � φ2 groves|text forests

The D 7→φ assertion describes a single-cell DOM heap at document address
D; similarly, the α 7→φ describes a single-cell DOM heap at the abstract address
denoted by α. For data assertions, classical assertions are standard. The v is
a logical variable describing DOM data. The α is a logical variable denoting a
context hole; the φ1 ◦αφ2 describes data that is the result of replacing the context
hole α in φ1 with φ2; ♦α describes data that contains the context hole α. The
node assertions respectively describe element, text, attribute and document nodes
with their data captured by the corresponding sub-assertions. The ∅e, ∅s, ∅a,
∅f , ∅g and ∅tf describe an empty document element, string, attribute set, forest,
grove and text forest, respectively. Similarly, φ1.φ2, φ1 � φ2, φ1 ⊗ φ2, φ1 ⊕ φ2
and φ1 � φ2 respectively describe a string, attribute set, forest, grove and text
forest that can be split into two, each satisfying the corresponding sub-assertion.

3.3 PLDOMLogic

We show how to reason about client programs that call the DOM. Our DOM
specification is agnostic to the client programming language and we can reason
about programs in any language with an SL-based program logic. To this end,
given an arbitrary programming language, PL, with an SL-based program logic,
PLLogic, we show how to extend PLLogic to PLDOMLogic, in order to enable
DOM reasoning. Later in §4, we present a particular instance of PLDOMLogic

for JavaScript, and use it to reason about JavaScript clients that call the DOM.

States We assume the underlying program states of PLLogic to be modelled
as elements of a PCM (partial commutative monoid) (PLStates, ◦, 0PL), where
◦ denotes state composition, and 0PL denotes the unit set. To reason about
the DOM operations, in PLDOMLogic we extend the states of PLLogic to
incorporate DOM heaps; that is, we define a program state to be a pair, (h,h),
comprising a PL state h ∈ PLStates, and a DOM heap h ∈ DOMHeaps.

Definition 5. Given the PCM of PL, the set of PLDOMLogic program states
is Σ∈State,PLStates×DOMHeap. State composition, +:State×State⇀
State, is defined component-wise as +,(◦, •) and is not defined if composition
on either component is undefined. The unit set is I , {(h,0) | h ∈ 0PL}.

Assertions We assume the PLLogic assertions to include: i) standard classical
assertions; ii) standard boolean assertions; iii) standard SL assertions; and iv) an
assertion to describe the PL variable store as seen in §2 of the form store(. . . ). In
PLDOMLogic we extend the PLLogic assertions with those of DOM (Def. 4),
semantic implication V, and the semantic magic wand ∼∗, described shortly.



13

Definition 6. The set of PLDOMLogic assertions, P ∈ Asst, is defined as
follows in the binding order ∗,⇒,V,−∗,∼∗, with 	∈{∈,=,<,≤,⊂,⊆}:

P,Q ::= false | P ⇒ Q | ∃x. P|E1	E2 Classical|Boolean assertions
| emp |P ∗Q |P −∗Q SL assertions
| store(x,i : vi)|Λ variable store|PLLogic-specific assertions
| ψ|P V Q |P ∼∗Q DOM|Structural assertions

Assertions are interpreted as sets of program states (Def. 5). Classical and
boolean assertions are standard. The emp assertion describes an empty program
state in the unit set I; the P ∗ Q describes a state that can be split into
two substates satisfying P and Q. The −∗ connective is the right adjunct of ∗,
i.e. P ∗ (P−∗Q)⇒Q. Informally, a state that satisfies P−∗Q is one that is missing
P , and when combined with P , it satisfies Q. The store(x,i :vi) describes a variable
store in PL where variables xi have values vi, respectively. The Λ describes states
of the form (h,0) where h satisfies Λ. Dually, the ψ describes states of the form
(h,h) where h ∈ 0PL and h satisfies ψ. The P V Q assertion denotes semantic
implication and integrates logical implication (⇒) with abstract (de)allocation
on DOM heaps (Def. 3). The ∼∗ connective is the semantic right adjunct of ∗:
P ∗ (P ∼∗Q)V Q. It is similar to −∗ and incorporates the ≈ relation on DOM
heaps. Intuitively, a state that satisfies P ∼∗Q is one that is missing P , such
that when combined with P and undergone a number of (possibly zero) abstract
(de)allocations, it satisfies Q. We write E1	̇E2 for E1	E2∧emp.

Programming language, proof rules and soundness We extend the pro-
gramming language of PL with the operations of our DOM fragment (e.g. getAt-
tribute in §2.1). The proof rules of PLDOMLogic are those of PLLogic with
the exception of the rule of consequence: we generalise the premise to allow
semantic implication (V) between assertions rather than logical implication (⇒).
We further extend the proof rules with the axioms of DOM operations, DOMAx,
defined shortly in §3.4 below. The modified rule of consequence and the rule for
DOM axioms are given below. We prove PLDOMLogic sound in [17].

P V P ′ {P ′} C {Q′} Q′ V Q

{P} C {Q}
(Con)

(P, C, Q) ∈ DOMAx

{P} C {Q}
(Ax)

3.4 DOM Operations and Axioms

We formally axiomatise the behaviour of a DOM operations associated with our
fragment. In Fig. 3 we give a select number of axioms including those of the
operations used in the examples of this paper. The behaviour of some of the
operations is captured by several axioms; we have omitted analogous cases. A full
list of DOM operations modelled and their axioms, DOMAx, are given in [17].

The assertions in the pre- and postconditions of axioms are of the form
store(· · · ) ∗ ψ where the store predicate states the value associated with each
program variable, and ψ is a DOM assertion that describes the operation footprint.
Since the DOM library may be called by different client programs written in



14


store(n :n, o :o, r :−)
∗α 7→sn[β, γ]e1f1
∗ δ 7→s′o[ζ,t ∧ isComplete]e2f2

 r = n.appendChild(o)


store(n :n, o :o, r :o)
∗α 7→sn[β,γ ⊗ s′o[ζ,t]e2f2 ]e1f1
∗ δ 7→ (∅f ∨∅g)


store(n : n, s : s, r : −)
∗α 7→ #docn[β]ef & γ
∗ safeName(s)

 r = n.createElement(s)

{
∃r, f′, e′. store(n :n, s :s, r :r)

∗α 7→#docn[β]ef &γ⊕sr[∅a,∅f ]e
′

f′

}
{

store(n :n, o :o, r :−)
∗α 7→#textn[s.s′]f ∗ o=̇ |s|

}
r = n.splitText(o)

{
∃r,f′.store(n:n,o:o,r:r)
∗α 7→#textn[s]f⊗#textr[s′]f′

}
{

store(n:n, r:−)
∗α 7→ sn[β,t]ef1 ∗ TIDs(t, l)

}
r = n.childNodes

{
∃f,f2. store(n:n, r:f)

∗α 7→sn[β,t]ef2 ∗f1⊆̇f2∗f∈̇f2

}
{

store(n:n, s:s, r:−)
∗α 7→s′n[β,t]ef∗search(t,s,l)

}
r= n.getElementsByTagName(s)

{
∃r, e′. store(n :n, s :s, r :r)

∗α 7→s′n[β,t]e
′

f ∗e⊆̇e′∗(s,r)∈̇e′

}
{

store(f:f, r:−)∗α 7→sn[β,t]ef′
∗TIDs(t,l) ∗ f∈̇f′

}
r = f.length

{
∃r. store(f :f, r :r)
∗α 7→ sn[β,t]ef′ ∗ r=̇ |l|

}


store(f :f, i : i, r :−)
∗α 7→ s′n[β,t]ef′ ∗ (s, f)∈̇e
∗ search(t, s, l) ∗ 0≤̇i<̇ |l|

 r = f.item(i)


∃r. store(f :f, i : i, r :r)
∗α 7→ s′n[β,t]ef′
∗r=̇ |l|i


Fig. 3: DOM Core Level 1 axioms (excerpt)

different programming languages, store denotes a black-box predicate that can
be instantiated to describe a variable store in the client programming language.
In §4 we reason about JavaScript client programs that call the DOM and thus
instantiate store to describe the JavaScript variable store emulated in the heap.

We now describe of the DOM operations in Fig. 3 and their axioms, delaying
the description of the last four operations until §3.5.

n.appendChild(o): when n and o both identify nodes, this operation appends
o to the end of n’s child list and returns o. It fails if o is an ancestor of n (otherwise
it would introduce a cycle and break the DOM structure); or if n is a text node
or a document node with a non-empty document element; or if o is an attribute
or a document node. Fig. 3 shows the axiom for when o is an element node (o).
To ensure that o is not an ancestor of n, we require the entire subtree at o to be
separate from the subtree at n. This is achieved by the isComplete assertion and
the separating conjunction ∗. The isComplete is a derived assertion defined in
Fig. 4. It describes DOM data with no context holes. The postcondition leaves
∅f∨∅g in place of o once moved since we do not know if o has come from a forest
or grove position. The disjunction leaves the choice to the frame.

n.createElement(s): when n identifies a document node, it creates a new
element named s, and returns its identifier. The new element has no attributes or
children and resides in the grove. The grove in the precondition is thus extended
with the new node in the postcondition. The safeName(s) assertion is defined in
Fig. 4 ensures that the tag name does not contain the invalid character ‘#’.

n.splitText(o): when n identifies a text node and o denotes an integer, it
breaks the data of n into two text nodes at offset o (indexed from 0), keeping
both nodes in the tree as siblings. It fails when o is an invalid offset (i.e. negative
or greater than the length). The return value is the identifier of the new node.



15

isComplete, ¬∃α. ♦α safeName(s) , ¬∃s1, s2. s=̇s1.‘#’.s2
val(t, s) , (t=̇∅tf ∗ s=̇“ ”)∨(∃n, s1, s2,t′.t=̇#textn[s1]−�t′∗ val(t′, s2) ∗ s=̇s1.s2
out(a, s), (a=̇∅a) ∨ (∃s′,n,t,a′. a=̇s′n[t]− � a′ ∗ s ˙6=s′ ∗ out(a′, s))

TIDs(t, l), (l=̇[ ] ∗ t=̇∅f )∨
(
∃n, s,a, f,t′, l′. l=̇n:l′

∗(t=̇#textn[s]−⊗t′ ∨ t=̇sn[a,f]−−⊗t′)∗TIDs(t′,l′)
)

search(t,s,l), (t=̇∅f ∗ l=̇[ ]) ∨ (∃n, s′,t′. t=̇#textn[s′]− ⊗ t′ ∗ search(t′, s, l))
∨
(
∃s′,n,t1,t2,l1,l2.t=̇s′n[−,t1]−− ⊗t2 ∗ search(t1,s,l1)∗search(t2,s,l2)

∗ (s=̇s′ ∨ s=̇“ * ”⇒ l=̇n:(l1++l2)) ∗ (s ˙6=s′ ∧ s ˙6=“ * ”⇒ l=̇l1++l2)
)

Fig. 4: Derived DOM assertions

Our specifications have smaller footprints than those of [9,22]. In particular,
the axiom of appendChild requires a substantial overapproximation of the foot-
print due to the reasons discussed in §2.1, namely the need for a linking context
(see page 7). This axiom is given below using MCL [5] (adapted to our notation):{

(C•α sn[a, γ])•β s′o[a′,t]
}
n.appendChild(o)

{
(C•α sn[a, γ ⊗ s′o[a′,t]])•β ∅f

}
This axiom is not small enough: the only parts required by appendChild are
the tree at o being moved, and the element n whose children are extended by o.
However, as before the precondition above also requires the linking context C.

3.5 Live Collections

The DOM API provides several interfaces for traversing DOM trees based on live
collections of nodes, such as the NodeList interface in DOM CL1-4. DOM CL 4 also
introduces the HTMLCollection interface for live collections of element nodes. We
describe our model of live collections in terms of NodeLists. However, our model
is abstract and captures the behaviour of both NodeLists and HTMLCollections.

The NodeList interface is an ordered collection of nodes. NodeLists are live in
that they dynamically reflect document changes. Several DOM operations return
NodeLists. For example, n.getElementsByTagName(s) returns a NodeList (using
depth-first, left-to-right search) containing the identifiers of the elements named
s underneath the tree rooted at n. Given the DOM tree of Fig. 1a, when n=4
and s=“img”, then r = n.getElementsByTagName(s) yields r=[3, 8, 2]. However,
since NodeLists are live, if node 8 is later removed from the document, then
r=[3, 2]. When s=“ * ” denoting a wildcard, then the resulting NodeList must con-
tain the identifiers of all element nodes underneath n. For instance, with the DOM
tree of Fig. 1a, when n=4 and s=“ * ”, then r = n.getElementsByTagName(s)

yields r=[9, 3, 8, 6, 2]. This operation may be called on both document and ele-
ment nodes. We thus associate each such node with a set of tag listeners, ts . Each
listener is of the form (s,fid) where s denotes the search string (e.g. “img” in
the example above) and fid ∈ Id denotes the identifier of the resulting NodeList.

The n.childNodes operation also returns a NodeList, containing the identi-
fiers of the immediate children of n. For instance, with the DOM tree of Fig. 1a,



16

when n=4, then r = n.childNodes returns r=[9, 6]. Again, the value of r is live
and dynamically reflects the changes to the child forest of n. The n.childNodes

operation may be called on any DOM node. We therefore associate each DOM
node with a set of forest listeners, fs. Each forest listener, fid ∈ Id, denotes
the identifier of a NodeList. Our specification is the first that faithfully models
the behaviour of NodeLists. In particular, both [9] and [22] associate a single
forest listener with DOM nodes and consequently admit behaviours that are not
guaranteed by the standard. We proceed with the NodeList axioms in Fig. 3.

n.childNodes: when n=n, this operation returns (the identifier of) a forest
listener NodeList f associated with n. Fig. 3 shows the axiom for when n is an
element. When asked for a forest listener NodeList, a node may either return an
existing one, or generate a fresh one and extend its set with it. This flexibility
is due to an under-specification in the standard. Thus, in the postcondition the
original set f1 is extended to f2 (f1⊆̇f2) with return value f∈f2. The TIDs(t,l)
assertion is defined in Fig. 4 and states that list l contains the top-level node iden-
tifiers (from left to right) of the forest denoted by t. For instance, TIDs(t, [9, 6])
holds in Fig. 1a when t denotes the child forest of node 4 (named “body”). As
such, the TIDs(t,l) in the precondition stipulates that t contain enough resource
for compiling a list of the immediate children of n (i.e. the top-level nodes in t).

n.getElementsByTagName(s): when n=n and s=s, this operation returns
(the identifier of) a NodeList containing the identifiers of the elements with tag
name s in the forest underneath n. The axiom in Fig. 3 describes the case when
n is an element node. The original set of tag listeners e is extended to e′ with
(s, r) ∈ e′ where r is the return value. The search(t, s, l) assertion is defined in
Fig. 4 and describes the search result of getElementsByTagName (i.e. the list l
contains the identifiers of those element nodes in the forest t whose name matches
s). For instance, when t denotes the child forest of node 4 (named “body”) in
Fig. 1a, then both search(t, “img”, [3, 8, 2]) and search(t, “ * ”, [9, 3, 8, 6, 2]) hold.
As such, the search(t, s, l) in the precondition ensures that t contains enough
resource for compiling a list of elements named s.

f.length: when f=f identifies a NodeList, its length is returned. The axiom
in Fig. 3 describes the case when f is a forest listener NodeList on element n;
the return value is the number of n’s immediate children. This is captured by
TIDs(t,l) stipulating that list l contains the identifiers of those nodes at the
top level of child forest t. The return value is thus the length of l (i.e. |l|).

f.item(i): this is analogous to f.length with |l|i denoting the ith item of
l. The axiom in Fig. 3 describes the case when f is a tag listener NodeList on n.

4 Verifying JavaScript Programs that Call the DOM

We instantiate the method described in §3.3 to extend the SL-based JavaScript
program logic (hereafter JSLogic) in [7], to JSDOMLogic, in order to enable
DOM reasoning. We then use JSDOMLogic to reason about a realistic ad blocker
program in §4.1, and a further ad blocker in [17]. These examples are interesting
as they combine JavaScript heap reasoning with DOM reasoning.



17

JSLogic States The states of JSLogic are JavaScript heaps. A JavaScript heap,
h∈JSHeap, is a partial function mapping references, which are pairs of memory
locations and field names, to values. A heap cell is written (l, x) 7→7, stating
that the object at l has a field named x and holds value 7. An empty JavaScript
heap is denoted by 0JS; JavaScript heap composition, ◦ :JSHeap×JSHeap⇀
JSHeap, is the standard disjoint function union. The PCM of JavaScript heaps
is (JSHeap, ◦, {0JS}). The states of JSDOMLogic are then pairs of the form
(h,h), comprising a JavaScript heap h, and a DOM heap h (see Def. 5).

JSLogic Assertions, programming language and proof rules As stipu-
lated by Def. 6, the JSLogic assertions include the standard boolean, classical
and SL assertions. JSLogic further includes JavaScript heap assertions of the
form (E1, E2) 7→E3, describing a single-cell JavaScript heap. The variable store
in JavaScript is emulated in the heap. As required by Def. 6, JSLogic introduces
a derived assertion store(x,i : vi), describing the JavaScript variable store in the
heap where variables xi have values vi. The programming language of JSLogic
is a broad subset of the JavaScript language [7]. The JSLogic assertions, their
semantics, the definition of store, and the JSLogic proof rules are given in [7].

4.1 A JavaScript Ad Blocker

We use JSDOMLogic to reason about an ad blocker script used for blocking the
images from untrusted sources in a DOM tree. The adBlocker1(n) program
in Fig. 5 compiles a NodeList containing all “img” elements in the tree rooted
at n by calling the getElementsByTagName operation. It then iterates over this
NodeList, sanitising each image by executing the sanitiseImg program in §2.

At each iteration i, the subtree at node n=n is described by tree(i,e) where
ti denotes the child forest of n at iteration i, and e denotes the tag listener set
associated with n, and l denotes the list of “img” elements below n.3

Since we iterate over the “img” elements in l and inspect their attributes, we
need to partition them in into three categories: i) empty : without a “src” attribute;
ii) untrusted : with a“src” attribute and a blacklisted value; iii) trusted : with
a “src” attribute and a trusted value. At each iteration, if the node considered
is untrusted, it is sanitised and removed from the untrusted category. We thus
define a fourth category, sanitised, including those elements whose values were
initially blacklisted and are later sanitised. This is captured by partition(i)3. The
first part states that the list of “img” elements l can be partitioned into the
three categories described above where l≡ s states that set s is a permutation of
list l. The second part states that list l has been processed up to index i; i.e. the
sanitised category ss includes all the untrusted elements in l up to index i. The
last four parts describe the “img” elements according to their category.

3 All free logical variables on the right-hand side are parameters of the predicate on the
left. We omit them for readability as they do not change throughout the execution.
By contrast, the iteration number i, and the tag listeners e of node n may change
(the latter may grow by getElementsByTagName) and are explicitly parameterised.



18

cache(c), ~
f∈X

(
(c,f) 7→1 ∨(c,f) 7→0

)
unfld(i,e),∃α,β,γl

.partition(i)∗(∀i.partition(i)∼∗tree(i,e))

tree(i, e),α 7→sn[a,ti]
e
f∗search(ti,“img”,l) fld(i,e),tree(i,e)∗

(
(∀i,e. tree(i,e)∼∗unfld(i,e)) ∧ emp

)
rem(i), ∃ss. ss=̇su ∩ {|l|j | j < i} ∗ β 7→ ∅g

⊕
j∈ss

aj

partition(i), l ≡̇ se ] su ] st ∗ ∃ss. ss=̇su ∩ {|l|j | j < i} ∗~
j∈ss

(
αj 7→ imgj[βj�srcmj [#text−[s]−]f′j ,γj]

ej
fj

)
~
j∈se

(αj 7→ imgj[aj,γj]
ej
fj ∗ out(aj,src)) ∗~

j∈st

(
αj 7→ imgj[βj�srcmj [aj]f′j ,γj]

ej
fj ∗val(aj,vj)∗¬isB(vj)

)
~

j∈su\ss

(
αj 7→ imgj[βj�srcmj [aj]f′j ,γj]

ej
fj ∗ val(aj,vj) ∗ isB(vj)

)
{

store(n:n,cat:s,cache:c,imgs:−,len:−,i:−,c:−,isB:−,url:−)∗¬isB(s)∗cache(c)∗fld(0,e)∗rem(0)
}

1. adBlocker1(n) , {
2. imgs = n.getElementsByTagName("img");{

∃r, e′. store(n:n,cat:s,cache:c,imgs:r,len:−,i:−,c:−,isB:−,url:−)∗¬isB(s)∗cache(c)
∗ rem(0) ∗ fld(0,e′) ∗ e⊆̇e′ ∗ (“img”,r)∈̇e′

}
3. len = imgs.length; i = 0;{

∃r, e′. store(n:n,cat:s,cache:c,imgs:r,len: |l| ,i:0,c:−,isB:−,url:−)∗¬isB(s)∗cache(c)

∗ rem(0) ∗ fld(0,e′) ∗ e⊆̇e′ ∗ (“img”,r)∈̇e′

}
{
∃r, e′, i. store(n:n,cat:s,cache:c,imgs:r,len: |l| ,i:i,c:−,isB:−,url:−)∗¬isB(s)∗cache(c)

∗ rem(i) ∗ fld(i,e′) ∗ e⊆̇e′ ∗ (“img”,r)∈̇e′ ∗ i≤̇ |l|

}
4. while(i<len){
5. c = imgs.item(i);{

∃r,e′,i. store(n:n,cat:s,cache:c,imgs:r,len: |l| ,i:i,c: |l|i,isB:−,url:−)∗¬isB(s)∗cache(c)

∗ rem(i) ∗ fld(i,e′) ∗ e⊆̇e′ ∗ (“img”,r)∈̇e′ ∗ i≤̇ |l|

}
//Apply derivation steps in (10)-(12).{
∃r,e′,i. store(n:n,cat:s,cache:c,imgs:r,len: |l| ,i:i,c: |l|i ,isB:−,url:−)∗¬isB(s)∗cache(c)

∗ rem(i)∗e⊆̇e′∗(“img”,r)∈̇e′∗i<̇ |l|∗unfld(i,e′)∗((∀i,e. tree(i,e)∼∗unfld(i,e)) ∧ emp)

}
6. sanitiseImg(c,cat);{

∃r,e′,i. store(n:n,cat:s,cache:c,imgs:r,len: |l| ,i:i,c: |l|i ,isB:−,url:−)∗¬isB(s)∗cache(c)

∗ rem(i+1)∗e⊆̇e′∗(“img”,r)∈̇e′∗i<̇ |l|∗unfld(i+1,e′)∗((∀i,e. tree(i,e)∼∗unfld(i,e))∧emp)

}
// Apply derivation steps in (12)-(14).{
∃r,e′,i. store(n:n,cat:s,cache:c,imgs:r,len: |l| ,i:i,c: |l|i ,isB:−,url:−)∗¬isB(s)∗cache(c)

∗ rem(i+1) ∗ e⊆̇e′ ∗ (“img”,r)∈̇e′ ∗ i<̇ |l| ∗ fld(i+1, e′)

}
7. i = i+1;{

∃r,e′,i. store(n:n,cat:s,cache:c,imgs:r,len: |l| ,i:i,c:−,isB:−,url:−)∗¬isB(s)∗cache(c)

∗ rem(i) ∗ e⊆̇e′ ∗ (“img”,r)∈̇e′ ∗ i≤̇ |l| ∗ fld(i, e′)

}
8. } }

{
∃r,e′,i. store(n:n,cat:s,cache:c,imgs:−,len:−,i:−,c:−,isB:−,url:−)∗¬isB(s)

∗ cache(c) ∗ rem(|l|) ∗ e⊆̇e′ ∗ (“img”,r)∈̇e′ ∗ i≤̇ |l| ∗ fld(|l| , e′)

}
Fig. 5: A proof sketch of the adBlocker1 program3

The partition predicate describes the “img” elements in l only and does not
include the remainder of the subtree at n. At every iteration, this remainder
is untouched and the modified parts are in the partitions. We thus describe
the remainder for an arbitrary iteration i as ∀i. partition(i)∼∗tree(i,e), i.e. the
entire tree for that iteration, tree(i,e), minus its partitions. The unfolded tree at
iteration i, unfld(i,e)3, consists of the partitions at i, plus the remainder.

Note that for NodeList operations such as item (line 5), we need the folded
tree (tree(i,e)) with the entire subtree containing the “img” list l, as required by
their axioms (Fig. 3). Conversely, for the sanitiseImg call (line 6), we need the
unfolded “img” elements (partition(i)) so that we can access the relevant “img”



19

node at each iteration. We thus need to move between the folded and unfolded
tree depending on the operation considered. The fld(i,e) predicate describes the
folded tree at iteration i. The first part, tree(i,e), describes the resources of the
folded tree at iteration i. The second part contains no resources (emp); it simply
states that at any iteration i, the folded tree tree(i,e), can be exchanged for
the unfolded tree unfld(i,e). As we show in the derivation below, this second
part allows us to move from folded to unfolded resources (10-12) and vice versa
(12-14), for any i. The bi-implication of (10) follows from the definition of fld
and that empty resources (emp) can be freely duplicated. In (11) we eliminate
the first universal quantifier. We then eliminate the adjunct (P ∗ (P ∼∗Q)V Q)
and arrive at (12). The implication of (13) follows from the definition of unfld
and the elimination of the first universal quantifier. To get (14), we eliminate the
adjunct, eliminate the existential quantifiers and wrap the definition of fld.

fld(i, e)⇔ tree(i, e) ∗ (∀i, e. tree(i, e)∼∗unfld(i, e) ∧ emp)
∗ (∀i, e. tree(i, e)∼∗unfld(i, e) ∧ emp) (10)

⇒ tree(i, e) ∗ (tree(i, e)∼∗unfld(i, e)) ∗ (∀i,e. tree(i′,e)∼∗unfld(i,e)∧emp) (11)

V unfld(i,e) ∗ (∀i,e. tree(i, e)∼∗unfld(i,e) ∧ emp) (12)

⇒ ∃α, β, γl
. partition(i) ∗ (partition(i) ∼∗tree(i, e))

∗ (∀i, e. tree(i, e)∼∗unfld(i, e) ∧ emp) (13)

V tree(i, e) ∗ (∀i, e. tree(i, e)∼∗unfld(i, e) ∧ emp) ⇔ fld(i, e) (14)

Recall that when the value of an attribute node is updated via the setAt-

tribute operation, its text forest is replaced with a new text node containing
the new value, and its old text forest is added to the grove (see axiom (3)). As
such, at each iteration if we sanitise the “src” attribute of c (via sanitiseImg in
line 6), then the old text forest of the “src” attribute is moved to the grove. This
is described by the rem(i) assertion stating that for each attribute node sanitised
so far (i.e. those in ss), the old text forest aj has been added to the grove.

Recall that sanitiseImg (Fig. 2) maintains a local cache of blacklisted URLs,
implemented as an object at c with one field per URL (where (c, f) 7→1 asserts
the URL f is blacklisted, and (c, f) 7→0 asserts that there are no cached results
associated with f). We thus define the cache as the collection of all fields (denoted
by X ) on c with value 1 or 0, where~ is the iterated analogue of ∗.

We give a proof sketch of adBlocker1 in Fig. 5. The precondition consists
of the variable store, the cache and the unprocessed (iteration 0) tree. The
postcondition comprises the store, the cache and the fully processed (iteration
|l|) tree with the tag listeners of n extended with a new listener for “img”.

Concluding remarks We use SSL [25] to formally specify an expressive frag-
ment of DOM Core Level 1, closely following the standard [1]. In comparison
to existing work [9,22], our specification i) allows for local and compositional
client specification and verification; ii) can be simply integrated with SL-based
program logics; and iii) is faithful to the standard with respect to the behaviour
of live collections. We demonstrate our compositional client reasoning by extend-
ing JSLogic [7] to incorporate our DOM specification and verifying functional
properties of ad-blocker client programs that call the DOM.



20

Acknowledgements This research was supported by EPSRC programme grants
EP/H008373/1, EP/K008528/1 and EP/K032089/1.

References

1. W3C DOM standard, www.w3.org/TR/REC-DOM-Level-1/level-one-core.html.
2. N. Biri and D. Galmiche. A Separation Logic for Resource Distribution. In FST

TCS, 2003.
3. N. Biri and D. Galmiche. Models and separation logics for resource trees. In Journal

of Logic and Computation, 2007.
4. M. Bodin, A. Chargueraud, D. Filaretti, P. Gardner, S. Maffeis, D. Naudz̆iūnienė,

A. Schmitt, and G. Smith. A mechanised JavaScript specification. In POPL, 2014.
5. C. Calcagno, T. Dinsdale-Young, and P. Gardner. Adjunct elimination in context

logic for trees. In Programming Languages and Systems, 2007.
6. C. Calcagno, P. Gardner, and U. Zarfaty. Context logic and tree update. In POPL,

2005.
7. P. Gardner, S. Maffeis, and G. Smith. Towards a program logic for JavaScript. In

POPL, 2012.
8. P. Gardner, A. Raad, M. Wheelhouse, and A. Wright. Local reasoning for concurrent

libraries: mind the gap. In MFPS, 2014.
9. P. Gardner, G. Smith, M. Wheelhouse, and U. Zarfaty. Local Hoare Reasoning

about DOM. In PODS, 2008.
10. A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: A minimal core

calculus for Java and GJ. In OOPSLA, 1999.
11. S. Jensen, A. Møller, and P.Thiemann. Type analysis for JavaScript. In SAS, 2009.
12. S.H. Jensen, M. Madsen, and A. Møller. Modeling the HTML DOM and browser

API in static analysis of JavaScript Web applications. In ESEC/FSE ’11, 2013.
13. B. S. Lerner, M. Carroll, D. P. Kimmel, H. Q. La Vallee, and S. Krishnamurthi.

Modeling and reasoning about DOM events. In WebApps, 2012.
14. S. Maffeis, J. C. Mitchell, and A. Taly. An operational semantics for JavaScript. In

APLAS, 2008.
15. C. Park, S. Won, J. Jin, and S. Ryu. A static analysis of JavaScript web applications

in the wild via practical DOM modeling (T). In ASE, 2015.
16. M. Parkinson. Local reasoning for Java. PhD thesis, Cambridge University, 2006.
17. A. Raad. (To appear). PhD thesis, Imperial College, 2016.
18. V. Rajani, A. Bichhawat, D. Garg, Deepak, and C. Hammer. Information flow

control for event handling and the DOM in web browsers. In CSF, 2015.
19. J. C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In

LICS, 2002.
20. A. Russo, A. Sabelfeld, and A. Chudnov. Tracking information flow in dynamic

tree structures. In ESORICS, 2009.
21. A. Møller S. H. Jensen, M. Madsen. Modeling the HTML DOM and browser API

in static analysis of JavaScript web applications. In FSE, 2011.
22. G. Smith. Local reasoning for web programs. PhD thesis, Imperial College, 2010.
23. N. Swamy, J. Weinberger, C. Schlesinger, J. Chen, and B. Livshits. Verifying

higher-order programs with the Dijkstra monad. In PLDI, 2013.
24. P. Thiemann. A type safe DOM API. In DBPL, 2005.
25. A. Wright. Structural separation logic. PhD thesis, Imperial College, 2013.



Verified Models and Reference Implementations
for the TLS 1.3 Standard Candidate

Karthikeyan Bhargavan, Bruno Blanchet, Nadim Kobeissi
INRIA

{karthik.bhargavan,bruno.blanchet,nadim.kobeissi}@inria.fr

Abstract—TLS 1.3 is the next version of the Transport Layer
Security (TLS) protocol. Its clean-slate design is a reaction both
to the increasing demand for low-latency HTTPS connections
and to a series of recent high-profile attacks on TLS. The
hope is that a fresh protocol with modern cryptography will
prevent legacy problems; the danger is that it will expose
new kinds of attacks, or reintroduce old flaws that were fixed
in previous versions of TLS. After 18 drafts, the protocol is
nearing completion, and the working group has appealed to
researchers to analyze the protocol before publication. This
paper responds by presenting a comprehensive analysis of the
TLS 1.3 Draft-18 protocol.

We seek to answer three questions that have not been fully
addressed in previous work on TLS 1.3: (1) Does TLS 1.3
prevent well-known attacks on TLS 1.2, such as Logjam or the
Triple Handshake, even if it is run in parallel with TLS 1.2?
(2) Can we mechanically verify the computational security of
TLS 1.3 under standard (strong) assumptions on its crypto-
graphic primitives? (3) How can we extend the guarantees of
the TLS 1.3 protocol to the details of its implementations?

To answer these questions, we propose a methodology
for developing verified symbolic and computational models
of TLS 1.3 hand-in-hand with a high-assurance reference
implementation of the protocol. We present symbolic ProVerif
models for various intermediate versions of TLS 1.3 and
evaluate them against a rich class of attacks to reconstruct
both known and previously unpublished vulnerabilities that
influenced the current design of the protocol. We present
a computational CryptoVerif model for TLS 1.3 Draft-18
and prove its security. We present RefTLS, an interoperable
implementation of TLS 1.0-1.3 and automatically analyze its
protocol core by extracting a ProVerif model from its typed
JavaScript code.

I. INTRODUCTION

The Transport Layer Security (TLS) protocol is widely
used to establish secure channels on the Internet. It was
first proposed under the name SSL [45] in 1994, and has
undergone a series of revisions since, leading up to the stan-
dardization of TLS 1.2 [37] in 2008. Each version adds new
features, deprecates obsolete constructions, and introduces
countermeasures for weaknesses found in previous versions.
The behavior of the protocol can be further customized via
extensions, some of which are mandatory to prevent known
attacks on the protocol.

One may expect that TLS clients and servers would use
only the latest version of the protocol with all security-
critical extensions enabled. In practice, however, many
legacy variants of the protocol continue to be supported
for backwards compatibility, and the everyday use of TLS

depends crucially on clients and servers negotiating the most
secure variant that they have in common. Securely com-
posing and implementing the many different versions and
features of TLS has proved to be surprisingly hard, leading
to the continued discovery of high-profile vulnerabilities in
the protocol.

A history of vulnerabilities. We identify four kinds of
attacks that TLS has traditionally suffered from. Downgrade
attacks enable a network adversary to fool a TLS client and
server into using a weaker variant of the protocol than they
would normally use with each other. In particular, version
downgrade attacks were first demonstrated from SSL 3 to
SSL 2 [72] and continue to be exploited in recent attacks
like POODLE [60] and DROWN [7]. Cryptographic vul-
nerabilities rely on weaknesses in the protocol constructions
used by TLS. Recent attacks have exploited key biases in
RC4 [3], [71], padding oracles in MAC-then-Encrypt [4],
[60], padding oracles in RSA PKCS#1 v1.5 [7], weak
Diffie-Hellman groups [1], and weak hash functions [23].
Protocol composition flaws appear when multiple modes
of the protocol interact in unexpected ways if enabled in
parallel. For example, the renegotiation attack [65] exploits
the sequential composition of two TLS handshakes, the
Triple Handshake attack [15] composes three handshakes,
and cross-protocol attacks [58], [72] use one kind of TLS
handshake to attack another. Implementation bugs contribute
to the fourth category of attacks on TLS, and are perhaps the
hardest to avoid. They range from memory safety bugs like
HeartBleed and coding errors like GotoFail to complex state
machine flaws like SKIP and FREAK [12]. Such bugs can
be exploited to bypass all the security guarantees of TLS,
and their prevalence, even in widely-vetted code, indicates
the challenges of implementing TLS securely.

Security proofs. Historically, when an attack is found on
TLS, practitioners propose a temporary fix that is imple-
mented in all mainstream TLS libraries, then a longer-term
countermeasure is incorporated into a protocol extension
or in the next version of the protocol. This has led to
a attack-patch-attack cycle that does not provide much
assurance in any single version of the protocol, let alone
its implementations.

An attractive alternative would have been to develop
security proofs that systematically demonstrated the absence
of large classes of attacks in TLS. However, developing
proofs for an existing standard that was not designed with
security models in mind is exceedingly hard [63]. After
years of effort, the cryptographic community only recently



published proofs for the two main components of TLS: the
record layer that implements authenticated encryption [57],
[62], and the handshake layer that composes negotiation and
key-exchange [46], [51]. These proofs required new security
definitions and custom cryptographic assumptions, and even
so, they apply only to abstract models of certain modes of
the protocol. For example, the proofs do not account for
low-level details of message formats, downgrade attacks,
or composition flaws. Since such cryptographic proofs are
typically carried out by hand, extending the proofs to cover
all these details would require a prohibitive amount of work,
and the resulting large proofs themselves would need to be
carefully checked.

A different approach taken by the protocol verification
community is to symbolically analyze cryptographic pro-
tocols using simpler, stronger assumptions on the under-
lying cryptography, commonly referred to as the Dolev-
Yao model [39]. Such methods are easy to automate and
can tackle large protocols like TLS in all their gory de-
tail, and even aspects of TLS implementations [31], [18].
Symbolic protocol analyzers are better at finding attacks,
but since they treat cryptographic constructions as perfect
black boxes, they provide weaker security guarantees than
classic cryptographic proofs that account for probabilistic
and computational attacks.

The most advanced example of mechanized verification
for TLS is the ongoing miTLS project [21], which uses de-
pendent types to prove both the symbolic and cryptographic
security of a TLS implementation that supports TLS 1.0-
1.2, multiple key exchanges and encryption modes, session
resumption, and renegotiation. This effort has uncovered
weaknesses in both the TLS 1.2 standard [15] and its
other implementations [12], and the proof is currently being
extended towards TLS 1.3.

Towards Verified Security for TLS 1.3. In 2014, the TLS
working group at the IETF commenced work on TLS 1.3,
with the goal of designing a faster protocol inspired by the
success of Google’s QUIC protocol [44]. Learning from the
pitfalls of TLS 1.2, the working group invited the research
community to contribute to the design of the protocol
and help analyze its security even before the standard is
published. A number of researchers, including the authors
of this paper, responded by developing new security models
and cryptographic proofs for various draft versions, and
using their analyses to propose protocol changes. Cryp-
tographic proofs were developed for Draft-5 [40], Draft-
9 [52], and Draft-10 [55], which justified the core design
of the protocol. A detailed symbolic model in Tamarin was
developed for Draft-10 [35]. Other works studied specific
aspects of TLS 1.3, such as key confirmation [41], client
authentication [50], and downgrade resilience [14].

Some of these analyses also found attacks. The Tamarin
analysis [35] uncovered a potential attack on the composition
of pre-shared keys and certificate-based authentication, and
this attack was prevented in Draft-11. A version downgrade
attack was found in Draft-12 and its countermeasure in
Draft-13 was proved secure [14]. A cross-protocol attack on
RSA signatures was described in [47]. Even in this paper,

we describe two vulnerabilities in 0-RTT client authentica-
tion that we discovered and reported, which influenced the
subsequent designs of Draft-7 and -13.

After 18 drafts, TLS 1.3 is entering the final phase of
standardization. Although many of its design decisions have
now been vetted by multiple security analyses, several unan-
swered questions remain. First, the protocol has continued
to evolve rapidly with every draft version, so many of
the cryptographic proofs cited above are already obsolete
and do not apply to Draft-18. Since many of these are
manual proofs, it is not easy to update them and check
all the proof steps. Second, none of these symbolic or
cryptographic analyses, with the exception of [14], con-
sider the composition of TLS 1.3 with legacy versions like
TLS 1.2. Hence, they do not account for attacks like [47] that
exploit weak legacy crypto in TLS 1.2 to break the modern
cryptographic constructions of TLS 1.3. Third, none of these
works addresses TLS 1.3 implementations. In this paper, we
seek to cover these gaps with a new comprehensive analysis
of TLS 1.3 Draft-18.

Our Contributions. We propose a methodology for devel-
oping mechanically verified models of TLS 1.3 alongside a
high-assurance reference implementation of the protocol.

We present symbolic protocol models for TLS 1.3 written
in ProVerif [27]. They incorporate a novel security model
(described in §II) that accounts for all recent attacks on TLS,
including those relying on weak cryptographic algorithms.
In §III-V, we use ProVerif to evaluate various modes and
drafts of TLS 1.3 culminating in the first symbolic analysis
of Draft-18 and the first composite analysis of TLS 1.3+1.2.
Our analyses uncover known and new vulnerabilities that
influenced the final design of Draft-18. Some of the features
we study no longer appear in the protocol, but our analysis
is still useful for posterity, to warn protocol designers
and developers who may be tempted to reintroduce these
problematic features in the future.

In §VI, we develop the first machine-checked crypto-
graphic proof for TLS 1.3 using the verification tool Cryp-
toVerif [24]. Our proof reduces the security of TLS 1.3
Draft-18 to standard cryptographic assumptions over its
primitives. In contrast to manual proofs, our CryptoVerif
script can be more easily updated from draft-to-draft, and
as the protocol evolves.

Our ProVerif and CryptoVerif models capture the protocol
core of TLS 1.3, but they elide many implementation details
such as the protocol API and state machine. To demon-
strate that our security results apply to carefully-written
implementations of TLS 1.3, we present RefTLS (§VII),
the first reference implementation of TLS 1.0-1.3 whose
core protocol code has been formally analyzed for security.
RefTLS is written in Flow, a statically typed variant of
JavaScript, and is structured so that all its protocol code
is isolated in a single module that can be automatically
translated to ProVerif and symbolically analyzed against our
rich threat model.

The full version of this paper is published as a technical
report [13], and our models and code are available at:

https://github.com/inria-prosecco/reftls



II. A SECURITY MODEL FOR TLS

Client C Server S

Knows (skC , pkC), psk Knows (skS , pkS), psk
Negotiation (offerC ,modeS)

Authenticated Key Exchange (cid , kc, ks, psk ′)

New client session:
C = C ] cid 7→ (offerC ,modeS ,

pkC , pkS , psk ,
kc, ks, psk ′)

New server session:
S = S ] cid 7→ (offerC ,modeS ,

pkC , pkS , psk ,
kc, ks, psk ′)

Authenticated Encryption (enckc(m0), enc
ks(m1), . . .)

Application Data Stream:
C

cid←→ S : m0,m1, . . .

Application Data Stream:
C

cid←→ S : m0,m1, . . .

Figure 1: TLS Protocol Structure: Negotiation, then Authen-
ticated Key Exchange (AKE), then Authenticated Encryption
(AE) for application data streams.

Figure 1 depicts the progression of a typical TLS con-
nection. Since a client and server may support different
sets of features, they first negotiate a protocol mode that
they have in common. In TLS, the client C makes an
offerC and the server chooses its preferred modeS , which
includes the protocol version, the key exchange protocol, the
authenticated encryption scheme, the Diffie-Hellman group
(if applicable), and the signature and hash algorithms.

Then, C and S execute the negotiated authenticated
key exchange protocol (e.g. Ephemeral Elliptic-Curve Diffie
Hellman), which may use some combination of the long-
term keys (e.g. public/private key pairs, symmetric pre-
shared keys) known to the client and server. The key
exchange ends by computing fresh symmetric keys (kc, ks)
for a new session (with identifier cid ) between C and S, and
potentially a new pre-shared key (psk ′) that can be used to
authenticate future connections between them.

In TLS, the negotiation and key exchange phases are
together called the handshake protocol. Once the handshake
is complete, C and S can start exchanging application data,
protected by an authenticated encryption scheme (e.g. AES-
GCM) with the session keys (kc, ks). The TLS protocol layer
that handles authenticated encryption for application data is
called the record protocol.

Security Goals for TLS. Each phase of a TLS connection
has its own correctness and security goals. For example,
during negotiation, the server must choose a modeS that is
consistent with the client’s offerC ; the key exchange must
produce a secret session key, and so on. Although these
intermediate security goals are important building blocks
towards the security of the full TLS protocol, they are less
meaningful to applications that typically use TLS via a TCP-
socket-like API and are unaware of the protocol’s internal
structure. Consequently, we state the security goals of TLS
from the viewpoint of the application, in terms of messages
it sends and receives over a protocol session.

All goals are for messages between honest and authenti-
cated clients and servers, that is, for those whose long-term

keys (skC , skS , psk ) are unknown to the attacker. If only the
server is authenticated, then the goals are stated solely from
the viewpoint of the client, since the server does not know
whether it is talking to an honest client or the attacker.
Secrecy: If an application data message m is sent over a

session cid between an honest client C and honest
server S, then this message is kept confidential from
an attacker who cannot break the cryptographic con-
structions used in the session cid .

Forward Secrecy: Secrecy (above) holds even if the long-
term keys of the client and server (skC , pkC , psk ) are
given to the adversary after the session cid has been
completed and the session keys kc, ks are deleted by C
and S.

Authentication: If an application data message m
is received over a session cid from an honest
and authenticated peer, then the peer must
have sent the same application data m in a
matching session (with the same parameters
cid , offerC ,modeS , pkC , pkS , psk , kc, ks, psk ′).

Replay Prevention: Any application data m sent over a
session cid may be accepted at most once by the peer.

Unique Channel Identifier: If a client session and a
server session have the same identifier cid , then all
other parameters in these sessions must match (same
cid , offerC ,modeS , pkC , pkS , psk , kc, ks, psk ′).

These security goals encompass most of the standard
security goals for secure channel protocols such as TLS. For
example, secrecy for application data implicitly requires that
the authenticated key exchange must generate secret keys.
Authentication incorporates the requirement that the client
and server must have matching sessions, and in particular,
that they agree on each others’ identities as well as the
inputs and outputs of negotiation. Hence, it prohibits client
and server impersonation, and man-in-the-middle downgrade
attacks.

The requirement for a unique channel identifier is a bit
more unusual, but it allows multiple TLS sessions to be
securely composed, for example via session resumption or
renegotiation, without exposing them to credential forward-
ing attacks like Triple Handshake [15]. The channel identi-
fier could itself be a session key or a value generated from
it, but is more usually a public value that is derived from
session data contributed by both the client and server [17].

Symbolic vs. Computational Models. Before we can model
and verify TLS 1.3 against the security goals given above,
we need to specify our protocol execution model. There
are two different styles in which protocols have classically
been modeled, and in this paper, we employ both of them.
Symbolic models were developed by the security proto-
col verification community for ease of automated analysis.
Cryptographers, on the other hand, prefer to use computa-
tional models and do their proofs by hand. A full comparison
between these styles is beyond the scope of this paper (see
e.g. [26]); here we briefly outline their differences in terms
of the two tools we will use.

ProVerif [25], [27] analyzes symbolic protocol models,
whereas CryptoVerif [24] verifies computational models.



The input languages of both tools are similar. For each
protocol role (e.g. client or server) we write a process that
can send and receive messages over public channels, trigger
security events, and store messages in persistent databases.

In ProVerif, messages are modeled as abstract terms. Pro-
cesses can generate new nonces and keys, which are treated
as atomic opaque terms that are fresh and unguessable.
Functions map terms to terms. For example, encryption
constructs a complex term from its arguments (key and
plaintext) that can only be deconstructed by decryption (with
the same key). The attacker is an arbitrary ProVerif process
running in parallel with the protocol, which can read and
write messages on public channels, and can manipulate them
symbolically.

In CryptoVerif, messages are concrete bitstrings. Freshly
generated nonces and keys are randomly sampled bitstrings
that the attacker can guess with some probability (depending
on their length). Encryption and decryption are functions on
bitstrings to which we may associate standard cryptographic
assumptions such as IND-CCA. The attacker is a probabilis-
tic polynomial-time CryptoVerif process running in parallel.

Authentication goals in both ProVerif and CryptoVerif are
written as correspondences between events: for example,
if the client triggers a certain event, then the server must
have triggered a matching event in the past. Secrecy is
treated differently in the two tools; in ProVerif, we typically
ask whether the attacker can compute a secret, whereas in
CryptoVerif, we ask whether it can distinguish a secret from
a random bitstring.

The analysis techniques employed by the two tools are
quite different. ProVerif searches for a protocol trace that
violates the security goal, whereas CryptoVerif tries to con-
struct a cryptographic proof that the protocol is equivalent
(with high probability) to a trivially secure protocol. ProVerif
is a push-button tool that may return that the security goal
is true in the symbolic model, or that the goal is false with a
counterexample, or that it is unable to conclude, or may fail
to terminate. CryptoVerif is semi-automated, it can search for
proofs but requires human guidance for non-trivial protocols.

We use both ProVerif and CryptoVerif for their comple-
mentary strengths. CryptoVerif can prove stronger security
properties of the protocol under precise cryptographic as-
sumptions, but the proofs require more work. ProVerif can
quickly analyze large protocols to automatically find attacks,
but a positive result does not immediately provide a cryp-
tographic proof of security. Deriving sound cryptographic
proofs using symbolic analysis is still an open problem for
real-world protocols [34].

A Realistic Threat Model for TLS. We seek to analyze
TLS 1.3 for the above security goals against a rich threat
model that includes both classic protocol adversaries as well
as new ones that apply specifically to multi-mode protocols
like TLS. In particular, we model recent downgrade attacks
on TLS by allowing the use of weak cryptographic algo-
rithms in older versions of TLS. In our analyses, the attacker
can use any of the following attack vectors to disrupt the
protocol.
• Network Adversary: As usual, we assume that the

attacker can intercept, modify, and send all messages sent
on public network channels.

• Compromised Principals: The attacker can compromise
any client or server principal P by asking for its long-
term secrets, such as its private key (skP ) or pre-shared
key (psk ). We do not restrict which principals can be
compromised, but whenever such a compromise occurs,
we mark it with a security event: Compromised(pkP) or
CompromisedPSK(psk). If the compromise event occurs
after a session is complete, we issue a different security
event: PostSessionCompromise(cid, pkP).

• Weak Long-term Keys: If the client or server has a
weak key that the attacker may be able to break with
sufficient computation, we treat such keys the same
way as compromised keys and we issue a more gen-
eral event:WeakOrCompromised(pkP). This conservative
model of weak keys is enough to uncover attacks like
FREAK [12] that rely on the use of 512-bit RSA keys by
TLS servers.

• RSA Decryption Oracles: TLS versions up to 1.2 use
RSA PKCS#1 v1.5 encryption, which is known to be vul-
nerable to a form of padding oracle attack on decryption
originally discovered by Bleichenbacher [28]. Although
countermeasures to this attack have been incorporated
into TLS, they remains hard to implement securely [59]
resulting in continued attacks such as DROWN [7].
Furthermore, such padding oracles can sometimes even
be converted to signature oracles for the corresponding
private key [47].
We assume that any TLS server (at any version) that
enables RSA decryption may potentially be vulnerable
to such attacks. We distinguish between two kinds of
RSA key exchange: RSA(StrongRSADecryption) and
RSA(WeakRSADecryption). In any session, if the server
chooses the latter, we provide the attacker with a decryp-
tion and signature oracle for that private key.

• Weak Diffie-Hellman Groups: To account for attacks
like Logjam [1], we allow servers to choose between
strong and weak Diffie-Hellman groups (or elliptic
curves), and mark the corresponding key exchange mode
as DHE(StrongDH) or DHE(WeakDH). We conservatively
assume that weak groups have size 1, so all Diffie-
Hellman exponentiations in these groups return the same
distinguished element BadElement.
Even strong Diffie-Hellman groups typically have small
subgroups that should be avoided. We model these sub-
groups by allowing a weak subgroup (of size 1) even
within a strong group. A malicious client or server may
choose BadElement as its public value, and then all
exponentiations with this element as the base will also
return BadElement. To avoid generating keys in this
subgroup, clients and servers must validate the received
public value.

• Weak Hash Functions: TLS uses hash functions for
key derivation, HMAC, and for signatures. Versions up
to TLS 1.2 use various combinations of MD5 and SHA-
1, both of which are considered weak today, leading to
exploitable attacks on TLS such as SLOTH [23].



We model both strong and weak hash functions, and the
client and server get to negotiate which function they will
use in signatures. Strong hash functions are treated as one-
way functions in our symbolic model, whereas weak hash
functions are treated as point functions that map all inputs
to a constant value: Collision. Hence, in our model, it is
trivial for the attacker to find collisions as well as second
preimages for weak hash functions.

• Weak Authenticated Encryption: To model recent at-
tacks on RC4 [3], [71] and TripleDES [22], we allow
both weak and strong authenticated encryption schemes.
For data encrypted with a weak scheme, irrespective of the
key, we provide the adversary with a decryption oracle.
A number of attacks on the TLS Record protocol stem
from its use of a MAC-Encode-Encrypt construction for
CBC-mode ciphersuites. This construction is known to
be vulnerable to padding oracle attacks such as POO-
DLE [60] and Lucky13 [4], and countermeasures have
proved hard to implement correctly [2]. We model such
attacks using a leaky decryption function. Whenever a
client or server decrypts a message with this function, the
function returns the right result but also leaks the plaintext
to the adversary.
The series of threats described above comprise our con-

servative threat model for TLS 1.3, and incorporates entire
classes of attacks that have been shown to be effective
against older versions of the protocol, including Triple
Handshake, POODLE, Lucky 13, RC4 NOMORE, FREAK,
Logjam, SLOTH, DROWN. In most cases, we assume
strictly stronger adversaries than have been demonstrated
in practice, but since attacks only get better over time,
our model seeks to be defensive against future attacks. It
is worth noting that, even though TLS 1.3 does not itself
support any weak ciphers, TLS 1.3 clients and servers will
need to support legacy protocol versions for backwards
compatibility. Our model enables a fine-grained analysis of
vulnerabilities: we can ask whether TLS 1.3 connections
between a client and a server are secure even if TLS 1.2
connections between them are broken.

Verifying TLS 1.2 in ProVerif. We encode our threat model
as a generic ProVerif crypto library that can be used with
any protocol. To evaluate this model, and in preparation for
our analysis of TLS 1.3, we symbolically analyze a model of
TLS 1.2 using ProVerif. Our model includes TLS 1.2 clients
and servers that support both RSA and Diffie-Hellman key
exchanges, and are willing to use both weak and strong
cryptography. We assume that clients are unauthenticated.

We write ProVerif processes for TLS 1.2 clients and
servers that exchange messages according to the protocol
standard, and issue a sequence of events–ClientOffers,
ServerChooses, ClientFinished, ServerFinished,
ClientSends, ServerReceives–indicating their progress
through the protocol. We then compose these processes with
our threat model and add queries for message authenticity
and secrecy. For example, a secrecy query may ask whether
the attacker can learn some application data message m sent
by the client over a TLS 1.2 session with identifier cid.

When we run ProVerif for this query, it finds a counter-

example: the attacker can learn m if it can compromise
server’s private key (WeakOrCompromised(pkS)). To check
whether this is the only case in which m is leaked, we
refine the secrecy query and run ProVerif again. ProVerif
again finds a counter-example: the attacker can learn
m if the server chooses a weak Diffie-Hellman group
(ServerChoosesKex(DHE(WeakDH))). In this way, we keep
refining our queries until we obtain the strongest security
properties that hold for TLS 1.2 in our model:

• TLS 1.2 Secrecy: A message m sent by an honest client
in a session cid to a server S cannot be known to the
adversary unless one of the following conditions holds:
(1) the server’s public key is weak or compromised, or
(2) the session uses a weak Diffie-Hellman group, or
(3) the session uses weak authenticated encryption, or
(4) the server uses weak RSA decryption with the same
public key (in this or any other session), or
(5) the server uses a weak hash function for signing with
the same public key (in any session).

• TLS 1.2 Authenticity & Replay Protection: Every
message m accepted by an honest client in a session cid
with some server S corresponds to a unique message sent
by S on a matching session, unless one of the conditions
(1)-(5) above holds.

Both these queries are verified by ProVerif in a few
seconds. All the disjuncts (1)-(5) in these queries are nec-
essary, removing any of them results in a counterexample
discovered by ProVerif, corresponding to some well-known
attack on badly configured TLS 1.2 connections.

Interestingly, the conditions (2) and (3) are session spe-
cific, that is, only the sessions where these weak construc-
tions are used are affected. In contrast, (4) and (5) indicate
that the use of weak RSA decryption or a weak hash function
in any session affects all other sessions that use the same
server public key. As we shall see, this has an impact on the
security of TLS 1.3 when it is composed with TLS 1.2.

We can also verify our TLS 1.2 model for more advanced
properties. Forward secrecy does not hold in general for
TLS 1.2, but can be proved for DHE sessions that use strong
groups. Channel identifiers like cid = kc are not unique, and
ProVerif finds a variant of the Triple Handshake attack, un-
less we implement the recommended countermeasure [64].

Verification Effort. The work of verifying TLS 1.2 can be
divided into three tasks. We first modeled the threat model as
a 400 line ProVerif library, but this library can now be reused
for other protocols, including TLS 1.3. We then modeled the
TLS 1.2 protocol in about 200 lines of ProVerif. Finally, we
wrote about 50 lines of queries, both to validate our model
(e.g. checking that the protocol completes in the absence of
an attacker) and to prove our desired security goals. Most
of the effort is in formalizing, refining, and discovering the
right security queries. Although ProVerif is fully automated,
verification gets more expensive as the protocol grows more
complex. So, as we extend our models to cover multiple
modes of TLS 1.3 composed with TLS 1.2, we sometimes
need to simplify or restructure our models to aid verification.



Client C Server S

Long-term Keys: (skC , pkC) Long-term Keys: (skS , pkS)

ClientHello(nC , offerC [(G, gx), G′])

RetryRequest(G′)

Generates x′ and computes:
es = kdf0

Generates y and computes:
es = kdf0

ClientHello(nC , offer ′C [G
′, gx

′
])

Chooses parameters:
modeS = (TLS1.3,DHE(G′),H(), enc())

log1 log1

ServerHello(nS ,modeS [G
′, gy])

Computes:
hs = kdfhs(es, gx

′y)
ms, khc , k

h
s , k

m
c , kms = kdfms(hs, log1)

Computes:
hs = kdfhs(es, gx

′y)
ms, khc , k

h
s , k

m
c , kms = kdfms(hs, log1)

enck
h
s (Extensions(. . .))

enck
h
s (CertRequest(. . .))

log2 log2

enck
h
s (Certificate(pkS))

log3 log3

enck
h
s (CertVerify(signskS (H(log2))))

log4 log4

enck
h
s (Finished(mack

m
s (H(log3))))

Computes:
kc, ks, ems = kdfk(ms, log4)

Computes:
kc, ks, ems = kdfk(ms, log4)

log5 log5

enck
h
c (Certificate(pkC))

log6 log6

enck
h
c (CertVerify(signskC (H(log5))))

log7 log7

enck
h
c (Finished(mack

m
c (H(log6))))

Computes:
psk ′ = kdfpsk (ms, log7)

cid = ems or psk ′ or H(log7)

Computes:
psk ′ = kdfpsk (ms, log7)

cid = ems or psk ′ or H(log7)

New client session:
C = C ] cid 7→ (offerC ,modeS ,

pkC , pkS ,
kc, ks, ems, psk ′)

New server session:
S = S ] cid 7→ (offerC ,modeS ,

pkC , pkS ,
kc, ks, ems, psk ′)

enckc(Data(m1))

encks(Data(m2))

Application Data Stream:
C

cid←→ S : m1,m2, . . .

Application Data Stream:
C

cid←→ S : m1,m2, . . .

Key Derivation Functions:
hkdf-extract(k, s) = HMAC-Hk(s)

hkdf-expand-label1(s, l, h) =

HMAC-Hs(lenH()‖“TLS 1.3, ”‖l‖h‖0x01)
derive-secret(s, l,m) = hkdf-expand-label1(s, l,H(m))

1-RTT Key Schedule:
kdf0 = hkdf-extract(0lenH() , 0lenH())

kdfhs(es, e) = hkdf-extract(es, e)

kdfms(hs, log1) = ms, kh
c , k

h
s , k

m
c , km

s where

ms = hkdf-extract(hs, 0lenH())

htsc = derive-secret(hs, htsc, log1)

htss = derive-secret(hs, htss, log1)

kh
c = hkdf-expand-label(htsc, key, “”)

km
c = hkdf-expand-label(htsc, finished, “”)

kh
s = hkdf-expand-label(htss, key, “”)

km
s = hkdf-expand-label(htss, finished, “”)

kdfk(ms, log4) = kc, ks, ems where
atsc = derive-secret(ms, atsc, log4)

atss = derive-secret(ms, atss, log4)

ems = derive-secret(ms, ems, log4)

kc = hkdf-expand-label(atsc, key, “”)
ks = hkdf-expand-label(atss, key, “”)

kdfpsk (ms, log7) = psk ′ where
psk ′ = derive-secret(ms, rms, log7)

PSK-based Key Schedule:
kdfes(psk) = es, kb where

es = hkdf-extract(0lenH() , psk)

kb = derive-secret(es, pbk, “”)

kdf0RTT (es, log1) = kc where
etsc = derive-secret(es, etsc, log1)

kc = hkdf-expand-label(etsc, key, “”)

Figure 2: TLS 1.3 Draft-18 1-RTT Protocol (left) and Key Schedule (right). The protocol uses an (EC)DHE key exchange
with server certificate authentication: client authentication and the RetryRequest negotiation steps are optional. The hash
function H() used in the key schedule is typically SHA-256, which has length lenH() = 32 bytes. The PSK-based key
derivations in the key schedule are not used in the 1-RTT protocol here; they will be used later in Figure 4.

III. TLS 1.3 1-RTT: SIMPLER, FASTER HANDSHAKES

In its simplest form, TLS 1.3 consists of a Diffie-Hellman
handshake, typically using an elliptic curve, followed by
application data encryption using an AEAD scheme like
AES-GCM. The essential structure of 1-RTT has remained
stable since early drafts of TLS 1.3. It departs from the
TLS 1.2 handshake in two ways. First, the key exchange is
executed alongside the negotiation protocol so the client can
start sending application data along with its second flight
of messages (after one round-trip, hence 1-RTT), unlike

TLS 1.2 where the client had to wait for two message
flights from the server. Second, TLS 1.3 eliminates a number
of problematic features in TLS 1.2; it removes RSA key
transport, weak encryption schemes (RC4, TripleDES, AES-
CBC), and renegotiation; it requires group negotiation with
strong standardized Diffie-Hellman groups, and it system-
atically binds session keys to the handshake log to prevent
attacks like the Triple Handshake. In this section, we detail
the protocol flow, we model it in ProVerif, and we analyze
it alongside TLS 1.2 in the security model of §II.



1-RTT Protocol Flow. A typical 1-RTT connection in
Draft 18 proceeds as shown in Figure 2. The first four
messages form the negotiation phase. The client sends a
ClientHello message containing a nonce nC and an
offerC that lists the versions, groups, hash functions, and
authenticated encryption algorithms that it supports. For
each group G that the client supports, it may include a
Diffie-Hellman key share gx. On receiving this message, the
server chooses a modeS that fixes the version, group, and
all other session parameters. Typically, the server chooses
a group G for which the client already provided a public
value, and so it can send its ServerHello containing
a nonce nS , modeS and gy to the client. If none of the
client’s groups are acceptable, the server may ask the client
(via RetryRequest) to resend the client hello with a key
share gx

′
for the server’s preferred group G′. (In this case,

the handshake requires two round trips.)
Once the client receives the ServerHello, the ne-

gotiation is complete and both participants derive hand-
shake encryption keys from gx

′y , one in each direction
(khc , k

h
s ), with which they encrypt all subsequent handshake

messages. The client and server also generate two MAC
keys (kmc , kms ) for use in the Finished messages de-
scribed below. The server then sends a flight of up to
5 encrypted messages: Extensions contains any proto-
col extensions that were not sent in the ServerHello;
CertRequest contains an optional request for a client cer-
tificate; Certificate contains the server’s X.509 public-
key certificate; CertVerify contains a signature with
server’s private key skS over the log of the transcript so
far (log2); Finished contains a MAC with kms over the
current log (log3). Then the server computes the 1-RTT
traffic keys kc, ks and may immediately start using ks to
encrypt application data to the client.

Upon receiving the server’s encrypted handshake flight,
the client verifies the certificate, the signature, and the
MAC, and if all verifications succeed, the client sends
its own second flight consisting of an optional certificate
Certificate and signature CertVerify, followed by a
mandatory Finished with a MAC over the full handshake
log. Then the client starts sending its own application data
encrypted under kc. Once the server receives the client’s
second flight, we consider the handshake complete and put
all the session parameters into the local session databases at
both client and server (C, S).

In addition to the traffic keys for the current session,
the 1-RTT handshake generates two extra keys: ems is an
exporter master secret that may be used by the application to
bind authentication credentials to the TLS channel; psk ′ is
a resumption master secret that may be used as a pre-shared
key in future TLS connections between C and S.

The derivation of keys in the protocol follows a linear
key schedule, as depicted on the right of Figure 2. The first
version of this key schedule was inspired by OPTLS [52]
and introduced into TLS 1.3 in Draft-7. The key idea in this
design is to accumulate key material and handshake context
into the derived keys using a series of HKDF invocations
as the protocol progresses. For example, in connections that

use pre-shared keys (see §V), the key schedule begins by
deriving es from psk , but after the ServerHello, we add
in gx

′y to obtain the handshake secret hs . Whenever we
extract encryption keys, we mix in the current handshake
log, in order to avoid key synchronization attacks like the
Triple Handshake.

Since its introduction in Draft-7, the key schedule has
undergone many changes, with a significant round of simpli-
fications in Draft-13. Since all previously published analyses
of 1-RTT predate Draft-13, this leaves open the question
whether the current Draft-18 1-RTT protocol is still secure.

Modeling 1-RTT in ProVerif. We write client and server
processes in ProVerif that implement the message sequence
and key schedule of Figure 2.

Our models are abstract with respect to the message
formats, treating each message (e.g. ClientHello(· · · ))
as a symbolic constructor, with message parsing modeled
as a pattern-match with this constructor. This means that
our analysis assumes that message serialization and parsing
is correct; it won’t find any attacks that rely on parsing
ambiguities or bugs. This abstract treatment of protocol
messages is typical of symbolic models; the same approach
is taken by Tamarin [35]. In contrast, miTLS [21] includes
a fully verified parser for TLS messages.

The key schedule is written as a sequence of ProVerif
functions built using an HMAC function, hmac(H, m), which
takes a hash function H as argument and is assumed to be
a one-way function as long as H = StrongHash. All other
cryptographic functions are modeled as described in §II, with
both strong and weak variants.

Persistent state is encoded using tables. To model prin-
cipals and their long-term keys, we use a global pri-
vate table that maps principals (A) to their key pairs
((skA, pkA)). To begin with, the adversary does not know
any of the private keys in this table, but it can compromise
any principal and obtain her private key. As described in
§II, this compromise is recorded in ProVerif by an event
WeakOrCompromised(pkA).

As the client and server proceed through the handshake
they record security events indicating their progress. We
treat the negotiation logic abstractly; the adversary gets to
choose offerC and modeS , and we record these choices
as events (ClientOffers, ServerChooses) at the client
and server. When the handshake is complete, the client and
server issue events ServerFinished, ClientFinished,
and store their newly established sessions in two private ta-
bles clientSession and serverSession (corresponding
to C and S). These tables are used by the record layer to
retrieve the traffic keys kc, ks for authenticated encryption.
Whenever the client or server sends or receives an applica-
tion data message, it issues further events (ClientSends,
ServerReceives, etc.) We use all these events along with
the client and server session tables to state our security goals.

1-RTT Security Goals. We encode our security goals as
ProVerif queries as follows:
• Secrecy for a message, such as m1, is encoded using

an auxiliary process that asks the adversary to guess the



value of m1; if the adversary succeeds, the process issues
an event MessageLeaked(cid , m1). We then write a query
to ask ProVerif whether this event is reachable.

• Forward Secrecy is encoded using the same query,
but we explicitly leak the client and server’s long-term
keys (skC , skS) at the end of the session cid . ProVerif
separately analyzes pre-compromise and post-compromise
sessions as different phases; the forward secrecy query
asks that messages sent in the first phase are kept secret
even from attackers who learn the long-term keys in the
second phase.

• Authentication for a message m1 received by the server
is written as a query that states that whenever the event
ServerReceives(cid , m1) occurs, it must be preceded
by three matching events: ServerFinished(cid , . . .),
ClientFinished(cid , . . .), and ClientSends(cid , m1),
which means that some honest client must have sent
m1 on a matching session. The authentication query for
messages received by clients is similar.

• Replay protection is written as a stronger variant of
the authentication query that requires injectivity: each
ServerReceives event must correspond to a unique,
matching, preceding ClientSends event.

• Unique Channel Identifiers are verified using an-
other auxiliary process that looks up sessions from the
clientSession and serverSession tables and checks
that if the cid in both is the same, then all other parameters
match. Otherwise it raises an event, and we ask ProVerif
to prove that this event is not reachable.

When we first ask ProVerif to verify these queries, it fails
and provides counterexamples; for example, client message
authentication does not hold if the client is compromised
Compromised(pkC) or unauthenticated in the session. We
then refine the query by adding this failure condition as
a disjunct, and run ProVerif again and repeat the process
until the query is proved. Consequently, our final verification
results are often stated as a long series of disjuncts listing
the cases where the desired security goal does not hold.

Verifying 1-RTT in Isolation. For our model of Draft-18 1-
RTT, ProVerif can prove the following secrecy query about
all messages (m0.5,m1,m2):
• 1-RTT (Forward) Secrecy: Messages m sent in a session

between C and S are secret as long as the private keys of
C and S are not revealed before the end of the session, and
the server chooses a modeS with a strong Diffie-Hellman
group, a strong hash function, and a strong authenticated
encryption algorithm.

If we further assume that TLS 1.3 clients and servers only
support strong algorithms, we can simplify the above query
to show that all messages sent between uncompromised
principals are kept secret. In the rest of this paper, we
assume that TLS 1.3 only enables strong algorithms, but
that earlier versions of the protocol may continue to support
weak algorithms.

Messages m1 from the client to the server enjoy strong
authentication and protection from replays:
• 1-RTT Authentication (and Replay Prevention): If a

message m is accepted by S over a session with an honest

C, then this message corresponds to a unique message
sent by the C over a matching session.
However the authentication guarantee for messages

m0.5,m1 received by the client is weaker. Since the client
does not know whether the server sent this data before or
after receiving the client’s second flight, the client and server
sessions may disagree about the client’s identity. Hence, for
these messages, we can only verify a weaker property:
• 0.5-RTT Weak Authentication (and Replay Preven-

tion): If a message m is accepted by C over a session with
an honest S, then this message corresponds to a unique
message sent by S over a server session that matches all
values in the client session except (possibly) the client’s
public key pkC , the resumption master secret psk ′, and
the channel identifier cid .
We note that by allowing the server to send 0.5-RTT data,

Draft-18 has weakened the authentication guarantees for all
data received by an authenticated client. For example, if a
client requests personal data from the server over a client-
authenticated 1-RTT session, a network attacker could delay
the client’s second flight (Certificate−Finished) so
that when the client receives the server’s 0.5-RTT data, it
thinks that it contains personal data, but the server actually
sent data intended for an anonymous client.

Verifying TLS 1.3 1-RTT composed with TLS 1.2. We
combine our model with the TLS 1.2 model described at
the end of §II so that each client and server supports both
versions. We then ask the same queries as above, but only
for sessions where the server chooses TLS 1.3 as the version
in modeS . Surprisingly, ProVerif finds two counterexamples.

First, if a server supports WeakRSADecryption with RSA
key transport in TLS 1.2, then the attacker can use the RSA
decryption oracle to forge TLS 1.3 server signatures and
hence break our secrecy and authentication goals. This attack
found by ProVerif directly corresponds to the cross-protocol
Bleichenbacher attacks described in [47], [7]. It shows that
removing RSA key transport from TLS 1.3 is not enough,
one must disable the use of TLS 1.2 RSA mode on any
server whose certificate may be accepted by a TLS 1.3 client.

Second, if a client or server supports a weak hash function
for signatures in TLS 1.2, then ProVerif shows how the
attacker can exploit this weakness to forge TLS 1.3 signa-
tures in our model, hence breaking our security goals. This
attack corresponds to the SLOTH transcript collision attack
on TLS 1.3 signatures described in [23]. To avoid this attack,
TLS 1.3 implementations must disable weak hash functions
in all supported versions, not just TLS 1.3.

After disabling these weak algorithms in TLS 1.2, we can
indeed prove all our expected security goals about Draft-18
1-RTT, even when it is composed with TLS 1.2.

We may also ask whether TLS 1.3 clients and servers can
be downgraded to TLS 1.2. If such a version downgrade
takes place, we would end up with a TLS 1.2 session, so
we need to state the query in terms of sessions where modeS

contains TLS 1.2. ProVerif finds a version downgrade attack
on a TLS 1.3 session, if the client and server support
weak Diffie-Hellman groups in TLS 1.2. This attack closely
mirrors the flaw described in [14]. Draft-13 introduced a



countermeasure in response to this attack, and we verify that
by adding it to the model, the downgrade attack disappears.

Although our models of TLS 1.3 and 1.2 are individually
verified in a few seconds each, their composition takes
several minutes to analyze. As we add more features and
modes to the protocol, ProVerif takes longer and requires
more memory. Our final composite model for all modes of
TLS 1.3+1.2 takes hours on a powerful workstation.

IV. 0-RTT WITH SEMI-STATIC DIFFIE-HELLMAN

In earlier versions of TLS, the client would have to wait
for two round-trips of handshake messages before sending
its request. 1-RTT in TLS 1.3 brings this down to one
round trip, but protocols like QUIC use a ”zero-round-
trip” (0-RTT) mode, by relying on a semi-static (long-term)
Diffie-Hellman key. This design was adapted for TLS in the
OPTLS proposal [52] and incorporated in Draft-7 (along
with a fix we proposed, as described below).

Protocol Flow. The protocol is depicted in Figure 3. Each
server maintains a Diffie-Hellman key pair (s, gs) and
publishes a signed server configuration containing gs. As
usual, a client initiates a connection with a ClientHello
containing its ephemeral key gx. If a client has already
obtained and cached the server’s certificate and signed
configuration (in a prior exchange for example), then the
client computes a shared secret gxs and uses it to derive
an initial set of shared keys which can then immediately be
used to send encrypted data. To authenticate its 0-RTT data,
the client may optionally send a certificate and a signature
over the client’s first flight.

The server then responds with a ServerHello mes-
sage that contains a fresh ephemeral public key gy . Now,
the client and server can continue with a regular 1-RTT
handshake using the new shared secret gxy in addition to
gxs.

The 0-RTT protocol continued to evolve from Draft-7 to
Draft-12, but in Draft-13, it was removed in favor of a PSK-
based 0-RTT mode. Even though Diffie-Hellman-based 0-
RTT no longer exists in Draft-18, we analyze its security in
this section, both for posterity and to warn protocol designers
about the problems they should watch our for if they decide
to reintroduce DH-based 0-RTT in a future version of TLS.

Verification with ProVerif. We modeled the protocol in
ProVerif and wrote queries to check whether the 0-RTT data
m0 is (forward) secret and authentic. ProVerif is able to
prove secrecy but finds that m0 is not forward secret if the
semi-static key s is compromised once the session is over.
ProVerif also finds a Key Compromise Impersonation attack
on authentication: if gs is compromised, then an attacker
can forge 0-RTT messages from C to S. Furthermore, the
0-RTT flight can be replayed by an attacker and the server
will process it multiple times, thinking that the client has
initiated a new connection each time. In addition to these
three concerns, which were documented in Draft-7, ProVerif
also finds a new attack, explained below, that breaks 0-RTT
authentication if the server’s certificate is not included in the
0-RTT client signature.

C S

Knows (skC , pkS) Knows (skS , pkS), (s, g
s)

Certificate(pkS)

signskS (H(ServerConfig(gs)))

Generates x

log1 log1

ClientHello(nC , offerC [G, gx])

Computes:
k0h, k

0
m, k0c = kdfss(g

xs, log1)
Computes:

k0h, k
0
m, k0c = kdfss(g

xs, log1)

log2 log2

enck
0
h(Certificate(pkC))

log3 log3

enck
0
h(CertVerify(signskC (H(log2))))

log4 log4

enck
0
h(Finished(mack

0
m(H(log3))))

enck
0
c (Data(m0))

ServerHello(nS ,modeS [G, gy])

(Continue 1-RTT Exchange)

New client session:
C = C ] cid 7→ (offerC ,modeS ,

pkC , pkS , psk ,
kc, ks, psk ′)

New server session:
S = S ] cid 7→ (offerC ,modeS ,

pkC , pkS , psk ,
kc, ks, psk ′)

enckc(Data(m1))

Application Data Stream:
C

cid←→ S : m0,m1, . . .

Application Data Stream:
C

cid←→ S : m0,m1, . . .

Figure 3: DH-based 0-RTT in TLS 1.3 Draft-12, inspired by
QUIC and OPTLS.

Unknown Key Share Attack on DH-based 0-RTT in
QUIC, OPTLS, and TLS 1.3. We observe that in the 0-
RTT protocol, the client starts using gs without having any
proof that the server knows s. So a dishonest server M can
claim to have the same semi-static key as S by signing gs

under its own key skM . Now, suppose a client connects to
M and sends its client hello and 0-RTT data; M can simply
forward this whole flight to S, which may accept it, because
the semi-static keys match. This is an unknown key share
(UKS) attack where C thinks it is talking to M but it is, in
fact, connected to S.

In itself, the UKS attack is difficult to exploit, since M
does not know gxs and hence cannot decrypt or tamper
with messages between C and S. However, if the client
authenticates its 0-RTT flight with a certificate, then M can
forward C’s certificate (and C’s signature) to S, resulting in
a credential forwarding attack, which is much more serious.
Suppose C is a browser that has a page open at website
M ; from this page M can trigger any authenticated 0-RTT
HTTPS request m0 to its own server, which then uses the
credential forwarding attack to forward the request to S,
who will process m0 as if it came from C. For example, M
may send a POST request that modifies C’s account details
at S.

The unknown key share attack described above applies to
both QUIC and OPTLS, but remained undiscovered despite
several security analyses of these protocols [42], [56], [52],



because these works did not consider client authentication,
and hence did not formulate an authentication goal that
exposed the flaw. We informed the authors of QUIC and
they acknowledged our attack. They now recommend that
users who need client authentication should not use QUIC,
and should instead move over to TLS 1.3. We also informed
the authors of the TLS 1.3 standard, and on our suggestion,
Draft-7 of TLS 1.3 included a countermeasure for this attack:
the client signature and 0-RTT key derivation include not just
the handshake log but also the cached server certificate. With
this countermeasure in place, ProVerif proves authentication
for 0-RTT data.

V. PRE-SHARED KEYS FOR RESUMPTION AND 0-RTT

Client C Server S

Knows (skC , pkC), (psk , enckt(psk)) Knows (skS , pkS), kt

Generates x and computes:
es, kb = kdfes(psk)

log1 log1

mack
b

(ClientHello(nC , offerC [G, gx, enckt(psk)]))

Computes:
k0c = kdf0RTT (es, log1)

Generates y, decrypts psk , and computes:
es, kb = kdfes(psk)

k0c = kdf0RTT (es, log1)

enck
0
c (Data(m0))

ServerHello(nS ,modeS [G, gy])

(Continue 1-RTT Exchange)

New client session:
C = C ] cid 7→ (offerC ,modeS ,

pkC , pkS , psk ,
kc, ks, psk ′)

New server session:
S = S ] cid 7→ (offerC ,modeS ,

pkC , pkS , psk ,
kc, ks, psk ′)

enckc(Data(m1))

encks(Data(m2))

Application Data Stream:
C

cid←→ S : m0,m1,m2, . . .

Application Data Stream:
C

cid←→ S : m0,m1,m2, . . .

Figure 4: TLS 1.3 Draft-18 PSK-based Resumption and 0-
RTT.

Aside from the number of round-trips, the main cryp-
tographic cost of a TLS handshake is the use of public-
key algorithms for signatures and Diffie-Hellman, which
are still significantly slower than symmetric encryption and
MACs. So, once a session has already been established
between a client and server, it is tempting to reuse the
symmetric session key established in this session as a pre-
shared symmetric key in new connections. This mechanism
is called session resumption in TLS 1.2 and is widely used in
HTTPS where a single browser typically has many parallel
and sequential connections to the same website. In TLS 1.2,
pre-shared keys (PSKs) are also used instead of certificates
by resource-constrained devices that cannot afford public-
key encryption. TLS 1.3 combines both these use-cases in
a single PSK-based handshake mode that combines resump-
tion, PSK-only handshakes, and 0-RTT.

Protocol Flow. Figure 4 shows how this mode extends the
regular 1-RTT handshake; in our analysis, we only consider

PSKs that are established within TLS handshakes, but sim-
ilar arguments apply to PSKs that are shared out-of-band.
We assume that the client and server have established a pre-
shared key psk in some earlier session. The client has cached
psk , but in order to remain state-less, the server has given the
client a ticket containing psk encrypted under an encryption
key kt. As usual, the client sends a ClientHello with
its ephemeral key share gx and indicates that it prefers to
use the shared PSK psk . To prove its knowledge of psk and
to avoid certain attacks (described below), it also MACs
the ClientHello with a binder key kb derived from
the psk . The client can then use psk to already derive an
encryption key for 0-RTT data m0 and start sending data
without waiting for the server’s response. When the server
receives the client’s flight, it can choose to accept or reject
the offered psk . Even if it accepts the psk , the server may
choose to reject the 0-RTT data, it may choose to skip
certificate-based authentication, and (if it does not care about
forward secrecy) it may choose to skip the Diffie-Hellman
exchange altogether. The recommended mode is PSK-DHE,
where psk and gxy are both mixed into the session keys. The
server then sends back a ServerHello with its choice and
the protocol proceeds with the appropriate 1-RTT handshake
and completes the session.

Verifying PSK-based Resumption. We first model the
PSK-DHE 1-RTT handshake (without certificate authenti-
cation) and verify that it still meets our usual security goals:
• PSK-DHE 1-RTT (Forward) Secrecy Any message m

sent over a PSK-DHE session in 1-RTT is secret as long
as the PSK psk and the ticket encryption key kt are not
compromised until the end of the session.

• PSK-DHE 1-RTT Authentication and Replay Protec-
tion Any message m received over a PSK-DHE session
in 1-RTT corresponds to a unique message sent by a
peer over a matching session (notably with the same psk )
unless psk or kt are compromised during the session.

• PSK-DHE 1-RTT Unique Channel Identifier The val-
ues psk ′, ems , and H(log7) generated in a DHE or PSK-
DHE session are all unique channel identifiers.
Notably, data sent over PSK-DHE is forward secret even

if the server’s long term ticket encryption key kt is compro-
mised after the session. In contrast, pure PSK handshakes
do not provide this forward secrecy.

The authentication guarantee requires that the client and
server must agree on the value of the PSK psk , and if this
PSK was established in a prior session, then the unique
channel identifier property says that the client and server
must transitively agree on the prior session as well. An
earlier analysis of Draft-10 in Tamarin [35] found a violation
of the authentication goal because the 1-RTT client signature
in Draft-10 did not include the server’s Finished or any
other value that was bound to the PSK. This flaw was fixed
in Draft-11 and hence we are able to prove authentication
for Draft-18.

Verifying PSK-based 0-RTT. We extend our model with
the 0-RTT exchange and verify that m0 is authentic and
secret. The strongest queries that ProVerif can prove are the



following:

• PSK-based 0-RTT (Forward) Secrecy A message m0

sent from C to S in a 0-RTT flight is secret as long as
psk and kt are never compromised.

• PSK-based 0-RTT Authentication A message m0 re-
ceived by S from C in a 0-RTT flight corresponds to some
message sent by C with a matching ClientHello and
matching psk , unless the psk or kt are compromised.

In other words, PSK-based 0-RTT data is not forward se-
cret and is vulnerable to replay attacks. As can be expected,
it provides a symmetric authentication property: since both
C and S know the psk , if either of them is compromised,
the attacker can forge 0-RTT messages.

An Attack on 0-RTT Client Authentication. Up to Draft-
12, the client could authenticate its 0-RTT data with a
client certificate in addition to the PSK. This served the
following use case: suppose a client and server establish an
initial 1-RTT session (that outputs psk ′) where the client
is unauthenticated. Some time later, the server asks the
client to authenticate itself, and so they perform a PSK-
DHE handshake (using psk ′) with client authentication. The
use of psk ′ ensures continuity between the two sessions. In
the new session, the client wants to start sending messages
immediately, and so it would like to use client authentication
in 0-RTT.

To be consistent with Draft-12, suppose we remove the
outer binder MAC (using kb) on the ClientHello in
Figure 4, and we allow client authentication in 0-RTT.
Then, if we model this protocol in ProVerif and ask the 0-
RTT authentication query again, ProVerif finds a credential
forwarding attack, explained next.

Suppose a client C shares psk with a malicious server M ,
and M shares a different psk ′ with an honest server S. If C
sends an authenticated 0-RTT flight (certificate, signature,
data m0) to M , M can decrypt this flight using psk , re-
encrypt it using psk ′, and forward the flight to S. S will
accept the authenticated data m0 from C as intended for
itself, whereas C intended to send it only to M . In many
HTTPS scenarios, as discussed in §IV, M may be able to
control the contents of this data, so this attack allows M to
send arbitrary requests authenticated by C to S.

This attack was not discovered in previous analyses of
TLS 1.3 since many of them did not consider client au-
thentication; the prior Tamarin analysis [35] found a similar
attack on 1-RTT client authentication but did not consider
0-RTT client authentication. The attacks described here and
in [35] belong to a general class of compound authentica-
tion vulnerabilities that appear in protocols that compose
multiple authentication credentials [17]. In this case, the
composition of interest is between PSK and certificate-based
authentication. We found a similar attack on 1-RTT server
authentication in pure PSK handshakes.

In response to our attack, Draft-13 included a
resumption context value derived from the psk in the
handshake hash, to ensure that the client’s signature over
the hash cannot be forwarded on another connection (with
a different psk ′). This countermeasure has since evolved to

the MAC-based design showed in Figure 4, which has now
been verified in this paper.

The Impact of Replay on 0-RTT and 0.5-RTT. It is
now widely accepted that asynchronous messaging protocols
like 0-RTT cannot be easily protected from replay, since
the recipient has no chance to provide a random nonce
that can ensure freshness. QUIC attempted to standardize a
replay-prevention mechanism but it has since abandoned this
mechanism, since it cannot prevent attackers from forcing
the client to resend 0-RTT data over 1-RTT [66].

Instead of preventing replays, TLS 1.3 Draft-18 advises
applications that they should only send non-forward-secret
and idempotent data over 0-RTT. This recommendation is
hard to systematically enforce in flexible protocols like
HTTPS, where all requests have secret cookies attached, and
even GET requests routinely change state.

We argue that replays offer an important attack vector
for 0-RTT and 0.5-RTT data. If the client authenticates
its 0-RTT flight, then an attacker can replay the entire
flight to mount authenticated replay attacks. Suppose the
(client-authenticated) 0-RTT data asks the server to send
a client’s bank statement, and the server sends this data
in a 0.5-RTT response. An attacker who observes the 0-
RTT request once, can replay it any number of times to the
server from anywhere in the world and the server will send it
the user’s (encrypted) bank statement. Although the attacker
cannot complete the 1-RTT handshake or read this 0.5-RTT
response, it may be able to learn a lot from this exchange,
such as the length of the bank statement, and whether the
client is logged in.

In response to these concerns, client authentication has
now been removed from 0-RTT. However, we note that
similar replay attacks apply to 0-RTT data that contains
an authentication cookie or OAuth token. We highly rec-
ommend that TLS 1.3 servers should implement a replay
cache (based on the client nonce nC and the ticket age) to
detect and reject replayed 0-RTT data. This is less practical
in server farms, where time-based replay mitigation may be
the only alternative.

VI. COMPUTATIONAL ANALYSIS OF TLS 1.3 DRAFT-18

Our ProVerif analysis of TLS 1.3 Draft-18 identifies the
necessary conditions under which the symbolic security
guarantees of the protocol hold. We now use the tool Cryp-
toVerif [24] to see whether these conditions are sufficient
to obtain cryptographic security proofs for the protocol in a
more precise computational model. In particular, under the
assumption that the algorithms used in TLS 1.3 Draft-18
satisfy certain strong cryptographic assumptions, we prove
that the protocol meets our security goals.

Proofs in the computational model are hard to mechanize,
and CryptoVerif offers less flexibility and automation than
ProVerif. To obtain manageable proofs, we focus only on
TLS 1.3 (we do not consider TLS 1.2) and we ignore down-
grade attacks. We split the protocol into three pieces and
prove them separately using CryptoVerif, before composing
them manually to obtain a proof for the full protocol.



A. Cryptographic Assumptions
We make the following assumptions about the crypto-

graphic algorithms supported by TLS 1.3 clients and servers.

Diffie-Hellman. We assume that the Diffie-Hellman groups
used in TLS 1.3 satisfy the gap Diffie-Hellman (GDH)
assumption [61]. This assumption means that given g, ga,
and gb for random a, b, the adversary has a negligible
probability to compute gab, even when the adversary has
access to a decisional Diffie-Hellman oracle, which tells him
given G,X, Y, Z whether there exist x, y such that X = Gx,
Y = Gy , and Z = Gxy .

In our proof, we require GDH rather than the weaker
decisional Diffie-Hellman (DDH) assumption, in order to
prove secrecy of keys on the server side as soon as the server
sends its Finished message: at this point, if the adversary
controls a certificate accepted by the client, he can send its
own key share y′ to the client to learn information on gx

′y′
,

and that would be forbidden under DDH. We also require
that xy = x′

y implies x = x′ and that xy = xy′
implies

y = y′, which holds when the considered Diffie-Hellman
group is of prime order. This is true for all groups currently
specified in TLS 1.3, and our proof requires it for all groups
included in the future.

We also assume that all Diffie-Hellman group elements
have a binary representation different from 0lenH() . This
assumption simplifies the proof by avoiding a possible con-
fusion between handshakes with and without Diffie-Hellman
exchange. Curve25519 does have a 32-byte zero element,
but excluding zero Diffie-Hellman shared values is already
recommended to avoid points of small order [54].

Finally, we assume that all Diffie-Hellman group
elements have a binary representation different from
lenH()‖“TLS 1.3, ”‖l‖h‖0x01. This helps ease our proofs
by avoiding a collision between hkdf-extract(es, e) and
derive-secret(es, pbk, “”) or derive-secret(es, etsc, log1).
This assumption holds with the currently specified groups
and labels, since group elements have a different length than
the bitstring above. The technical problem identified by our
assumption was independently discovered and discussed on
the TLS mailing list [67], and has led to a change in Draft-19
which will make this assumption unnecessary.

Signatures. We assume that the function sign is unforgeable
under chosen-message attacks (UF-CMA) [43]. This means
that an adversary with access to a signature oracle has a
negligible probability of forging a signature for a message
not signed by the signature oracle. Only the oracle has access
to the signing key; the adversary has the public key.

Hash Functions. We assume that the function H is collision-
resistant [36]: the adversary has a negligible probability of
finding two different messages with the same hash.

HMAC. We need two assumptions on HMAC-H:
We require that the functions x 7→ HMAC-H0

lenH()

(x)
and x 7→ HMAC-Hkdf0(x) are independent random oracles,
in order to justify the use of HMAC-H as a randomness
extractor in the HKDF construct. This assumption can itself
be justified as follows. Assuming that the compression func-

tion underlying the hash function is a random oracle, The-
orem 4.4 in [38] shows that HMAC is indifferentiable [33]
from a random oracle, provided the MAC keys are less than
the block size of the hash function minus one, which is true
for HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-
512. It is then easy to show that x 7→ HMAC-H0

lenH()

(x) and
x 7→ HMAC-Hkdf0(x) are indifferentiable from independent
random oracles in this case.

We assume that HMAC-H is a pseudo-random function
(PRF) [9], that is, HMAC-H is indistinguishable from a
random function provided its key is random and used only in
HMAC-H, when the key is different from 0lenH() and kdf0.
We avoid these two keys to avoid confusion with the two
random oracles above. Since keys are chosen randomly with
uniform probability from a set key (with cardinality |key|),
the only consequence of avoiding these keys is that 2

|key| is
added to the probability of breaking the PRF assumption.

Authenticated Encryption. The authenticated encryption
scheme is IND-CPA (indistinguishable under chosen plain-
text attacks) and INT-CTXT (ciphertext integrity) [11], pro-
vided the same nonce is never used twice with the same
key. IND-CPA means that the adversary has a negligible
probability of distinguishing encryptions of two distinct
messages of the same length that it has chosen. INT-CTXT
means that an adversary with access to encryption and
decryption oracles has a negligible probability of forging
a ciphertext that decrypts successfully and has not been
returned by the encryption oracle.

B. Verifying 1-RTT Handshakes without Pre-Shared Keys

To prove the security of TLS 1.3 in CryptoVerif, we first
establish some lemmas about the primitives, as detailed in
Appendix A. Then, we split the protocol into three parts,
as shown in Figure 5, and verify them in sequence, before
composing them by hand into a proof for the full protocol.
This modular hybrid approach allows us to have proofs of
manageable complexity, and to obtain results even when
keys are reused many times, such as when several PSK-
based resumptions are performed, which would otherwise
be out of scope of CryptoVerif.

We first consider the initial 1-RTT handshake shown in
Figure 2, until the new client and server session boxes. We
model a honest client and a honest server, which are willing
to interact with each other, but also with dishonest clients
and servers included in the adversary. We do not consider
details of the negotiation (or the RetryRequest message).
We give the handshake keys (khc and khs ) to the adversary,
and let it encrypt and decrypt the handshake messages, so
our security proof does not rely on the encryption of the
handshake.

We assume that the server is always authenticated and
consider both the handshake with and without client au-
thentication. The honest client and server may be com-
promised at any time: the secret key of the compromised
participant is then sent to the adversary, and the compromise
is recorded by defining a variable corruptedClient or
corruptedServer.



The outputs of this protocol are the application traffic
secrets atsc and atss (the derivation of the keys kc and
ks from these secrets is left for the record protocol), the
exporter master secret ems , and the resumption master secret
psk ′ (later used as pre-shared key). CryptoVerif proves the
following properties:

• Key Authentication: If the client terminates a session
with the server and the server is not compromised, then
the server has accepted a session with the client, and
they share the same parameters: the keys atsc, atss, and
ems and all messages sent in the protocol until the server
Finished message. (We can make no claim on the client
Finished message because it has not been received by
the server at this point, nor on psk ′ because it depends
on the client Finished message.)
In our CryptoVerif model, we formalize this property by
adding an event ClientTerm(. . .) in the client, executed
when the client terminates a session (that is, sends his
Finished message) with an honest server (that is,
corruptedServer is not defined). We similarly define
an event ServerAccept(. . .) at the server, executed when
the server accepts a session (that is, sends his Finished
message). The arguments of these events include the
session keys and all the messages sent in the protocol
until the server Finished message. We then ask Cryp-
toVerif or prove an authentication query that states that,
with overwhelming probability, each execution of event
ClientTerm corresponds to a distinct execution of event
ServerAccept with the same arguments.
Conversely, if a server terminates a session with an
honest client, and either the client is authenticated and not
compromised, or the client key share gx

′
accepted by the

server was generated by the client, then the client must
have accepted a session with the server, and they must
agree on the established keys and on all messages sent
in the protocol. We state this property as a CryptoVerif
query and verify it.

• Replay Prevention: The authentication properties stated
above are already injective, that is, they guarantee that
each session of the client (resp. server) corresponds to
a distinct session of the server (resp. client), and conse-
quently, they forbid replay attacks.

• (Forward) Secrecy of Keys: The keys atsc, atss, ems ,
and psk ′ exchanged in several protocol sessions are indis-
tinguishable from independent fresh random values. This
property means for instance that the keys psk ′ remains
secret (indistinguishable from independent fresh random
values) even if atsc, atss, ems are given to the adversary,
and similarly for the other keys. Secrecy holds on the
client side when the server is not compromised before
the end of the session. It holds on the server side when
the client is authenticated and not compromised before
the end of the session or when the key share gx

′
used

by the server comes from the client. We prove secrecy of
atsc, atss, and ems on the server side when the key share
gx

′
comes from the client as soon as the server sends its

Finished message. This property allows us to prove
security of 0.5-RTT messages by composition with the

record protocol.
• Unique Channel Identifier: When cid is psk ′ or H(log7),

we do not use CryptoVerif as the result is immediate: if a
client session and a server session have the same cid , then
these sessions have the same log7 by collision-resistance
of H (which implies collision-resistance of HMAC-H), so
all their parameters are equal.
When cid is ems , collision-resistance just yields that the
client and server sessions have the same log4. CryptoVerif
proves that, if a client session and a server session both
terminate successfully with the same log4, then they have
the same log7 and the same keys, so all their parameters
are equal.

We need to guide CryptoVerif in order to prove these
properties, with the following main steps. We first apply
the security of the signature under the server key skS . We
introduce tests to distinguish cases, depending on whether
the Diffie-Hellman share received by the server is a share
gx

′
from the client, and whether the Diffie-Hellman share

received by the client is the share gy generated by the
server upon receipt of gx

′
. Then we apply the random

oracle assumption on x 7→ HMAC-Hkdf0(x), replace vari-
ables that contain gx

′y with their values to make equality
tests m = gx

′y appear, and apply the gap Diffie-Hellman
assumption. At this point, the handshake secret hs is a fresh
random value. We use the properties on the key schedule
established in Appendix A to show that the other keys are
fresh random values, and apply the security of the MAC and
of the signature under the client key skC .

C. Verifying Handshakes with Pre-Shared Keys
We now analyze the handshake protocol in Figure 4, up

until the new client and server sessions are established. The
protocol begins with 0-RTT and continues on to 1-RTT.
We consider both variants of PSK-based 1-RTT, with and
without Diffie-Hellman exchange.

We ignore the ticket enckt(psk) and consider a honest
client and a honest server that initially share the pre-shared
key psk . Dishonest clients and servers may be included
in the adversary. As in the previous section, we give the
handshake keys (khc and khs ) to the adversary and ignore
handshake encryption. Certificates for the client and server
are optional, since they are already authenticated via the psk ;
we do not rely on authentication in our proofs and consider
that the adversary performs the signature and verification
operations on certificates if they occur.

The outputs of this protocol are the client early traffic
secret etsc (the derivation of the key kc from etsc is left for
the record protocol), the application traffic secrets atsc and
atss, the exporter master secret ems , and the resumption
master secret psk ′. We run CryptoVerif on our model to
obtain the following verification results:
• Key Authentication: CryptoVerif shows the same authen-

tication properties as for the handshake without pre-shared
key, assuming that both participants are uncompromised.
Notably, however, CryptoVerif cannot prove authentica-
tion of etsc. While the binder mackb(. . . ) authenticates
most of the client ClientHello message, the client



may offer several pre-shared keys and send a binder for
each of these keys. Only the binder for the pre-shared key
selected by the server is checked. Hence the adversary
may alter another of the proposed binders, yielding a
different log1 and a different etsc on the server side. This
is not a serious attack, as the record protocol will fail if
etsc does not match on the client and server sides.

• Replay Prevention: CryptoVerif proves that all the au-
thentication properties shown above are injective, thus
showing the absence of replays for atsc, atss, and ems .
However, CryptoVerif cannot prove replay protection
for the 0-RTT session key etsc, and indeed the client
ClientHello message can be replayed, yielding the
same key etsc for several sessions of the server even
though there is a single session of the client.

• Secrecy of Keys: The keys etsc, atsc, atss, ems , and
psk ′ exchanged in several protocol sessions are indistin-
guishable from independent fresh random values. Secrecy
holds both on the client side and on the server side except
that, on the server side, the keys etsc are not independent
of each other since an adversary may force the server to
accept several times the same key etsc by replaying the
client ClientHello message. We prove the secrecy of
atsc, atss, and ems on the server side as soon as the
server sends its Finished message.

• Forward Secrecy: CryptoVerif is unable to prove secrecy
of the keys when psk is compromised after the end of
the session, even assuming that hkdf-extract is a random
oracle. Secrecy obviously does not hold in this case for the
handshake without Diffie-Hellman exchange. We believe
that it still holds for the handshake with Diffie-Hellman
exchange; our failure to prove it in this case is due to the
current limitations of CryptoVerif.

• Unique Channel Identifier: We proceed as in the hand-
shake without pre-shared key. We additionally notice that,
if a client session and a server session have the same
log7, then they have the same psk . Indeed, by collision-
resistance of mac = HMAC-H, they have the same kb, so
the same es , so the same psk .

D. Verifying the Record Protocol

The third component of TLS 1.3 is the record protocol
that encrypts and decrypts messages after the new client and
server sessions have been established in Figures 2 and 4.

In our model, we assume that the client and server share
a fresh random traffic secret. We generate an encryption
key and an initialization vector (IV), and send and receive
encrypted messages using those key and IV, and a counter
that is distinct for each message. (Our model is more detailed
than the symbolic presentation given in the figures as we
consider the IV and the counter.) We also generate a new
traffic secret as specified in the key update mechanism
of TLS 1.3 Draft-18 (Section 7.2). CryptoVerif proves the
following properties automatically:
• Key and Message Secrecy: CryptoVerif proves that the

updated traffic secret is indistinguishable from a fresh
random value. It also proves that, when the adversary
provides two sets of plaintexts mi and m′i of the same

Handshake without pre-shared key

Handshake with pre-shared key

Record protocol

atsc atss psk ′

atsc atss
etsc

psk ′

updated ts

Figure 5: Structure of the CryptoVerif proof

padded length, it is unable to determine which of two
sets is encrypted, even when the updated traffic secret is
leaked.

• Message Authentication: CryptoVerif proves that, if a
message m is decrypted by the receiver with a counter c,
then the message m has been encrypted and sent by an
honest sender with the same counter c.

• Replay Prevention: The authentication property above
is injective, that is, any sent application data may be
accepted at most once by the receiver.

E. A Composite Proof for TLS 1.3 Draft-18
We compose these results using a hybrid argument (as

in [40]). Figure 5 summarizes the structure of the composi-
tion; more details are given in the full version [13].

First, we use the secrecy property of the initial handshake
to replace all session keys with independent fresh random
values. We rely on authentication and replay prevention to
show that the same replacement is performed in matching
sessions of the client and server.

Then, we use the security properties of the record protocol
using atsc and atss as traffic secrets, to obtain secrecy,
forward secrecy (with respect to the compromise of skS and
skC), authentication, and replay prevention for application
messages in both directions. The security of the record
protocol also shows that the updated traffic secrets generated
during subsequent key updates preserve these properties.

Using the key psk ′ provided by the initial handshake,
we then apply the security of the PSK-based handshake, to
obtain that the keys etsc, atsc, atss, and psk ′ provided by
this handshake are independent fresh random values. (The
forward secrecy property of the initial handshake allows us
to leak the keys skS and skC , so that the adversary can in-
deed perform the signature operations related to certificates,
as we assumed in our model of handshakes with pre-shared
keys.) We then apply the security of the record protocol to
atsc and atss, as above, for 1-RTT messages. We also apply
it to etsc for 0-RTT messages, but since the handshake does
not prevent replays for this key, the composition will not
prevent replays for messages sent under this key.

Finally, we apply the security of the PSK-based handshake
again to the newly obtained psk ′, hence obtaining composite
security for arbitrary sequences of PSK-based resumptions.



VII. REFTLS: A REFERENCE TLS 1.3 IMPLEMENTATION
WITH A VERIFIED PROTOCOL CORE

In today’s web ecosystem, TLS is used by wide variety
of client and server applications to establish secure channels
across the Internet. For example, Node.js servers are written
in JavaScript and can accept HTTPS connections using a
Node’s builtin https module that calls OpenSSL. Popular
desktop applications, such as WhatsApp messenger, are also
written in JavaScript using the Electron framework (which
combines Node.js with the Chromium rendering engine);
they connect to servers using the same https module.

Our goal is to develop a high-assurance reference imple-
mentation of TLS 1.3, called RefTLS, that can be seamlessly
used by Electron apps and Node.js servers. We want our
implementation to be small, easy to read and analyze, and
effective as an early experimental version of TLS 1.3 that
real-world applications can use to help them transition to
TLS 1.3, before it becomes available in mainstream libraries
like OpenSSL. Crucially, we want to be able to verify
the security of the core protocol code in RefTLS, and
show that it avoids both protocol-level attacks as well as
implementation bugs in its protocol state machine [12].

In this section, we describe RefTLS and evaluate its
progress towards these goals. RefTLS has been used as
a prototype implementation of TLS Draft-13 to Draft-18,
interoperating with other early TLS 1.3 libraries. Its protocol
core has been symbolically analyzed with ProVerif, and it
has been successfully integrated into Electron applications.

Flow and ProScript. RefTLS is written in Flow [32], a
typed variant of JavaScript. Static typing in Flow guarantees
the absence of a large class of classic JavaScript bugs, such
as reading a missing field in an object. Consequently, our
code looks very much like a program in a typed functional
language like OCaml or F#. We would like to verify the
security of all our Flow code, but since Flow is a fully-
fledged programming language, it has loops, mutable state,
and many other features that are hard to automatically verify.

In earlier work, we developed a typed subset of JavaScript
called ProScript [48] that was designed for writing crypto-
graphic protocol code that could be compiled automatically
to ProVerif. ProScript is also a subset of Flow and so we can
reuse its ProVerif compiler to extract symbolic models from
the core protocol code in RefTLS, if we write it carefully.

ProScript code is written defensively, in that it cannot,
even accidentally, access external libraries or extensible
JavaScript functionalities such as object instantiation, or
redefinable properties such as Array.split. These restrictions
are necessary in JavaScript where external functions can
completely redefine the behavior of all libraries and object
prototypes. The resulting style enforces syntactic scoping
and strict type checking for all variables and functions, and
disallows implicit coercions, object prototype access, and
dynamic extensions of arrays and objects.

For ease of analysis, ProScript disallows loops, recursion,
and only allows access mutable state through a well defined
table interface. These are significant restrictions, but as
we show, the resulting language is still expressive enough
to write the core composite protocol code for TLS 1.0-1.3.

Figure 6: RefTLS Architecture. The library is written in
Flow, a typed subset of JavaScript. The protocol core is
verified by translation to ProVerif. The cryptographic library,
message formatting and parsing, and the runtime framework
are trusted. The application and parts of the RefTLS library
are untrusted (assumed to be adversarial in our model).

Implementation Structure. Figure 6 depicts the architec-
ture of RefTLS and shows how it can be safely integrated
into larger, unverified and untrusted applications. At the
top, we have Node.js and Electron applications written in
JavaScript. RefTLS exposes an interface to these applica-
tions that exactly matches that of the default Node.js https
module (which uses OpenSSL), allowing these applications
to transparently use RefTLS instead of OpenSSL.

The RefTLS code itself is divided into untrusted Flow
code that handles network connections and implements
the API, a verified protocol module, written in ProScript,
and some trusted but unverified Flow code for parsing
and serializing TLS messages. All this code is statically
typechecked in Flow. The core protocol module, called
RefTLS-CORE, implements all the cryptographic operations
of the protocol. It exposes an interface that allows RefTLS
to drive the protocol, but hides all keying material and
sensitive session state within the core module. This isolation
is currently implemented via the Node module system; but
we can also exploit Electron’s multi-threading feature in
order to provide thread-based isolation to the RefTLS-CORE
module, allowing it to only be accessed through a pre-
defined RPC interface. Strong isolation for RefTLS-CORE
allows us to verify it without relying on the correctness of
the rest of the RefTLS codebase.

However, RefTLS still relies on the security and cor-
rectness of the crypto library and the underlying Electron,
Node.js, and JavaScript runtimes. In the future, we may be
able to reduce this trusted computing base by relying on
verified crypto [73], verified JavaScript interpreters [29], and
least-privilege architectures, such as ESpectro [69], which
can control access to dangerous libraries from JavaScript.

A Verified Protocol Core. In RefTLS-CORE, we develop,
implement and verify (for the first time) a composite state
machine for TLS 1.2 and 1.3 (shown in Appendix B). Each
state transition is implemented by a ProScript function that
processes a flight of incoming messages, changes the session
state, and produces a flight of outgoing messages. For



TLS 1.3 clients, these functions are get client hello,
put server hello, and put server finished;
servers use the functions put client hello, get -
server finished, and put client finished.

We then use the ProScript compiler to translate this
module into a ProVerif script that looks much like the
protocol models described in earlier sections of this paper.
(See [48] for details of the translation.) Each pure function
in ProScript translates to a ProVerif function; functions that
modify mutable state are translated to ProVerif processes
that read and write from tables. The interface of the module
is compiled to a top-level process that exposes a subset of
the protocol functions to the adversary over a public channel.

The adversary can call these functions in any order and
any number of times, to initiate connections in parallel, to
provide incoming flights of messages, and to obtain outgoing
flights of messages. The ProVerif model uses internal tables,
not accessible to the attacker, to manage state updates
between flights and preserve state invariants through the
protocol execution.

Our approach allows us to quickly obtain verifiable
ProVerif models from running RefTLS code. For example,
we were able to rapidly prototype changes to the TLS 1.3
specification between Draft-13 and Draft-18, while testing
for interoperability and analyzing the core protocol at the
same time. In particular, we extracted a model from our
Draft-18 implementation, and verified our security goals
from §III and §V with ProVerif.

We engineered the ProScript compiler to generate read-
able ProVerif models that can be modified by a protocol
analyst to experiment with different threat models. We are
working towards applying the same automated translation
approach towards CryptoVerif models. CryptoVerif syntax
differs slightly from the ProVerif syntax, yet there is ongoing
work in the CryptoVerif team to have it accept the same
source syntax as ProVerif. However, the kind of models that
are easy to verify using CryptoVerif differ from the models
that ProVerif can automatically verify, and the assumptions
on cryptographic primitives will always remain different.
Therefore, even if the source syntax is the same, we may
need to adapt our compiler to generate different models for
ProVerif and CryptoVerif.

Evaluation: Verification, Interoperability, Performance.
The full RefTLS codebase consists of about 6500 lines of
Flow code, including 3000 lines of trusted libraries (mostly
message parsing), 2500 lines of untrusted application code,
and 1000 lines of verified protocol core. From the core,
we extracted an 800 line protocol model in ProVerif and
composed it with our generic library from §II. Verifying this
model took several hours on a powerful workstation.

RefTLS implements TLS 1.0-1.3, and interoperates with
all major TLS libraries for TLS 1.0-1.2. Fewer libraries
currently implement TLS 1.3, but RefTLS participated in
the IETF Hackathon and achieved interoperability with other
implementations of Draft-14. It now interoperates with NSS
(Firefox) and BoringSSL (Chrome) for Draft-18.

By implementing Node’s https interface, we are able
to naturally integrate RefTLS within any Node or Electron

application. We demonstrate the utility of this approach by
integrating RefTLS into the Brave web browser, which is
written in Electron. We are able to intercept all of Brave’s
HTTPS requests and reliably fulfill them through RefTLS.

We benchmarked RefTLS against Node.js’s default
OpenSSL-based HTTPS stack when run against an OpenSSL
peer over TLS 1.2. In terms of computational overhead,
RefTLS is two times slower than Node’s native library,
which is not surprising since RefTLS is written in JavaScript,
whereas OpenSSL is written in C. In exchange for speed,
RefTLS offers an early implementation of TLS 1.3 and
a verified protocol core. Furthermore, in many application
scenarios, network latency dominates over crypto, so the
performance penalty of RefTLS may not be that noticeable.

VIII. DISCUSSION AND RELATED WORK

Symbolic Analysis of TLS 1.3. We symbolically analyzed
a composite model of TLS 1.3 Draft-18 with optional client
authentication, PSK-based resumption, and PSK-based 0-
RTT, running alongside TLS 1.2 against a rich threat model,
and we established a series of security goals. In summary,
1-RTT provides forward secrecy, authentication and unique
channel identifiers, 0.5-RTT offers weaker authentication,
and 0-RTT lacks forward secrecy and replay protection.

We discovered potential vulnerabilities in 0-RTT client
authentication in earlier draft versions. These attacks were
presented at the TLS Ready-Or-Not (TRON) workshop and
contributed to the removal of certificate-based 0-RTT client
authentication from TLS 1.3. The current design of PSK
binders in Draft-18 is also partly inspired by these kinds of
authentication attacks.

TLS 1.3 has been symbolically analyzed before, using the
Tamarin prover [35]. ProVerif and Tamarin are both state-of-
the-art protocol analyzers with different strengths. Tamarin
can verify arbitrary compositions of protocols by relying on
user-provided lemmas, whereas ProVerif is less expressive
but offers more automation. In terms of protocol features,
the Tamarin analysis covered PSK and ECDHE handshakes
for 0-RTT and 1-RTT in Draft-10, but did not consider 0-
RTT client certificate authentication or 0.5-RTT data. On
the other hand, they do consider delayed (post-handshake)
authentication, which we did not consider here.

The main qualitative improvement in our verification
results over theirs is that we consider a richer threat model
that allows for downgrade attacks, and that we analyze
TLS 1.3 in composition with previous versions of the
protocol, whereas they verify TLS 1.3 in isolation.

Our full ProVerif development consists of 1030 lines of
ProVerif; including a generic library incorporating our threat
model (400 lines), processes for TLS 1.2 (200 lines) and
TLS 1.3 (250 lines), and security queries for TLS 1.2 (50
lines) and TLS 1.3 (180 lines). All proofs complete in
about 70 minutes on a powerful workstation. In terms of
manual effort, these models took about 3 person-weeks for
a ProVerif expert.

Computational Proofs for TLS 1.3. We presented the
first mechanically-checked cryptographic proof for TLS 1.3,
developed using the CryptoVerif prover. We prove secrecy,



forward secrecy with respect to the compromise of long-
term keys, authentication, replay prevention (except for 0-
RTT data), and existence of a unique channel identifier for
TLS 1.3 draft-18. Our analysis considers PSK modes with
and without DHE key exchange, with and without client
authentication. It includes 0-RTT and 0.5-RTT data, as well
as key updates, but not post-handshake authentication.

Unlike the ProVerif analysis, our CryptoVerif model does
not consider compositions of client certificates and pre-
shared keys in the same handshake. It also does not account
for version or ciphersuite negotiation; instead, we assume
that the client and server only support TLS 1.3 with strong
cryptographic algorithms. The reason we limit the model
in this way is to make the proofs more tractable, since
CryptoVerif is not fully automated and requires significant
input from the user. With future improvements in the tool,
we may be able to remove some of these restrictions.

CryptoVerif is better suited to proofs than finding attacks.
Sometimes, proof failures in CryptoVerif might lead us
towards computational attacks that do not appear at the sym-
bolic level, but we did not find such attacks in our model of
TLS 1.3. We failed to prove forward secrecy for handshakes
that use both pre-shared keys and Diffie-Hellman, but this
failure is due to limitations in our tool, not due to an attack.
Our proofs required some unusual assumptions on public
values in Diffie-Hellman groups to avoid confusions between
different key exchange modes; these ambiguities are inherent
in Draft-18 but have been fixed in Draft-19, making some
of our assumptions unnecessary.

In comparison with previous cryptographic proofs of draft
versions of TLS 1.3 [40], [52], [55], our cryptographic as-
sumptions and proof structure is similar. The main difference
in this work is that our proof is mechanized, so we can easily
adapt and recheck our proofs as the protocol evolves.

Our full CryptoVerif development consists of 1895 lines,
including new definitions and lemmas for the key schedule
(570 lines), a model of the initial handshake (550 lines), a
model of PSK-based handshakes (625 lines), and a model
of the record protocol (150 lines). For different proofs, we
sometimes wrote small variations of these files, and we do
not count all those variations here. All proofs completed in
about 6 minutes. The total verification effort took about 5
person-weeks for a CryptoVerif expert.

Verifying TLS Implementations. Specifications for pro-
tocols like TLS are primarily focused on interoperability;
the RFC standard precisely defines message formats, cryp-
tographic computations, and expected message sequences.
However, it says little about what state machine these pro-
tocol implementations should use, or what APIs they should
offer to their applications. This specification ambiguity is
arguably the culprit for many implementation bugs [12] and
protocol flaws [15] in TLS.

In the absence of a more explicit specification, we ad-
vocate the need for verified reference implementations of
TLS that can provide exemplary code and design patterns on
how to deploy the protocol securely. We proposed one such
implementation, RefTLS, for use in JavaScript applications.
The core protocol code in RefTLS implements both TLS

1.2 and 1.3 and has been verified using ProVerif. However,
RefTLS is a work-in-progress and many of its trusted
components remain to verified. For example, we did not
verify our message parsing code or cryptographic libraries,
and our verification results rely on the correctness of the
unverified ProScript-to-ProVerif compiler [48].

The symbolic security guarantees of RefTLS are weaker
than those of computationally-verified implementations like
miTLS [21]. However, unlike miTLS, our analysis is fully
automated and it can quickly find attacks. The type-based
technique of miTLS requires significant user intervention
and is better suited to building proofs than finding attacks.

Other Verification Approaches. In addition to ProVerif and
CryptoVerif, there are many symbolic and computational
analysis tools that have been used to verify cryptographic
protocols like TLS. As discussed above, Tamarin [68] was
used to symbolically analyze TLS 1.3 Draft-10 [35]. Easy-
Crypt [8] has been used to develop cryptographic proofs
for various components used in TLS, including the MAC-
Encode-Encrypt construction used in the record layer [5].

Our ProScript-to-ProVerif compiler is inspired by pre-
vious works on deriving ProVerif models from F# [20],
Java [6], and JavaScript [16]. Such translations have been
used to symbolically and computationally analyze TLS
implementations [18]. An alternative to model extraction
is to synthesize a verified implementation from a verified
model; [30] shows how to compile CryptoVerif models to
OCaml and uses it to derive a verified SSH implementation.

The most advanced case studies for verified protocol
implementations use dependent type systems, because they
scale well to large codebases. Refinement types for F# have
been used to prove both symbolic [19] and cryptographic
security properties, with applications to TLS [21]. The F*
programming language [70] has been used to verify small
protocols and cryptographic libraries [73]. Similar tech-
niques have been applied to the cryptographic verification
of Java programs [53].

IX. CONCLUSION AND FUTURE WORK

TLS 1.3 is a social and technical experiment in the
collaborative design of a practical protocol with regular input
and review from the academic research community. It seeks
to reverse the traditional pattern where security analyses are
performed several years after standardization, when it may
be too late to change how implementations work. This paper
describes our contribution to this standardization effort.

We present verification results for symbolic models in
ProVerif, computational models in CryptoVerif, and a ref-
erence implementation in JavaScript of TLS 1.3 Draft-18.
There are still many features and aspects of the emerging
protocol standard that remain to be analyzed. Furthermore,
the formal connections between our ProVerif models, Cryp-
toVerif proofs, and JavaScript code are not as strong as
could be desired. We have focused on proof automation
and readable models as a pragmatic first step, but we are
working on formal proofs of correctness for our translations
from Flow to ProVerif and CryptoVerif, so that we can obtain
strong guarantees for our protocol source code.



REFERENCES

[1] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A.
Halderman, N. Heninger, D. Springall, E. Thomé, L. Valenta et al.,
“Imperfect forward secrecy: How Diffie-Hellman fails in practice,” in
ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2015, pp. 5–17.

[2] M. R. Albrecht and K. G. Paterson, “Lucky microseconds: A timing
attack on Amazon’s S2N implementation of TLS,” in EUROCRYPT,
2016, pp. 622–643.

[3] N. AlFardan, D. J. Bernstein, K. G. Paterson, B. Poettering, and
J. C. Schuldt, “On the security of RC4 in TLS,” in USENIX Security
Symposium, 2013, pp. 305–320.

[4] N. J. AlFardan and K. G. Paterson, “Lucky thirteen: Breaking the TLS
and DTLS record protocols,” in 2013 IEEE Symposium on Security
and Privacy (SP 2013), 2013, pp. 526–540.

[5] J. B. Almeida, M. Barbosa, G. Barthe, and F. Dupressoir, “Verifiable
Side-Channel Security of Cryptographic Implementations: Constant-
Time MEE-CBC,” in Fast Software Encryption (FSE), 2016, pp. 163–
184.

[6] M. Avalle, A. Pironti, R. Sisto, and D. Pozza, “The Java SPI frame-
work for security protocol implementation,” in Availability, Reliability
and Security (ARES), 2011 Sixth International Conference on, Aug
2011, pp. 746–751.

[7] N. Aviram, S. Schinzel, J. Somorovsky, N. Heninger, M. Dankel,
J. Steube, L. Valenta, D. Adrian, J. A. Halderman, V. Dukhovni,
E. Käsper, S. Cohney, S. Engels, C. Paar, and Y. Shavitt, “DROWN:
breaking TLS using SSLv2,” in USENIX Security Symposium, 2016,
pp. 689–706.

[8] G. Barthe, F. Dupressoir, B. Grégoire, C. Kunz, B. Schmidt, and P.-
Y. Strub, “EasyCrypt: A tutorial,” in Foundations of Security Analysis
and Design VII (FOSAD), ser. Lecture Notes in Computer Science.
Springer, 2014, vol. 8604, pp. 146–166.

[9] M. Bellare, “New proofs for NMAC and HMAC: Security without
collision-resistance,” in Advances in Cryptology (CRYPTO), 2006, pp.
602–619.

[10] M. Bellare, J. Kilian, and P. Rogaway, “The security of the cipher
block chaining message authentication code,” Journal of Computer
and System Sciences, vol. 61, no. 3, pp. 362–399, Dec. 2000.

[11] M. Bellare and C. Namprempre, “Authenticated encryption: Relations
among notions and analysis of the generic composition paradigm,” in
Advances in Cryptology – ASIACRYPT’00, 2000, pp. 531–545.

[12] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet,
M. Kohlweiss, A. Pironti, P.-Y. Strub, and J. K. Zinzindohoue, “A
messy state of the union: taming the composite state machines of
TLS,” in IEEE Symposium on Security & Privacy (Oakland), 2015.

[13] K. Bhargavan, B. Blanchet, and N. Kobeissi, “Verified models and
reference implementations for the TLS 1.3 standard candidate,” Inria,
Research report RR-9040, 2017.

[14] K. Bhargavan, C. Brzuska, C. Fournet, M. Green, M. Kohlweiss, and
S. Z. Béguelin, “Downgrade resilience in key-exchange protocols,”
in IEEE Symposium on Security and Privacy (Oakland), 2016, pp.
506–525.

[15] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Pironti, and P.-
Y. Strub, “Triple handshakes and cookie cutters: Breaking and fixing
authentication over TLS,” in IEEE Symposium on Security & Privacy
(Oakland), 2014, pp. 98–113.

[16] K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis, “Language-based
defenses against untrusted browser origins,” in USENIX Security
Symposium, 2013, pp. 653–670.

[17] K. Bhargavan, A. Delignat-Lavaud, and A. Pironti, “Verified contribu-
tive channel bindings for compound authentication,” in Network and
Distributed System Security Symposium (NDSS ’15), 2015.

[18] K. Bhargavan, C. Fournet, R. Corin, and E. Zălinescu, “Verified
cryptographic implementations for TLS,” ACM TOPLAS, vol. 15,
no. 1, pp. 3:1–3:32, 2012.

[19] K. Bhargavan, C. Fournet, and A. D. Gordon, “Modular verification of
security protocol code by typing,” in ACM Symposium on Principles
of Programming Languages (POPL), 2010, pp. 445–456.

[20] K. Bhargavan, C. Fournet, A. D. Gordon, and S. Tse, “Verified inter-
operable implementations of security protocols,” ACM Transactions
on Programming Languages and Systems, vol. 31, no. 1, 2008.

[21] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti,
and P.-Y. Strub, “Implementing TLS with verified
cryptographic security,” in IEEE Symposium on Secu-
rity & Privacy (Oakland), 2013. [Online]. Available:
pubs/implementing-tls-with-verified-cryptographic-security-sp13.pdf

[22] K. Bhargavan and G. Leurent, “On the practical (in-)security of 64-bit
block ciphers: Collision attacks on HTTP over TLS and OpenVPN,” in
ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2016, pp. 456–467.

[23] ——, “Transcript collision attacks: Breaking authentication in TLS,
IKE, and SSH,” in ISOC Network and Distributed System Security
Symposium (NDSS), 2016.

[24] B. Blanchet, “A computationally sound mechanized prover for se-
curity protocols,” IEEE Transactions on Dependable and Secure
Computing, vol. 5, no. 4, pp. 193–207, 2008.

[25] ——, “Automatic verification of correspondences for security pro-
tocols,” Journal of Computer Security, vol. 17, no. 4, pp. 363–434,
2009.

[26] ——, “Security protocol verification: Symbolic and computational
models,” in Principles of Security and Trust (POST), 2012, pp. 3–
29.

[27] ——, “Modeling and verifying security protocols with the applied
pi calculus and ProVerif,” Foundations and Trends in Privacy and
Security, vol. 1, no. 1–2, pp. 1–135, Oct. 2016.

[28] D. Bleichenbacher, “Chosen ciphertext attacks against protocols based
on the RSA encryption standard PKCS# 1,” in Annual International
Cryptology Conference, ser. Lecture Notes in Computer Science, vol.
1462. Springer, 1998, pp. 1–12.

[29] M. Bodin, A. Charguéraud, D. Filaretti, P. Gardner, S. Maffeis,
D. Naudziuniene, A. Schmitt, and G. Smith, “A trusted mechanised
javascript specification,” in ACM Symposium on the Principles of
Programming Languages (POPL), 2014, pp. 87–100.

[30] D. Cadé and B. Blanchet, “Proved generation of implementations from
computationally secure protocol specifications,” Journal of Computer
Security, vol. 23, no. 3, pp. 331–402, 2015.

[31] S. Chaki and A. Datta, “Aspier: An automated framework for verifying
security protocol implementations,” in 2009 22nd IEEE Computer
Security Foundations Symposium. IEEE, 2009, pp. 172–185.

[32] A. Chaudhuri, “Flow: Abstract interpretation of javascript for type
checking and beyond,” in ACM Workshop on Programming Languages
and Analysis for Security (PLAS), 2016.

[33] J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya, “Merkle-Damgård
revisited: How to construct a hash function,” in Advances in Cryptol-
ogy (CRYPTO), 2005, pp. 430–448.

[34] V. Cortier, S. Kremer, and B. Warinschi, “A survey of symbolic
methods in computational analysis of cryptographic systems,” Journal
of Automated Reasoning, vol. 46, no. 3-4, pp. 225–259, 2011.

[35] C. Cremers, M. Horvat, S. Scott, and T. van der Merwe, “Automated
analysis and verification of TLS 1.3: 0-RTT, resumption and delayed
authentication,” in IEEE Symposium on Security and Privacy (Oak-
land), 2016, pp. 470–485.

[36] I. B. Damgård, “A design principle for hash functions,” in Advances
in Cryptology–CRYPTO89, 1989, pp. 416–427.

[37] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS)
Protocol Version 1.2,” IETF RFC 5246, 2008.

[38] Y. Dodis, T. Ristenpart, J. Steinberger, and S. Tessaro, “To hash or
not to hash again? (In)differentiability results for H2 and HMAC,”
in Advances in Cryptology (Crypto), 2012, pp. 348–366.

[39] D. Dolev and A. C. Yao, “On the security of public key protocols,”
IEEE Transactions on Information Theory, vol. 29, no. 2, pp. 198–
207, 1983.

[40] B. Dowling, M. Fischlin, F. Günther, and D. Stebila, “A cryptographic
analysis of the TLS 1.3 handshake protocol candidates,” in ACM
Conference on Computer and Communications Security (CCS), 2015,
pp. 1197–1210.

[41] M. Fischlin, F. Günther, B. Schmidt, and B. Warinschi, “Key con-
firmation in key exchange: A formal treatment and implications for
TLS 1.3,” in IEEE Symposium on Security and Privacy (Oakland),
2016, pp. 452–469.

[42] M. Fischlin and F. Günther, “Multi-stage key exchange and the case of
Google’s QUIC protocol,” in ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2014, pp. 1193–1204.



[43] S. Goldwasser, S. Micali, and R. Rivest, “A digital signature scheme
secure against adaptive chosen-message attacks,” SIAM Journal of
Computing, vol. 17, no. 2, pp. 281–308, April 1988.

[44] R. Hamilton, J. Iyengar, I. Swett, and A. Wilk, “QUIC: A UDP-based
multiplexed and secure transport,” 2016, IETF Internet Draft.

[45] K. E. Hickman, “The SSL protocol,” 1995, IETF Internet Draft, https:
//tools.ietf.org/html/draft-hickman-netscape-ssl-00.

[46] T. Jager, F. Kohlar, S. Schäge, and J. Schwenk, “On the security of
TLS-DHE in the standard model,” in CRYPTO 2012, 2012, pp. 273–
293.

[47] T. Jager, J. Schwenk, and J. Somorovsky, “On the security of TLS
1.3 and QUIC against weaknesses in PKCS#1 v1.5 encryption,” in
ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2015, pp. 1185–1196.

[48] N. Kobeissi, K. Bhargavan, and B. Blanchet, “Automated verification
for secure messaging protocols and their implementations: A symbolic
and computational approach,” in IEEE European Symposium on
Security and Privacy (EuroS&P), 2017.

[49] H. Krawczyk, “Cryptographic extraction and key derivation: The
HKDF scheme,” in Advances in Cryptology (CRYPTO), 2010, pp.
631–648.

[50] ——, “A unilateral-to-mutual authentication compiler for key ex-
change (with applications to client authentication in tls 1.3),” in
ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2016, pp. 1438–1450.

[51] H. Krawczyk, K. G. Paterson, and H. Wee, “On the security of the
TLS protocol: A systematic analysis,” in CRYPTO 2013, 2013, pp.
429–448.

[52] H. Krawczyk and H. Wee, “The OPTLS protocol and TLS 1.3,” in
IEEE European Symposium on Security & Privacy (Euro S&P), 2016,
cryptology ePrint Archive, Report 2015/978.

[53] R. Küsters, T. Truderung, and J. Graf, “A framework for the cryp-
tographic verification of Java-like programs,” in IEEE Computer
Security Foundations Symposium (CSF), 2012, pp. 198–212.

[54] A. Langley, M. Hamburg, and S. Turner, “Elliptic curves for security,”
IRTF RFC 7748 https://tools.ietf.org/html/rfc7748, Jan. 2016.

[55] X. Li, J. Xu, Z. Zhang, D. Feng, and H. Hu, “Multiple handshakes
security of TLS 1.3 candidates,” in IEEE Symposium on Security and
Privacy (Oakland), 2016, pp. 486–505.

[56] R. Lychev, S. Jero, A. Boldyreva, and C. Nita-Rotaru, “How secure
and quick is QUIC? provable security and performance analyses,” in
IEEE Symposium on Security & Privacy (Oakland), 2015, pp. 214–
231.

[57] U. Maurer and B. Tackmann, “On the soundness of authenticate-then-
encrypt: formalizing the malleability of symmetric encryption,” in
ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2010, pp. 505–515.

[58] N. Mavrogiannopoulos, F. Vercauteren, V. Velichkov, and B. Preneel,
“A cross-protocol attack on the TLS protocol,” in ACM CCS, 2012.

[59] C. Meyer, J. Somorovsky, E. Weiss, J. Schwenk, S. Schinzel, and
E. Tews, “Revisiting SSL/TLS implementations: New Bleichenbacher
side channels and attacks,” in 23rd USENIX Security Symposium.
USENIX Association, 2014, pp. 733–748.

[60] B. Möller, T. Duong, and K. Kotowicz, “This POODLE bites: exploit-
ing the SSL 3.0 fallback,” https://www.openssl.org/∼bodo/ssl-poodle.
pdf, 2014.

[61] T. Okamoto and D. Pointcheval, “The gap-problems: a new class of
problems for the security of cryptographic schemes,” in Practice and
Theory in Public Key Cryptography (PKC), 2001, pp. 104–118.

[62] K. G. Paterson, T. Ristenpart, and T. Shrimpton, “Tag size does matter:
Attacks and proofs for the TLS record protocol,” in ASIACRYPT,
2011, pp. 372–389.

[63] K. G. Paterson and T. van der Merwe, “Reactive and proactive
standardisation of TLS,” in Security Standardisation Research (SSR),
2016, pp. 160–186.

[64] M. Ray, A. Pironti, A. Langley, K. Bhargavan, and A. Delignat-
Lavaud, “Transport Layer Security (TLS) session hash and extended
master secret extension,” 2015, IETF RFC 7627.

[65] E. Rescorla, M. Ray, S. Dispensa, and N. Oskov, “TLS renegotiation
indication extension,” IETF RFC 5746, 2010.

[66] E. Rescorla, “0-RTT and Anti-Replay,” https://www.ietf.org/
mail-archive/web/tls/current/msg15594.html, Mar. 2015.

[67] ——, “[TLS] PR#875: Additional Derive-Secret stage,” https://www.
ietf.org/mail-archive/web/tls/current/msg22373.html, Feb. 2017.

[68] B. Schmidt, S. Meier, C. Cremers, and D. Basin, “Automated analysis
of Diffie-Hellman protocols and advanced security properties,” in
IEEE Computer Security Foundations Symposium (CSF), 2012, pp.
78–94.

[69] D. Stefan, “Espectro project description,” 2016, https://cseweb.ucsd.
edu/∼dstefan/#projects.

[70] N. Swamy, C. Hriţcu, C. Keller, A. Rastogi, A. Delignat-Lavaud,
S. Forest, K. Bhargavan, C. Fournet, P.-Y. Strub, M. Kohlweiss, J.-
K. Zinzindohoue, and S. Zanella-Béguelin, “Dependent types and
multi-monadic effects in F*,” in ACM Symposium on Principles of
Programming Languages (POPL), 2016, pp. 256–270.

[71] M. Vanhoef and F. Piessens, “All your biases belong to us: Breaking
RC4 in WPA-TKIP and TLS,” in USENIX Security Symposium, 2015,
pp. 97–112.

[72] D. Wagner and B. Schneier, “Analysis of the SSL 3.0 protocol,” in
USENIX Electronic Commerce, 1996.

[73] J. K. Zinzindohoue, E. Bartzia, and K. Bhargavan, “A verified extensi-
ble library of elliptic curves,” in IEEE Computer Security Foundations
Symposium (CSF), 2016, pp. 296–309.

APPENDIX A.
LEMMAS ON PRIMITIVES AND ON THE KEY SCHEDULE

We show the following properties:
• mackH(m) = mack(H(m)) is an SUF-CMA (strongly

unforgeable under chosen message attacks) MAC. Indeed,
since mac = HMAC-H is a PRF, it is an SUF-CMA
MAC as shown in [10], and this property is preserved
by composition with a collision-resistant hash function.

• signskH (m) = signsk (H(m)) is an UF-CMA signature.
Indeed, sign is an UF-CMA signature, and this property is
preserved by composition with a collision-resistant hash
function.

We also prove several lemmas on the key schedule of
TLS 1.3, using CryptoVerif.
• When es is a fresh random value, e 7→ hkdf-extract(es,
e) and log1 7→ derive-secret(es, etsc, log1) are indistin-
guishable from independent random functions, and kb =
derive-secret(es, pbk, “”) and hkdf-extract(es, 0lenH())
are indistinguishable from independent fresh random val-
ues independent from these random functions.

• When hs is a fresh random value, log1 7→
derive-secret(hs, htsc, log1)‖derive-secret(hs, htss,
log1) is indistinguishable from a random function and
hkdf-extract(hs, 0lenH()) is indistinguishable from a fresh
random value independent from this random function.

• When ms is a fresh random value, the functions
log4 7→ derive-secret(ms, atsc, log4)‖derive-secret(ms,
atss, log4)‖derive-secret(ms, ems, log4) and log7 7→
derive-secret(ms, rms, log7) are indistinguishable from
independent random functions.

• When l1, l2, l3 are pairwise distinct labels and s is a fresh
random value, hkdf-expand-label(s, li, “”) for i = 1, 2, 3
are indistinguishable from independent fresh random val-
ues.

All random values considered above are uniformly dis-
tributed. We use these properties as assumptions in our proof
of the protocol. This modular approach considerably reduces
the complexity of the games that CryptoVerif has to consider.

These results suggest that the key schedule could be
simplified by replacing groups of calls to derive-secret that



Idle(skC , psk )

SentClientHello(k0c )

ReceivedServerHello(modeS[v, kex ], k
h
c , k

h
s )

(TLS 1.2 resumption)

SentClientFinished(kc, ks, psk ′)

put server finished resume 12

(TLS 1.2 full)

SentClientFinished(kc, ks)

ReceivedServerFinished(kc, ks, psk ′)

put server finished 12

put server hello done 12

(TLS 1.3)

SentClientFinished(kc, ks, psk ′)

put server finished 13

put server hello

get client hello

Figure 7: Client state machine
Idle(skS, kt)

SentServerHello(modeS[v, kex ], k
0
c , k

h
c , k

h
s )

(TLS 1.2 resumption)

ReceivedClientFinished(kc, ks, psk ′)

get server finished resume 12

(TLS 1.2 full)

SentServerHelloDone()

ReceivedClientCCS(kc, ks)

SentServerFinished(kc, ks, psk ′)

put client finished 12

put client ccs 12

get server hello done 12

(TLS 1.3)

SentServerFinished(kc, ks)

ReceivedClientFinished(kc, ks, psk ′)

put client finished 13

get server finished 13

put client hello

Figure 8: Server state machine

use the same key and log with a single call to derive-secret
that would output the concatenation of severals keys. The
same remark also holds for calls to hkdf-expand-label
that use the same key. This approach corresponds to the
usage of expansion recommended in the formalization of
HKDF [49], and would simplify the proof: some lemmas
above would no longer be needed. We would also rec-
ommend replacing ms = hkdf-extract(hs, 0lenH()) with
ms = derive-secret(hs,ms, “”): that would be more natural
since we use the PRF property of HMAC-H for this com-
putation and not the randomness extraction. If the argument
0lenH() may change in the future, then we would support
Krawczyk’s recommendation [67] of applying hkdf-extract
to the result of derive-secret(hs,ms, “”).

APPENDIX B.
REFTLS PROTOCOL STATE MACHINES

Client. The RefTLS client implements the composite state
machine shown in Figure 7 for TLS 1.3 and TLS 1.2. Each

state represents a point in the protocol where the client
is either waiting for a flight of handshake messages from
the server, or it has new session keys that it wishes to
communicate to the record layer. Each arrow is annotated
with the name of the function in RefTLS-CORE API that
implements the corresponding state transition. Each transi-
tion may involve processing a flight of incoming messages,
changing the session state, and producing a flight of outgoing
messages.

Server. The RefTLS server implements a dual state machine
for TLS 1.3 and TLS 1.2, as depicted in Figure 8. The
server decides which protocol version and key exchange the
handshake will use, and triggers the appropriate branch in
the state machine by sending a ServerHello. Like the
client, each of its state transition functions corresponds either
to a flight of messages or to a change of keys.



A Formal Model for ACME: Analyzing Domain

Validation over Insecure Channels

Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Nadim Kobeissi

To cite this version:

Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Nadim Kobeissi. A Formal Model for
ACME: Analyzing Domain Validation over Insecure Channels. [Research Report] INRIA Paris;
Microsoft Research Cambridge. 2016. <hal-01397439v2>

HAL Id: hal-01397439

https://hal.inria.fr/hal-01397439v2

Submitted on 16 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-01397439v2


A Formal Model for ACME: Analyzing Domain
Validation over Insecure Channels

Karthikeyan Bhargavan1, Antoine Delignat-Lavaud2 and Nadim Kobeissi1

1 INRIA
{karthikeyan.bhargavan, nadim.kobeissi}@inria.fr

2 Microsoft Research
antdl@microsoft.com

Abstract. Web traffic encryption has shifted from applying only to
highly sensitive websites (such as banks) to a majority of all Web re-
quests. Until recently, one of the main limiting factors for enabling HTTPS
is the requirement to obtain a valid certificate from a trusted certifica-
tion authority, a tedious process that typically involves fees and ad-hoc
key generation, certificate request and domain validation procedures. To
remove this barrier of entry, the Internet Security Research Group cre-
ated Let’s Encrypt, a new non-profit certificate authority which uses
a new protocol called Automatic Certificate Management Environment
(ACME) to automate certificate management at all levels (request, vali-
dation, issuance, renewal, and revocation) between clients (website oper-
ators) and servers (certificate authority nodes). Let’s Encrypt’s success
is measured by its issuance of over 12 million free certificates since its
launch in April 2016.
In this paper, we survey the existing process for issuing domain-validated
certificates in major certification authorities to build a security model of
domain-validated certificate issuance. We then model the ACME proto-
col in the applied pi-calculus and verify its stated security goals against
our threat model of domain validation. We compare the effective secu-
rity of different domain validation methods and show that ACME can be
secure under a stronger threat model than that of traditional CAs. We
also uncover weaknesses in some flows of ACME 1.0 and propose veri-
fied improvements that have been adopted in the latest protocol draft
submitted to the IETF.

1 Introduction

Since the dawn of HTTPS, being able to secure a public website with SSL or
TLS required obtaining a signature for the website’s public certificate from a
certificate authority [1] (CA). These certificate authorities had to be recognized
by all major operating system and browser vendors to be legitimate entities that
could attest for a reasonable link between a certificate and identity of the server
or domain it claims to represent.

For example, all major operating systems ship with Symantec’s root cer-
tificate signing key as built-in and trusted. This symbolizes a permission by



these major players for Symantec to then act as a CA, which allows Alice,
the owner of AliceShop.com, to ask Symantec to attest that some SSL cer-
tificate being served by this website is indeed identifying the legitimate server
behind AliceShop.com. After Alice pays Symantec some verification fee, Syman-
tec performs some check to verify that Alice and her web server indeed have the
authority over AliceShop.com. If successful, Symantec then signs a certificate
intended for that domain. Since the aforementioned operating systems already
trust Symantec, this trust now extends towards Alice’s certificate as being au-
thentically representative of AliceShop.com.

The security of this trust model has always relied on the responsibility and
trustworthiness of the CAs themselves, since a single malicious CA can issue
arbitrary valid certificates for any website on the Internet. Each certificate au-
thority is free to engineer different user sign-up, domain validation, certificate
issuance and certificate renewal protocols of its own design. Since these ad-hoc
protocols often operate over weak channels such as HTTP and DNS, with no
strong notion of cryptographic client authentication, most of them can be consid-
ered secure only under relatively weak threat models, reducing user credentials
to a web login, and domain validation to an email exchange.

The main guidelines controlling what type of domain validation CAs are
allowed to apply are the recommendations in the CA/Browser Forum Baseline
Requirements [2]. These requirements, which are adopted by ballot vote between
the participating organizations, cover the definition of common notions such as
domain common names (CNs), registration authorities (RAs) and differences
between regular domain validation (DV) and extended validation (EV).

These guidelines have not proven sufficient for a well-regulated and well
specified approach for domain validation: Mozilla was recently forced to remove
WoSign [3] (and its subsidiary StartSSL, both major certificate authorities) from
the certificate store of Firefox and all other Mozilla products due to a series of
documented instances that range from the CA intentionally ignoring security
best-practices for certificate issuance, to vulnerabilities allowing clients to ob-
tain a signed certificate for any website of their choosing.

The lack of a standardized protocol operating under a well-defined threat
model and with clear security goals for certificate issuance has so far prevented
a systematic treatment of CA security using well-established formal methods.

In 2015, a consortium of high-profile organizations including Mozilla and the
Electronic Frontier Foundation launched Let’s Encrypt [4], a non-profit effort
to specify, standardize and automate certificate issuance between web servers
and certificate authorities, and to provide certificate issuance itself as a free-of-
charge service. Since its launch in April 2016, Let’s Encrypt has issued more than
12 million certificates [5] and has been linked to a general increase in HTTPS
adoption across the Internet.

Let’s Encrypt also introduces ACME [6], an automated domain validation
and certificate issuance protocol that gives us for the first time a protocol that
can act as a credible target for formal verification in the context of domain vali-
dation. ACME also removes almost entirely the human element from the process



of domain validation: the subsequently automated validation and issuance of mil-
lions of certificates further increases the necessity of a formal approach to the
protocol involved.

In this paper, we formally specify, model and verify ACME using the auto-
mated protocol verifier ProVerif [7]. Against a classic symbolic protocol adver-
sary, ACME achieves most of its security goals. Notably, it prevents many more
attacks than traditional CAs through stronger cryptographic notions of user
identity, achieved through automated client signatures and strong binding be-
tween the clients identity and the validated domain. In comparison, we show that
ACME’s design allows it to resist a substantially stronger threat model than the
traditional ad-hoc protocols of other CAs that rely on bearer tokens (passwords,
cookies, authorization strings) for authentication and domain validation.

Nevertheless, we still discover issues and weaknesses in ACME’s domain val-
idation and account recovery features, potentially amounting to user account
compromise. We attempt to address in this paper what seem to be open ques-
tions regarding ACME: how does ACME compare to the existing security model
of the actual top real-world certificate authorities? How can we most fruitfully il-
lustrate and formally verify its security properties, and what can we prove about
them?

Contributions We present an outline of our contributions in this paper:

– A Survey of Existing Domain Validation Practices on Major CAs
In §2, we survey some of the most-used certificate authorities both in terms
of protocols and infrastructure. We argue that all of the top 10 traditional
CAs operate under an unrealistic threat model.

– A Threat Model for Domain Validation on the Internet In §3, we
specify a high-level threat model for traditional CAs as well as ACME. We
link this threat model to our network topology analysis in §2. In §4, We
demonstrate that ACME resists a stronger threat model than ad-hoc proto-
cols.

– Formally Specifying and Verifying ACME In §4, we formally spec-
ify the ACME protocol and verify it using ProVerif. Although ACME is
shown to be more resistant to attacks than ad-hoc CAs, we also discover
weaknesses in ACME’s domain validation and account recovery and suggest
countermeasures.

2 Current State of Domain Validation

A goal of this paper is to establish a relationship between current domain val-
idation practices in the real world and a more formal threat model on which
we base our security results. We begin by taking a closer look into the network
infrastructure, user authentication and domain validation protocols currently in
use by ad-hoc CAs.

Basing ourselves on earlier studies of Web PKIs [8,9], we chose to investigate
the domain validation mechanisms of top traditional certificate authorities due



to their high usage and relevance for web certificate issuance. With each CA, we
attempted to obtain a regular, one-year, single-domain certificate signature for
a domain name that we own.

§3.2.2.4 of the CA/Browser Forum’s Baseline Requirements allow for domain
validation to occur in ten different ways, including over postal mail and by
validating a random number over a TLS certificate. Of these methods, only
three are in popular use: validation via email, the setting of an arbitrary DNS
record, or serving some HTTP value on the target domain.

2.1 Domain Validation Mechanisms

With ad-hoc CAs, user C authenticates its identity Cpk to CA A as a simple
username/password web login, with an option for account recovery via email.
C can then request that A validate some domain Cwx ⊂ Cw. A’s flow with the
various domain validation channels proceeds thus:

– HTTP Identifier A sends to C a nonce AURIC via an HTTPS channel that
C must then advertise at some agreed-upon location under Cwx. A then
accesses Cwx using an unauthenticated, unencrypted HTTP connection to
ensure that it can retrieve AURIC . This identifier depends on honest DNS
resolution query responses and an HTTP connection that is resistant to
tampering.

– DNS Identifier A sends to C a nonce ADNSC via an HTTPS channel that C
must then advertise at some agreed-upon TXT record under the DNS records
of Cwx. A then queries Cwx’s name servers using to ensure that it can re-
trieve ADNSC . This identifier is dependent on honest DNS resolution query
responses.

– Email Identifier A sends to C a URI AURIC via email that C must then visit.
Visiting this URI satisfies A, which then issues the certificate for Cwx. This
identifier is dependent on a private email channel and honest DNS resolution
query responses.

Once one of the above identifiers succeeds in validating C’s ownership of Cwx to
A, A issues the certificate and the protocol ends.

2.2 User Authentication and Domain Validation

While CAs are required to document their certificate issuance policies in Certifi-
cate Practice Statements [10–17], a real-world survey found that these statements
are not always accurate. Most ad-hoc CAs in our study restricted their valida-
tion capabilities to that of Email Identifiers. Unlike HTTP and DNS Identifiers,
Email Identifiers effectively offer C a read -based challenge instead proof of some
write access. In §3, we discuss how Email Identifiers are the weakest available
form of identification given our threat model. In §4, we elaborate on a weakness
in ACME affecting both account recovery and domain validation. While this
weakness is also generalizable to traditional certificate authorities, ACME offers
an opportunity for a stronger fix.



CA Identifiers Email
Recovery

Public Key
Auth.

Per-CSR
Check

AlphaSSL Email 3 7 N/A

Comodo PositiveSSL Email 3 7 3

DigiCert Email 3 7 7

GeoTrust QuickSSL Email 3 7 7

GlobalSign HTTP, DNS,
Email

3 7 7

GoDaddy SSL HTTP, DNS 3 7 7

Let’s Encrypt (ACME
draft-1)

HTTP 3 3 7

Network Solutions Email 3 7 7

RapidSSL Email 3 7 3

SSL.com BasicSSL HTTP, DNS,
Email

3 7 N/A

StartCom StartSSL Email 3 3 7

Fig. 1: Popular CAs, their validation methods, whether they permit account
recovery via email, whether they allow login via a public-key based approach
(such as client certificates) and whether domain validation is carried out once
for every certificate request, even for already-validated domain names.

No CA we surveyed offered a login mechanism that was completely indepen-
dent of email. An exception almost occurs with StartSSL, which uses browser-
generated client certificates for web login, but this exception is negated by
StartSSL still allowing email-based account recovery in case of a lost certifi-
cate private key. Reliance on the security of the email channel can in many cases
be even more serious: in many surveyed CAs, simply being able to complete a
web login will allow a user to re-issue certificates for domains they had already
validated before, without any further validation.

A scan of the DNS MX and NS records of the web’s top 10,000 websites
(according to Alexa.com) [18] showed that roughly 45% of surveyed domain
names used only six DNS providers, of which CloudFlare alone had a 18% share.
Meanwhile, Let’s Encrypt’s infrastructure is hosted almost entirely on Akamai,
rendering it a centralized point of failure for ACME and ad-hoc CAs alike. While
ACME is a centralization-agnostic protocol, Let’s Encrypt operates with a fully
centralized infrastructure. A similar centralization of authority exists with email,
where the top six providers serve more than 55% of domain names surveyed, with
Google alone holding roughly 27% market share (Figure 2.)



0 1000 2000 3000 4000 5000 6000 7000

CloudFlare

Akamai

Dynect

GoDaddy

Google

DNS Made Easy

Other

(a) Name Servers.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Google

Microsoft

QQ

GoDaddy

ProofPoint

Symantec

Other

(b) Mail Servers.

Fig. 2: Povider repartition among the Alexa Top 10,000 global sites, as of October
2016. Notably, CloudFlare and Akamai also provide CDN services to domains
under their name servers, allowing them stronger control over HTTP traffic.

These results suggest that the number of actors of which the compromise
could affect traditional domain validation is significantly small. This is relevant
given how top CAs allow for account recovery, certificate re-issuance and more
with simple email-based validation.

3 A Security Model for Domain Validation

The protocols considered in this paper operate between a party C claiming to
serve and represent one or more domain names Cw (for which it wants certifi-
cates), and it is incumbent upon a certificate issuer A to verify that all domains
in Cw are indeed controlled and managed by C. User C authenticates itself to
CA A using a public key Cpk of a private identity Ck. C can then link identifiers
under Ck that prove that it manages and controls domains in Cw.

This and following sections are largely based on our full symbolic model3

of ACME and ad-hoc CA protocol and network flow, which is written in the
applied pi calculus and verified using ProVerif. Excerpts of this model are inlined
throughout.

3.1 Security Goals and Threat Model

Our security goals are straightforward: for any domain in Cw, A must not sign a
certificate for that domain unless Cpk is linked with a valid identifier that binds
C as the identity that owns and manages this domain. A domain name under
Cw is considered to be validated under Cw if an identifier for that domain can
be linked to Cpk.

The network topology, channels and actors are essentially the same for both
ACME and ad-hoc CAs. However, the manner in which these actors communi-

3 Full models available at https://github.com/Inria-Prosecco/acme-model



cate over the channels is different, and leads to different attempts to establish
the same security guarantees.

Channels Intuitively, the channels we want encapsulate the following proper-
ties:

– HTTPS Channel Intuitively a regular web channel, we treat it as a A-
authenticated duplex channel whereupon anyone can send a request to A,
only A can read this request and respond, and only the sender can read this
response.

– Strong Identifier Channels These channels must be assumed to be writable
only by C. They are therefore relevant for HTTP and DNS Identifiers.

– Weak Identifier Channel Anyone can write to this channel, but only C
can read from it. This makes it relevant for domain validation via Email
Identifiers.

DNS

HTTP

SMTP

C A
Auth(Ck, newcert(C𝑤𝑥, C𝑤𝑥csr))

HTTPS Channel

DNS Channel

HTTP Channel

SMTP Channel

Fig. 3: Channels overview.

A shared consideration between
ACME and ad-hoc CAs involves the
critical importance of DNS resolution:
if the attacker can simply produce
false DNS responses for A resolving a
domain request for any domain in Cw,
it becomes impossible to safely carry
out domain validation under any cir-
cumstances. As a sidenote, this allows
us to argue that since the DNS chan-
nel must be trusted, it could also be
considered as the safest channel on which to carry out domain validation using
DNS Identifiers since that would allow C to avoid needlessly involving other
channels.

In formally describing our network model in ProVerif, we simulate simulta-
neous requests from Alice, Bob and Mallory as independent clients C. We also
simulate two independent ACME CAs, which interchangeably assume the role
of A. For each C, we specify a triple of distinct channels:

(CHTTP , CEMAIL, CDNSTXT )

Each channel represents access to a different domain validation mechanism.
While C is given complete access over these channels, a write transformation
w(channel) → channel is applied to CEMAIL before it’s handed to A. Simi-
larly, a read transformation r(channel) → channel is applied to CHTTP and
CDNSTXT .

A routing proxy is then specified in order to model the transportation across
these channels by executing the following unbounded processes in parallel4:

4 We also specify a fully public channel named pub.



in(w(CEMAIL), x); out(r(CEMAIL), x)

in(pub, x); out(r(CEMAIL), x)

in(w(CHTTP ), x); out(pub, x); out(r(CHTTP ), x)

in(w(CDNSTXT ), x); out(pub, x); out(r(CDNSTXT ), x)

Threat Model We assume that the adversary controls parts of the network
and so can intercept, tamper with and inject network messages. As such, an
attacker could make requests for domains they do not own, intercept and delay
legitimate certificate requests, and so on. Our adversary has full access to pub,
w(CEMAIL), r(CHTTP ) and r(CHTTP ). We also publish Mallory’s channels and
Ck over pub. As such, the attacker controls a set of valid participants (e.g. M)
with their own valid identities (e.g. Mk, Mpk). The attacker may advertise any
identity for its controlled principals, including false identities, and may attempt
to obtain a certificate for domains not legitimately under Mw.

The adversary also has at his disposal certain special functions:

– poisonDnsARecord, which takes in a domain Cwx and allows the attacker
to poison its DNS records to redirect to a server owned by M . Using this
function triggers the ActiveDnsAttack(Cwx) event.

– manInTheMiddleHttp, which allows the attacker to write arbitrary HTTP
requests as if they were emitting from CHTTP by disclosing CHTTP to the
attacker. Using this function triggers the ActiveHttpAttack(Cwx) event.

3.2 Events and Queries

Queries under our model are constructed from sequences of the following events,
each callable by a particular type of actor:

– Client The client is allowed to assert that they own some domain by trig-
gering the event Owner(M,Cwx). Once C receives a certificate Cwxcert for
Cwx from A, they also trigger CertReceived(Cwx, Cwxcert , Cpk, Apk)

– Server The server (ACME instance or CA) triggers the eventHttpAuth(Cpk, Cwx),
DnsAuth(Cpk, Cwx) and EmailAuth(Cpk, Cwx) depending on the type of
domain validation used. Once A issues a certificate Cwxcert for Cwx to C,
they also trigger CertIssued(Cwx, Cwxcert , Cpk, Apk)

– Adversary As noted above, the adversary may trigger the eventsActiveDnsAttack(Cwx)
and ActiveHttpAttack(Cwx). In addition, the adversary is allowed to mas-
querade as M in order assert that they own some domain by triggering the
event Owner(Mpk, Cwx).

Queries We evaluate our model against the following queries:



Validation with DNS Identifiers We assert that if DNS validation succeeded,
then A must have been able to successfully carry out DNS validation according
to spec, or an adversary was able to instantiate an active DNS poisoning attack
(with no third possible scenario):

DnsAuth(Cpk, Cwx) =⇒ (Owner(Ck, Cwx) ∨DnsAttack(Cwx))

Validation with HTTP Identifiers We explicitly show that HTTP authentication
is weaker than DNS authentication, since it is possible under both cases of DNS
poisoning and an HTTP man-in-the-middle attack:

HttpAuth(Cpk, Cwx) =⇒ Owner(Ck, Cwx) ∨ (HttpAttack(Cwx) ∨DnsAttack(Cwx))

Predictable Certificate Issuance We attempt to verify that all received certificates
were issued by the expected CA. This query fails to verify, and leads us to the
attack we discuss in §5.2:

CertReceived(Cwx, Cwxcert , Cpk, Apk) =⇒ CertIssued(Cwx, Cwxcert , Cpk, Apk)

4 Specifying and Formally Verifying ACME

In this section we provide a formal description of the ACME protocol functional-
ity and identify three issues that affect ACME’s security. We also discuss details
of how we describe the ACME protocol flow in the applied pi calculus, so that
we can verify for certain queries using ProVerif.

4.1 ACME Network Flow

Unlike ad-hoc CAs which are limited to a web login, ACME’s authentication
depends on C generating a private value Ck and a public signing key Cpk, which
are used to generate automated client signatures throughout the protocol.

HTTP Identifier A sends to C a nonce AURIC via the HTTPS channel. C must
then advertise, at an agreed-upon location under Cwx, the value (Cpk,AURIC ).
A then accesses Cwx using an unauthenticated, unencrypted HTTP connection
to ensure that it can retrieve the intended value.

DNS Identifier Since ACME is designed to take advantage of domain validation
methods that can be automated and since DNS record management depends on
a series of ad-hoc protocols of its own between C and DNS service providers, it
is not used by ACME.

Email Identifier This identifier is only used for account recovery, and a resulting
weakness is discussed in §5.2.



Web Server

Cwx

Domain Owner

C

ACME Server

A

Knows Ck, Crk, Cpk, Cprk, Cc

Cwx ⊂ Cw

Knows Ak

Sign(Ck, (newreg, Cc, Cpk, Cprk))

Creates account for C under Cpk

Generates recovery key pair (ArkAC , AprkAC )

CrecoveryA = KDF (CZA , CHA , recovery)

AprkAC

CrecoveryA = KDF (CZA , CHA , recovery)

Sign(Ck, newauthz)

authz(AURIC)

(Cpk, AURIC )

(Cpk, AURIC )

Sign(Ck, newcert(Cwxcsr))

Generates Cwxcert based on Cwxcsr

Sign(Ak, Cwxcert)

Fig. 4: ACME draft-1 protocol functionality for C account registration, recov-
ery key generation, and validation with certificate issuance for Cwx. This chart
demonstrates validation via an HTTP identifier. In draft-3 and above, the HTTP
challenge (Cpk, AURIC ) is replaced with Sign(Ck, (Cpk, AURIC )).

4.2 ACME Protocol Functionality

In this paper we focus on draft-1 of the IETF specification for the ACME proto-
col. As of October 2016, the draft specification deployed in official Let’s Encrypt
client and server implementations is somewhere between draft-2 and draft-35.
However, draft-1 was adopted after Let’s Encrypt’s launch and for a majority of
2016. In part due to the issues we discuss in the paper and have communicated
with the ACME team, draft-3 (and subsequently draft-4) does away with some
features, most notably Account Recovery, and generally is resistant to the issues
discussed here.

Preliminaries In some parts of ACME’s protocol flow, C and A will need to
establish a number of shared secrets, each bound to a strict protocol context,
over their public keys. In ACME, this is accomplished using ANSI-X9.63-KDF:

5 https://github.com/letsencrypt/boulder/blob/master/docs/acme-divergences.md



1. C and A agree on a ECDH shared secret CZA using their respective key
pairs (Ck, Cpk) and (Ak, Apk).

2. A hashing function CHA is chosen according to the elliptic curve used to
calculate CZA : SHA256 for P256, SHA384 for P384 and SHA512 for P521.

3. ClabelA = KDF (CZA , CHA , label), with label indicating the chosen context
for this particular key’s usage.

As a protocol, ACME provides the following seven certificate management
functionalities (illustrated in Figure 4) between web server C and certificate
management authority A:

– Account Key Registration In this step, C specifies her contact information
(email address, phone number, etc.) as Cc and generates a random private
signing key Ck with (over a safe elliptic curve) a public key Cpk. A POST

request is sent to A containing Sign(Ck, (newreg, Cc, Cpk)). The newreg

header indicates to A that this is an account registration request. If A has no
prior record of Cpk being used for an account, and if the message’s signature
is valid under Cpk, A creates a new account for C using Cpk as the identifier
and responds with a success message.

– MAC-Based Account Recovery C may choose to identify an account recov-
ery secret with A. In order to do this, C generates an account recovery
key pair (Crk, Cprk) and simply includes Cprk in an optional recoverykey
field in its initial newreg message to A. A generates the complementary
(ArkAC , AprkAC ) and both parties calculate CrecoveryA using their recovery
key pairs. A communicates AprkAC in its response to C. Later, if C loses Ck,
she can ask A to re-assign her account to a new identity (Ck′ , Cpk′) by using
CrecoveryA as a key to generate a MAC of some value chosen by A.

– Contact-Based Account Recovery C can request that A send a verification
token to one of the contact methods previously specified in Cc. For example,
this could be a URI sent to an email in Cc. If C successfully opens this URI,
she becomes free to replace Cpk with a Cpk′ for some arbitrary Ck′ at A.

– Identifier Authorization C can validate its ownership of a domain Cwx in Cw

by providing one of the identifiers discussed in §3 to A. C must first request
authorization for Cwx by sending a newauthz message. A then responds with
the types of identifiers it is willing to accept in a authz message. C is then
free to use any one of the permitted identifiers to validate its ownership of
Cwx and allow A to sign certificates for it issued to C and tied to the identity
Cpk.

– Certificate Issuance and Renewal After C ties an identifier to Cwx under
Cpk, it may request that a certificate be issued for Cwx simply by requesting
one from A. Generally, A will send the signed certificate with no further
steps required. The renewal procedure is similarly straightforward.

– Certificate Revocation C may ask A to revoke the certificate for Cwx by
sending a POST message containing the certificate in question, signed under
either Cpk or the key pair for the certificate itself. C may choose which
key to use for this signature. A verifies that the public key of the key pair



signing the request matches the public key in the certificate, and that the key
pair signing the request is an account key, and the corresponding account is
authorized to act for all of the identifier(s) in the certificate.

Given this description of the ACME protocol and the threat model defined
in §3, we modeled ACME using the automated verification tool ProVerif [19]. In
our model, we involve three different candidates for C: Alice, Bob and Mallory,
and two CA candidates as A.

As a result of our automated verification process which an active attacker
over the three channels specified in §3, we were able to find the issues discussed in
§5.2. The first two are relatively minor; however, the third could lead to account
compromise in the case of contact-based account recovery, and potentially to the
issuance of false certificate signatures if email-based domain validation were to
be implemented in ACME. Furthermore, this third issue is also generalizable to
affect traditional certificate authorities, as described in §2.

4.3 Model Processes

Using the modeling conventions we established in §3 which include channels,
adversaries, actors and events, we instantiate in our ProVerif model of ACME a
top-level process that executes the following processes in parallel:

– clientAuth Run simultaneously by Alice, Bob and Mallory assuming the role
of C (with a compromised Mallory), this process registers a new account
with A and sends the queries illustrated in Figure 4. The events Owner and
CertReceived are triggered as part of this process.

– serverAuth Run simultaneously by two independent CAs assuming the role
of A, this process accepts registrations from C and follows the protocol
illustrated in Figure 4. The events HttpAuthenticated and CertIssued are
triggered as part of this process.

The processes routingProxy, poisonDnsARecord and manInTheMiddleHttp,
all described in §3, are also run in parallel with the above.

5 Analysis Results

5.1 Weaknesses in Traditional CAs

Traditional CA dependence on weak channels gives us a threat model where
real-world attacks can have a small cost and come with severe consequences.

Email Validation In ad-hoc CAs, C is generally simply sent an email containing
a URI to their email inbox, which they’re supposed to click in order to validate
for their chosen domain. Figure 5 shows an attack rendered possible by this
mechanism. A could instead, upon a validation request, redirect C’s browser to



Domain Owner

C

Attacker

V

CA Website

W

Mail Server

E

CertRequest(Cwx, Cpk)

CertRequest(Cwx,Mpk)

EmailChallenge(Cwx, n)

ReadEmail(Cwx, n)

V alidate(Cwx, n)

Cert(W,Cwx,Mpk)

Install Cert(W,Cwx,Mpk)

Read(Cert(W,Cwx,Mpk))

Fig. 5: Attack on Email Validation: Concurrent Request by Active Adversary.

a secret, nonce-based URI AURIC served to C over the HTTPS channel, and
independently mail C the value HMAC(Ahk, AURIC ) for some secret Ahk held
by A. C would need to retrieve this second value and enter it inside the page
at AURIC . This approach would largely negate the weakness discussed in §5.2,
since an attacker-induced validation email would result in an email that does
not include a value matching the URI given by A to C at the beginning of the
validation process.

Domain Owner

C

Attacker

V

CA Website

W

DNS Server

D

CertRequest(Cwx, Cpk) CertRequest(Cwx,Mpk)

DNSChallenge(Cwx, n)DNSChallenge(Cwx, n)

WriteTXT (Cwx, n)

ReadTXT (Cwx, n)

Cert(W,Cwx,Mpk)

Fig. 6: Active attack on DNS/HTTP/Email Validation when using just nonces.

Usage of Nonces Traditional CAs use random nonces with no special crypto-
graphic properties as the values that they then verify over HTTP, email or DNS.



In addition to this helping caused the attack described above, another more gen-
eral attack on nonces is shown in Figure 6 in the case of an active attacker. For
example, this attack can be used by a compromised CA website to get certificates
issued for domain Cwx by another (more reputable) CA, hence amplifying the
compromise across CAs. None of these attacks would be effective if nonces were
tied to some cryptographic properties, such as MACs or even just by deriving
them from a hash of the certificate request’s public key.

In order to avoid a similar attack, ACME draft-3 and draft-4 require that
HTTP identifiers be validated by broadcasting Sign(Ck, AURIC ) via the web
server instead of ACME draft-1’s (Cpk, AURIC ).

5.2 Weaknesses in ACME

Cross-CA Attacks on Certificate Issuance Suppose an ACME client C requests
a certificate from A, and suppose that As HTTPS private key is compromised
(or that A is malicious, or a man-in-the-middle has compromised the ACME
channel). Now, the attacker can intercept authorization and certificate requests
from C to A, and instead forward them to another ACME server A′. If A′

requests domain validation with a token T , the attacker forwards the token
to the client, who will dutifully place its account key K and token T on its
validation channel. A′ will check this token and accept the authorization and
issue a certificate that the attacker can forward to C.

This means that C asked for a certificate from A, but instead received a
certificate from A′. Moreover, it may have paid C for the service, but A′ might
have done it for free. This issue, while not critical, can be prevented if C checks
the certificate it gets to make sure it was issued by the expected CA. An alter-
native, and possibly stronger, mitigation would be for ACME to extend the Key
Authorization string to include the CAs identifier.

More generally, this issue reveals that ACME does not provide channel bind-
ing, and this appears as soon as we model the ACME HTTPS Channel. We
would have expected to model this as a mutually-authenticated channel since
the client always signs its messages with the account key. However, although the
clients signature is tunnelled inside HTTPS, the signature itself is not bound
to the HTTPS channel. This means that a message from an ACME client C to
A can be forwarded by A to a different A′ (as long as C supports both A and
A′). This kind of credential forwarding attack can be easily mitigated by chan-
nel binding. For example, ACME could rely on the Token Binding specifications
to securely bind the client signature to the underlying channel. Alternatively,
ACME could extend the signed request format to always include the servers
name or certificate-hash, to ensure that the message cannot be forwarded to
other servers.

Contact-Based Recovery Hijacking While the use of sender-authenticated chan-
nels in ACME seems to be relatively secure, more attention needs to be paid
to the receiver-authenticated channels. For example, if the ACME server uses



the website administrator’s email address to send the domain validation token,
a näıve implementation of this kind of challenge would be vulnerable to attack.

In the current specification, the contact channel (typically email) is used for
account recovery when the ACME client has forgotten its account key. We show
how the careless use of this channel can be vulnerable to attack, and propose
a countermeasure. Suppose an ACME client C issues an account recovery re-
quest for an account under Cpk with a new key Ck′ to the ACME server A.
A network attacker M blocks this request and instead sends his own account
recovery request for the account under Cpk (pretending to be C) with his own
key Mk′ . A will then send C an email asking to click on a link. C will think this
is a request in response to its own account recovery request and will click on it.
Similarly to the (slightly different) flow described in Figure 5, A will think that
C has confirmed account recovery and will transfer the account under Cpk to the
attackers key Mk′ . In the above attack, the attacker did not need to compromise
the contact channel (or for that matter, the ACME channel).

The key observation here is that on receiver-authenticated channels (e.g.
email) the receiver does not get to bind the token provided by A with its own
account key. Consequently, we need to add a further check. The email sent from
A to C should contain a fresh token in addition to Cs new account key. Instead
of clicking on the link (out-of-band), C should cut and paste the token into the
ACME client which can first check that the account key provided by A matches
the one in the ACME client and only then does it send the token back to A,
or alternatively that the email recipient at C visually confirms that the account
key (thumbprint) provided by A matches the one displayed in the ACME client.

The attack described here is on account recovery, but a similar attack appears
if we allow email-based domain validation. A malicious ACME server or man-
in-the-middle can then get certificate issued for C’s domains with its own public
key, without compromising the contact/validation channel. The mitigation for
that attack would be very similar to the one proposed above.

6 Conclusion

In this paper, we have provided the results of an empirical case study that allowed
us to describe a real-world threat model governing both traditional certificate
authorities and ACME in terms of user authentication and domain validation.
We formally modeled these protocols and provided the results of security queries
under our threat model, using automated verification. As a result of our disclo-
sures to the ACME team, the latest ACME protocol version (draft-4) has been
designed to avoid the pitfalls that make these attacks possible.

Given the weak threat model that ad-hoc CAs are expecting to survive under
and the subsequent weaknesses that we describe, we believe that there is a strong
need for either larger ACME adoption, or the improvement of the current state of
the art for ad-hoc CA domain validation mechanisms. We hope that this work
will help act as a bedrock for future formal description of domain validation
systems. We also hope to see a wider deployment of related technologies, such



as DNSSEC [20], DANE [21] and SMTPS, that help strengthen the channels
involved in domain validation protocols.

References

1. S. Chokhani, W. Ford, R. Sabett, C. Merrill, and S. Wu. Internet X.509 Public
Key Infrastructure: Certificate Policy and Certification Practices Framework. RFC
3647, Internet Engineering Task Force, November 2003.

2. CA/Browser Forum. Baseline requirements for the issuance and management of
policy-trusted certificates, v.1.1.5, May 2013.

3. Gervase Markham, Ryan Sleevi, Richard Barnes, and Kathleen Wilson. Wosign
and startcom.

4. Internet Security Research Group. Let’s encrypt overview, 2016.
5. Internet Security Research Group. Let’s encrypt statistics, 2016.
6. Richard Barnes, Jacob Hoffman-Andrews, and James Kasten. Automatic certifi-

cate management environment (acme), Jul 2016.
7. Bruno Blanchet, Ben Smyth, and Vincent Cheval. Proverif 1.90: Automatic cryp-

tographic protocol verifier, user manual and tutorial, 2014.
8. Antoine Delignat-Lavaud, Mart́ın Abadi, Andrew Birrell, Ilya Mironov, Ted Wob-

ber, Yinglian Xie, and Microsoft Research. Web pki: Closing the gap between
guidelines and practices. In NDSS, 2014.

9. Olivier Levillain, Arnaud Ébalard, Benjamin Morin, and Hervé Debar. One year of
SSL Internet measurement. In Proceedings of the 28th Annual Computer Security
Applications Conference, ACSAC ’12, pages 11–20, New York, NY, USA, 2012.
ACM.

10. Comodo CA Ltd. Comodo Certification Practice Statement. Technical report,
Comodo CA Ltd., August 2015.

11. DigiCert. DigiCert Certification Practices Statement. Technical report, DigiCert,
September 2016.

12. GeoTrust Inc. GeoTrust Certification Practice Statement. Technical report,
GeoTrust, September 2016.

13. GlobalSign CA. GlobalSign CA Certification Practice Statement. Technical report,
GlobalSign CA, August 2016.

14. Internet Security Research Group. Certification Practice Statement. Technical
report, Internet Security Research Group, October 2016.

15. Symantec Corporation. Symantec Trust Network (STN) Certification Practice
Statement. Technical report, Symantec Corporation, September 2016.

16. StartCom CA Ltd. StartCom Certificate Policy and Practice Statements. Technical
report, StartCom CA Ltd., September 2016.

17. LLC Network Solutions. Network Solutions Certification Practice Statement. Tech-
nical report, Network Solutions, LLC, September 2016.

18. Alexa Internet Inc. Top 1,000,000 sites (updated daily), 2013.
19. R. K usters and T. Truderung. Using ProVerif to analyze protocols with Diffie-

Hellman exponentiation. In IEEE Computer Security Foundations Symposium
(CSF), pages 157–171, 2009.

20. Giuseppe Ateniese and Stefan Mangard. A new approach to dns security (dnssec).
In Proceedings of the 8th ACM conference on Computer and Communications Se-
curity, pages 86–95. ACM, 2001.

21. Paul Hoffman and Jakob Schlyter. The dns-based authentication of named entities
(dane) transport layer security (tls) protocol: Tlsa. Technical report, 2012.



Automated Verification for Secure Messaging Protocols and their Implementations:
A Symbolic and Computational Approach

Nadim Kobeissi
INRIA Paris

Karthikeyan Bhargavan
INRIA Paris

Bruno Blanchet
INRIA Paris

Abstract—Many popular web applications incorporate end-to-
end secure messaging protocols, which seek to ensure that
messages sent between users are kept confidential and authen-
ticated, even if the web application’s servers are broken into
or otherwise compelled into releasing all their data. Protocols
that promise such strong security guarantees should be held up
to rigorous analysis, since protocol flaws and implementations
bugs can easily lead to real-world attacks.

We propose a novel methodology that allows protocol
designers, implementers, and security analysts to collabora-
tively verify a protocol using automated tools. The protocol
is implemented in ProScript, a new domain-specific language
that is designed for writing cryptographic protocol code that
can both be executed within JavaScript programs and auto-
matically translated to a readable model in the applied pi
calculus. This model can then be analyzed symbolically using
ProVerif to find attacks in a variety of threat models. The
model can also be used as the basis of a computational proof
using CryptoVerif, which reduces the security of the protocol
to standard cryptographic assumptions. If ProVerif finds an
attack, or if the CryptoVerif proof reveals a weakness, the
protocol designer modifies the ProScript protocol code and
regenerates the model to enable a new analysis.

We demonstrate our methodology by implementing and
analyzing a variant of the popular Signal Protocol with only
minor differences. We use ProVerif and CryptoVerif to find
new and previously-known weaknesses in the protocol and
suggest practical countermeasures. Our ProScript protocol
code is incorporated within the current release of Cryptocat,
a desktop secure messenger application written in JavaScript.
Our results indicate that, with disciplined programming and
some verification expertise, the systematic analysis of complex
cryptographic web applications is now becoming practical.

1. Introduction

Designing new cryptographic protocols is highly error-
prone; even well-studied protocols, such as Transport Layer
Security (TLS), have been shown to contain serious protocol
flaws found years after their deployment (see e.g. [1]).
Despite these dangers, modern web applications often em-
bed custom cryptographic protocols that evolve with each
release. The design goal of these protocols is typically
to protect user data as it is exchanged over the web and
synchronised across devices, while optimizing performance

for application-specific messaging patterns and deployment
constraints. Such custom protocols deserve close scrutiny,
but their formal security analysis faces several challenges.

First, web applications often evolve incrementally in an
ad hoc manner, so the embedded cryptographic protocol
is only ever fully documented in source code. Even when
protocol designers or security researchers take the time to
create a clear specification or formal model for the protocol,
these documents are typically incomplete and quickly go
out-of-date. Finally, even if the protocol itself is proved to
be secure, bugs in its implementation can often bypass the
intended security guarantees. Hence, it is not only important
to extract a model of the protocol from the source code and
analyze its security, it is essential to do so in a way that the
model can evolve as the application is modified.

In this paper, we study the protocol underlying the
Signal messaging application developed by Open Whisper
Systems. Variants of this protocol have also been deployed
within WhatsApp, Facebook Messenger, Viber, and many
other popular applications, reaching over a billion devices.
The protocol has been known by other names in the past,
including Axolotl, TextSecure (versions 1, 2, and 3), and
it continues to evolve within the Signal application under
the name Signal Protocol. Until recently, the main docu-
mentation for the protocol was its source code, but new
specifications for key components of the protocol have now
been publicly released.1

Signal Protocol has ambitious security goals; it enables
asynchronous (zero round-trip) authenticated messaging be-
tween users with end-to-end confidentiality. Each message is
kept secret even if the messaging server is compromised, and
even if the user’s long term keys are compromised, as long
as these keys are not used by the attacker before the target
message is sent (forward and future secrecy.) To achieve
these goals, Signal uses a novel authenticated key exchange
protocol (based on mixing multiple Diffie-Hellman shared
secrets) and a key refresh mechanism (called double ratch-
eting). The design of these core mechanisms in TextSecure
version 2 was cryptographically analyzed in [2] but the
protocol has evolved since then and the security of Signal as
it is currently implemented and deployed remains an open
question.

In fact, although they all implement the same core
protocol, different implementations of the Signal protocol

1. https://whispersystems.org/docs/specifications/x3dh/

1



vary in important details, such as how users are identified
and authenticated, how messages are synchronised across
devices, etc. We seek to develop and analyze one such
variant that was recently incorporated into Cryptocat, a desk-
top messaging application developed by one of the current
authors. We call this variant SP in the rest of this paper. We
develop a detailed model for SP in the applied pi calculus
and verify it using the ProVerif protocol analyzer [3] for
these security goals against adversaries in a classic Dolev-
Yao model [4]. We also develop a computational proof for
SP using the CryptoVerif prover [5]. There remains the
challenge of keeping our models up-to-date as the protocol
code evolves within Cryptocat. To this end, we design a
model extraction tool that can compile the protocol source
code to the applied pi calculus.

Signal has been implemented in various programming
languages, but most desktop implementations of Signal,
including Cryptocat, are written in JavaScript. Although
JavaScript is convenient for widespread deployability, it is
not an ideal language for writing security-critical applica-
tions. Its permissive, loose typing allows for dangerous im-
plementation bugs and provides little isolation between ver-
ified cryptographic protocol code and unverified third-party
components. Rather than trying to verify general JavaScript
programs, we advocate that security-critical components like
SP should be written in a well-behaved subset that enables
formal analysis.

We introduce ProScript (short for “Protocol Script”),
a programming and verification framework tailored specif-
ically for the implementation of cryptographic protocols.
ProScript extends Defensive JavaScript (DJS) [6], [7], a
static type system for JavaScript that was originally de-
veloped to protect security-critical code against untrusted
code running in the same origin. ProScript is syntactically
a subset of JavaScript, but it imposes a strong coding
discipline that ensures that the resulting code is amenable
to formal analysis. ProScript programs are mostly self-
contained; they cannot call arbitrary third-party libraries,
but are given access to carefully implemented (well-typed)
libraries such as the ProScript cryptographic library (PSCL).
Protocols written in ProScript can be type-checked and
then automatically translated into an applied pi calculus [8]
model using the ProScript compiler. The resulting model can
be analyzed directly through ProVerif and can be adapted
and extended to a proof in CryptoVerif. As the code evolves,
this model can be automatically refreshed to enable new
analyses and proofs, if necessary.
Contributions. We present an outline of our contributions
in this paper:
A Security Model and New Attacks. We present security
goals and a threat model for secure messaging (§ 2). As a
motivation for our verification approach, we discuss proto-
col weaknesses and implementation bugs in the messaging
protocol underlying the popular Telegram application.
Automated Model Extraction from JavaScript. We
present the ProScript compiler, which allows for the compi-
lation from a subset of JavaScript into a readable protocol

model in the applied pi calculus (§4). Model extraction
enables formal verification to keep up with rapidly changing
source code. Readable models allow the protocol analyst
to experiment with different threat models and security
goals and to test new features before including them in the
implementation.
A Symbolic Security Analysis of SP. We formalize and
analyze a variant of Signal Protocol for a series of security
goals, including confidentiality, authenticity, forward secrecy
and future secrecy, against a classic symbolic adversary (§5).
Our analysis uncovers several weaknesses, including previ-
ously unreported replay and key compromise impersonation
attacks, and we propose and implement fixes which we then
also verify.
A Computational Cryptographic Proof for SP. We present
proofs of message authenticity, secrecy and forward secrecy
for SP obtained using the CryptoVerif computational model
prover [5]. (§6)
A Verified Protocol Core for Cryptocat. We integrate our
verified protocol code into the latest version of Cryptocat2
(§7), a popular open source messaging client with thousands
of users that is developed and maintained by one of the
authors of this paper. We show how the new architecture of
Cryptocat serves to protect the verified protocol code from
bugs in the rest of the application.

2. A Security Model for Encrypted Messaging

We consider a simple messaging API as depicted below.
An initiator A can start a conversation with B by calling
startSession with long-term secrets for A and any identity
credentials it has for B. This function returns the initial con-
versation state T0. Thereafter, the initiator can call send with
a plaintext message M1 to obtain the encrypted message E1

that it needs to send on the network. Or it can call recv with
an encrypted message E2 it received (supposedly from B)
to obtain the plaintext message M2.

Tab
0 = startSession(secretsA,identityB)

Tab
1 , E1 = send(Tab

0 ,M1)
Tab
2 ,M2 = recv(Tab

1 ,E2)

The responder B uses a similar API to accept sessions and
receive and send messages:

T ba
0 = acceptSession(secretsB,identityA)

T ba
1 ,M1 = recv(T ba

0 ,E1)
T ba
2 , E2 = send(T ba

1 ,M2)

We deliberately chose a functional state-passing API with
no side-effects in order to focus on cryptographic protocol
computations, rather than the concrete details of how these
messages are sent over the network.

2.1. Threat Model

While threat models vary for different protocols, we
consider the following threats in this paper:

2. https://crypto.cat

2



• Untrusted Network We assume that the attacker con-
trols the network and so can intercept, tamper with and
inject network messages (e.g. E1, E2). Moreover, if two
messaging clients communicate via a server, we typically
treat that server as untrusted.

• Malicious Principals The attacker controls a set of valid
protocol participants (e.g. M ), for whom it knows the
long-term secrets. The attacker may advertise any identity
key for its controlled principals; it may even pretend to
own someone else’s identity keys.

• Long-term Key Compromise The attacker may compro-
mise a particular principal (e.g. A) during or after the
protocol, to obtain her long-term secrets.

• Session State Compromise The attacker may compro-
mise a principal to obtain the full session state at some
intermediate stage of the protocol (e.g. T ab

1 ).

2.2. Cryptographic Models

Traditionally, symbolic cryptographic models have been
particularly suitable for automated protocol analysis. They
ignore attacks with negligible probability and assume that
each cryptographic function is a perfect black-box. For ex-
ample, in such models, hash functions never collide and en-
cryption is a message constructor that can only be reversed
by decryption. In the computational model, cryptographic
primitives are functions over bitstrings and their security is
specified in terms of probabilities. These models are more
precise and closer to those used by cryptographers, but
usually do not lend themselves to fully automated proofs.
Generally, we will use symbolic models when we are trying
to find attacks that rely on logical flaws in the protocol and
in its use of cryptographic primitives. We will use com-
putational models when we want to build a cryptographic
proof of security, starting from standard cryptographic as-
sumptions.

2.3. Security Goals

We state a series of semi-formal security goals in terms
of our generic messaging API. We use the phrase “A sends
a message M to B” to mean that A calls Send(T,M) with
a session state T that represents a conversation between A
and B. Similarly, we say that “B receives a message M
from A” to mean that B obtained M as a result of calling
Recv(T,E) with a session T with A.

Unless otherwise specified, the following security prop-
erties assume that both A and B are honest, that is, their
long-term secrets have not been compromised. We begin
with several variants of authenticity goals:
• Message Authenticity If B receives a message M from
A, then A must have sent M to B.

• No Replays Each message received by B from A cor-
responds to a unique message sent by A. That is, the
attacker must not be able to get a single message sent by
A to be accepted twice at B.

• No Key Compromise Impersonation Even if the long-
term secrets of B are compromised, message authenticity

must hold at B. That is, the attacker must not be able to
forge a message from A to B.

Our definition of message authenticity covers integrity as
well as sender and recipient authentication. Obtaining mes-
sage authenticity also helps prevent unknown key share
attacks, where B receives a message M from A, but A
sent that message to a different intended recipient C. We
define four confidentiality goals:
• Secrecy If A sends some secret message M to B, then

nobody except A and B can obtain M .
• Indistinguishability If A randomly chooses between two

messages M0,M1 (of the same size) and sends one of
them to B, the attacker cannot distinguish (within the
constraints of the cryptographic model) which message
was sent.

• Forward Secrecy If A sends a secret message M to B
and if A’s and B’s long-term secrets are subsequently
compromised, the message M remains secret.

• Future Secrecy Suppose A sends M in a session state
T , then receives N , then sends M ′. If the session state
T is subsequently compromised, the message M ′ remains
secret.

Some protocols satisfy a weaker notion of forward se-
crecy, sometimes called weak forward secrecy, where an
attacker is not allowed to actively tamper with the protocol
until they have compromised the long-term keys [9]. Some
messaging protocols also seek to satisfy more specific au-
thenticity and confidentiality goals, such as non-repudiation
and plausible deniability. We will ignore them in this paper.

In the next section, we evaluate two secure messag-
ing applications against these goals, we find that they fail
some of these goals due to subtle implementation bugs and
protocol flaws. Hence, we advocate the use of automated
verification tools to find such attacks and to prevent their
occurrence.

3. Analyzing Real-World Messaging Protocols

Modern messaging and transport protocols share sev-
eral distinctive features [10]: for example, Signal Protocol,
SCIMP, QUIC and TLS 1.3 share a strong focus on asyn-
chronous key agreement with a minimum of round trips.
Some also guarantee new security goals such as future se-
crecy. The protocols also assume non-standard (but arguably
more user-friendly) authentication infrastructures such as
Trust-on-First-Use (TOFU). Modern messaging protocols
have several interesting features and properties that set them
apart from classic cryptographic protocols and upon which
we focus our formal verification efforts:
New Messaging Patterns. In contrast to connection-
oriented protocols, modern cryptographic protocols are con-
strained by new communication flows such as zero-round-
trip connections and asynchronous messaging, where the
peer may not even be present.
Confidentiality Against Strong Adversaries. Web messag-
ing protocols need to be robust against server compromise

3



and device theft and so seek to provide strong and novel
forward secrecy guarantees.
Weak Authentication Frameworks. Many of these pro-
tocols do not rely on public key infrastructures. Instead
they may authenticate peers on a TOFU basis or even let
peers remain anonymous, authenticating only the shared
connection parameters.
Code First, Specify Later. Unlike Internet protocols, which
are designed in committee, these protocols are first deployed
in code and hand-tuned for performance on a particular
platform. The code often remains the definitive protocol
specification.

Before outlining our verification approach for such pro-
tocols, we take a closer look at two messaging applications:
Telegram and Cryptocat.

3.1. Secret Chats in Telegram

Our first example is the “MTProto” [11] secure messag-
ing protocol used in the Telegram messaging application. We
focus on the “secret chat” feature that allows two Telegram
clients who have already authenticated themselves to the
server to start an encrypted conversation with each other.
Although all messages pass through the Telegram server,
the server is untrusted and should not be able to decrypt
these messages. The two clients A and B download Diffie-
Hellman parameters from the Telegram server and then
generate and send their public values to each other.

The key exchange is not authenticated with long-term
credentials. Instead, the two clients are expected to commu-
nicate out-of-band and compare a SHA-1 hash (truncated
to 128-bits) of the Diffie-Hellman shared secret. If two
users perform this authentication step, the protocol promises
that messages between them are authentic, confidential, and
forward secret, even if the Telegram server is compro-
mised. However this guarantee crucially relies on several
cryptographic assumptions, which may be broken either
due to implementation bugs or computationally powerful
adversaries, as we describe below.
Malicious Primes. MTProto relies on clients checking that
the Diffie-Hellman configuration (p, g) that they received
from the server is suitable for cryptographic use. The speci-
fication requires that p be a large safe prime; hence the client
must check that it has exactly 2048 bits and that both p and
(p − 1)/2 are prime, using 15 rounds of the Miller-Rabin
primality test. There are several problems with this check.
First, the server may be able to carefully craft a non-prime
that passes 15 rounds of Miller-Rabin. Second, checking
primality is not enough to guarantee that the discrete log
problem will be hard. If the prime is chosen such that it has
“low weight”, the SNFS algorithm applies, making discrete
logs significantly more practical [12]. Even if we accept that
primality checking may be adequate, it is unnecessary for
an application like Telegram, which could simply mandate
the use of well-known large primes instead [13].
Public Values in Small Subgroups. A man-in-the-middle
can send to both A and B public Diffie-Hellman values gb

and ga equal to 1 (resp. 0, resp. p − 1). Both A and B
would then compute the shared secret as gab = 1 (resp. 0,
resp. 1 or −1). Since their key hashes match, A and B think
they have a confidential channel. However, the attacker can
read and tamper with all of their messages. More generally,
MTProto relies on both peers verifying that the received
Diffie-Hellman public values do not fall in small subgroups.
This check is adequate to prevent the above attack but
could be made unnecessary if the two public values were
to be authenticated along with the shared secret in the hash
compared by the two peers.
Implementation Bugs in Telegram for Windows. The
above two weaknesses, reported for the first time in this
paper, can result in attacks if the protocol is not implemented
correctly. We inspected the source code for Telegram on dif-
ferent platforms; while most versions perform the required
checks, we found that the source code for Telegram for
Windows Phone did not check the size of the received prime,
nor did it validate the received Diffie-Hellman values against
1, 0 or p−1. We reported both bugs to the developers, who
acknowledged them and awarded us a bug bounty.

Such bugs and their consequent attacks are due to missed
security-relevant checks, and they can be found automati-
cally by symbolic analysis. For example, [14] shows how
to model unsafe (malicious) primes and invalid public keys
in ProVerif and uses this model to find vulnerabilities in
several protocols that fail to validate Diffie-Hellman groups
or public keys.

MTProto is also known to other cryptographic weak-
nesses [15], [16]. How can we be sure that there are no other
protocol flaws or implementation bugs hiding in MTProto?
Any such guarantee would require a systematic security
analysis of both the protocol and the source code against
both symbolic and computational adversaries.

3.2. A New Protocol for Cryptocat

Cryptocat is a secure messaging application that is writ-
ten in JavaScript and deployed as a desktop web applica-
tion. Earlier versions of Cryptocat implement a variant of
the OTR (Off-The-Record) messaging protocol [17] which
suffers from several shortcomings. It does not support asyn-
chronous messaging, so both peers have to be online to be
able to message each other. It does not support multiple
devices or encrypted file transfer. OTR also uses legacy
cryptographic constructions like DSA signatures and prime-
field Diffie-Hellman, which are slower and less secure than
more modern alternatives based on elliptic curves. Further-
more, Cryptocat peers did not have long-term identities and
so the authentication guarantees are weak. Early version of
Cryptocat suffered from many high-profile implementation
bugs, including the reuse of initialization vectors for file
encryption [18], bad random number generation, and a
classic JavaScript type flaw that resulted in a private key
of 255 bits being coerced into a string that held only 55
bits. Some of these implementation flaws would have been
found using a static type checker, others required deeper
analysis.

4



Figure 1: Verification Approach. A ProVerif model is auto-
matically extracted from ProScript protocol code and an-
alyzed for its security goals against a symbolic attacker.
The model is then edited by hand and extended with cryp-
tographic assumptions and intermediate lemmas to build a
computational proof that is verified by CryptoVerif.

Cryptocat was recently rewritten from scratch to upgrade
both its messaging protocol and its implementation. The
goal of this redesign was to isolate its protocol core and
replace it with a verified messaging protocol written in a
statically typed subset of JavaScript.

3.3. Towards Automated Verification

The innovative designs and unusual security guaran-
tees of secure messaging protocols demand formal security
analysis. Hand-written models with detailed cryptographic
proofs can be useful as a reference, but we observe that the
most recent analysis of Signal Protocol [2] is already out
of date, as the protocols have moved on to new versions.
Furthermore, manual cryptographic proofs often leave out
details of the protocol for simplicity and some of these
details (e.g. client authentication) may lead to new attacks.
In this paper, we advocate the use of automated verification
tools to enable the analysis of complex protocols as they
evolve and incorporate new features. Moreover, we would
also like to find protocol implementation bugs (like the ones
in previous versions of Telegram and Cryptocat) automati-
cally.

We advocate the verification approach depicted in Fig-
ure 1. The messaging application is written in JavaScript
and is broken down into a cryptographic protocol core and
untrusted application code that interact through a small well-
typed API that hides all protocol secrets within the protocol
core and only offers a simple send/receive functionality to
the application. Notably, the protocol core is written in a
domain-specific language and does not rely on any external
libraries except for a well-vetted cryptographic library. The
protocol code can be translated to an applied pi calculus
model and symbolically analyzed in ProVerif to find pro-
tocol flaws and attacks. The model can also be used as

the starting point for a cryptographic proof for the protocol
developed using CryptoVerif.

In the rest of this paper, we show how we applied this
verification methodology to systematically analyze a variant
of the Signal protocol, called SP, that is implemented in the
new version of Cryptocat.

4. ProScript: A Language for Protocol Imple-
mentation

ProScript aims to be an ideal language for reliably
implementing cryptographic protocols for web applications.
Using ProScript, a protocol designer or implementer can
implement a protocol, automatically extract a formal model
from the code, verify the model using ProVerif, and then
run the protocol code within a JavaScript web application.
The ProScript framework does not target general JavaScript
code, however existing applications can be adapted to use
ProScript for their security-critical protocol components.

Our goal is to allow the developer to go back and forth
between their protocol implementation and the ProVerif
model, in order to help understand the behavior being
illustrated, the properties being verified and how detected
attacks, if any, relate to their source code. For these rea-
sons, we pay special attention to generating models that are
optimized both for verifiability as well as readability. This
increases their utility to a human examiner who may wish
to independently expand the model to include more specific
process flows or to explore variations of the protocol against
a manually defined adversary.

Syntactically, ProScript is a subset of JavaScript that
can be naturally translated to the applied pi calculus. This
restriction produces casualties, including recursion, for
loops and extensible objects. A closer look at the ProScript
syntax shows JavaScript employed in a particular style to
bring out useful features:
Isolation. ProScript is based on Defensive JavaScript
(DJS) [6], [7], a typed subset of JavaScript which focuses
on protecting security-critical components from malicious
JavaScript code running in the same environment. DJS
imposes a strict typing discipline in order to eliminate
language-based attacks like prototype poisoning. In particu-
lar, it forbids the use of unknown external libraries as well as
calls to tamperable object methods such as .toString().
It also forbids extensible objects and arrays and prevents
any access to object prototypes. These restrictions result
in protocol implementations that are more robust and less
influenced by the runtime environment. The ProScript type-
checker builds on and extends DJS and hence, inherits both
its language restrictions and isolation guarantees.
Type Declarations and Inference. ProScript requires all
variables and functions to be declared before they are used,
hence imposing a strict scoping discipline. For example,
an expression v.x is well-typed if and only if v has been
defined, as a local or global variable, to be an object with a
property x. As an extension to the builtin types of DJS, Pro-
Script allows type declarations for commonly used protocol

5



data structures. For example, an array of 32 hexadecimal in-
tegers can be declared as a key type. The ProScript compiler
recognizes such type declarations and uses them to trans-
late the code into more concise and informative ProVerif
models. Moreover, the typechecker can automatically infer
fine-grained sub-types. For example, ProScript differentiates
between numbers declared using decimal literals (ex. 128)
and hexadecimal literals (ex. 0x80). Numbers defined using
hexadecimal are sub-typed as bytes. This feature allows us
to track how numerical values are employed in the protocol,
and prevents type coercion bugs similar to an actual bug that
we describe in §3.2, where a significant loss of entropy was
caused by a byte being coerced into a decimal value.
State-Passing Functional Style. ProScript’s syntax takes
advantage of JavaScript’s functional programming features
in order to encourage and facilitate purely functional proto-
col descriptions, which the compiler can translate into sym-
bolically verifiable, human-readable models in the applied pi
calculus. The functional style encourages the construction of
state-passing functions, leaving state modification up to the
unverified application outside of the ProScript code. The ma-
jority of a ProScript implementation tends to be a series of
pure function declarations. A small subset of these functions
is exposed to a global namespace for access by the verified
application while most remain hidden as utility functions for
purposes such as key derivation, decryption and so on. This
state-passing style is in contrast to DJS that allows direct
modification of heap data structures. The functional style of
ProScript allows protocol data structures, including objects
and arrays, to be translated to simple terms in ProVerif built
using constructors and destructors, hence avoiding the state-
space explosion inherent in the heap-based approach that is
needed to translate DJS to ProVerif [7].

4.1. ProScript Syntax

A ProScript implementation consists of a series of mod-
ules, each containing a sequence of type declarations (con-
taining constructors, assertion utilities, and type converters),
constant declarations and function declarations.
ProScript
v ::= values

x variables
n numbers
s strings
true, false booleans
undefined, null predefined constants

e ::= expressions
v values
{x1 : v1, . . . , xn : vn} object literals
v.x field access
[v1, . . . , vn] array literals
v[n] array access
Lib.l(v1, . . . , vn) library call
f(v1, . . . , vn) function call

σ ::= statements
var x;σ variable declaration

x = e;σ variable assignment
const x = e;σ constant declaration
if (v1 === v2) {σ1} else {σ2}if-then-else
return e return

γ ::= globals
const x = e constants
const f = function(x1, . . . , xn){σ}

functions
const Type_x = {. . .} user types

µ ::= γ0; . . . ; γn modules

Note that we will use the defined Lib.l notation to access
the ProScript Cryptography Library.
Operational Semantics. ProScript’s operational semantics
is a subset of JavaScript, and both run on JavaScript inter-
preters. It is tooled based on the formal semantics of Maffeis
et al. [19] and is superficially adapted for our language
subset.

4.2. ProVerif Syntax

A ProVerif script Σ is divided into two major parts:
1) ∆1. . . .∆n, a sequence of declarations which encapsu-

lates all types, free names, queries, constructors, destruc-
tors, equations, pure functions and processes. Queries
define the security properties to prove. Destructors and
equations define the properties of cryptographic primi-
tives.

2) P , the top-level process which then effectively employs
∆1. . . .∆n as its toolkit for constructing a process flow
for the protocol.

In processes, the replication !P represents an unbounded
number of copies of P in parallel. Tables store persis-
tent state: The process insert a(M1, . . . ,Mn);P inserts
the entry (M1, . . . ,Mn) in table a, and runs P . The
process get a(=M1, x2, . . . , xn) in P looks for an entry
(N1, . . . , Nn) in table a such that N1 = M1. When such
an entry is found, it binds x2, . . . , xn to N2, . . . , Nn respec-
tively and runs P . Events are used for recording that certain
actions happen (e.g. a message was sent or received), in
order to use that information for defining security properties.
Phases model a global synchronization: processes initially
run in phase 0; then at some point processes of phase 0
stop and processes of phase 1 run and so on. For instance,
the protocol may run in phase 0 and some keys may be
compromised after the protocol run by giving them to the
adversary in phase 1.
ProVerif
M ::= terms

v values
a names
f(M1, . . . ,Mn) function application

E ::= enriched terms
M return value
new a : τ ;E new name a of type τ
let x = M in E variable definition
if M = N then E1 else E2 if-then-else

6



P,Q ::= processes
0 null process
in(M,x : τ);P input x from channel M
out(M,N);P output N on channel M
let x = M in P variable definition
P | Q parallel composition
!P replication of P
insert a(M1, . . . ,Mn);P insert into table a
get a(=M1, x2, . . . , xn) in P get table entry

specified by M1

event M ;P event M
phase n;P enter phase n

∆ ::= declaration
type τ type τ
free a : τ name a
query q query q
table a(τ1, . . . , τn) table a
fun C(τ1, . . . , τn) : τ constructor
reduc forall x1 : τ1, . . . , xn : τn; f(M1, . . . ,Mn) = M

destructor
equation forall x1 : τ1, . . . , xn : τn;M = M ′

equation
letfun f(x1 : τ1, . . . , xn : τn) = E

pure function
let p(x1 : τ1, . . . , xn : τn) = P process

Σ ::= ∆1. . . .∆n.process P script

4.3. Translation

Within Σ, ProScript functions are translated into
ProVerif pure functions. Type declarations are translated
into ProVerif type declarations. Individual values, such as
strings and numbers, are declared as global constants at the
top-level scope of the ProVerif model with identifiers that
are then employed throughout the model when appropriate.
Objects and Arrays are instantiated in the model using
functions, with destructors automatically generated in order
to act as getters.

Translation Rules
Mv ::= v | {x1 : v1, . . . , xn : vn} | [v1, . . . , vn]
VJMvK→M Values to Terms
VJvK = v
VJ{x1 : v1, . . . , xn : vn}K = Obj_t(v1, . . . , vn)
VJ[v1, . . . , vn]K = Arr_t(v1, . . . , vn)

EJeK→M Expressions to Terms
EJMvK = VJMvK
EJv.xK = get_x(v)
EJv[i]K = get_i(v)
EJLib.l(v1, . . . , vn)K = Lib_l(VJv1K, . . . ,VJvnK)
EJf(v1, . . . , vn)K = f(VJv1K, . . . ,VJvnK)

SJσK→ E Statements to Enriched Terms
SJvar x;σK = SJσK
SJx = e;σK = let x = EJeK in SJσK
SJconst x = e;σK = let x = EJeK in SJσK

SJreturn vK = VJvK
SJif (v1 === v2) {σ1} else {σ2}K =

if VJv1K = VJv2K then SJσ1K else SJσ2K

FJγK→ ∆ Types and Functions to Declarations
FJconst f = function(x1, . . . , xn){σ}K =

letfun f(x1, . . . , xn) = SJσK
FJconst Type_t = {. . .}K = type t

CJµK(P )→ P Constants to Top-level Process
CJεK(P ) = P
CJconst x = e;µK(P ) = let x = EJeK in CJµK(P )

MJµK(P )→ Σ Modules to Scripts
MJµK(P ) = FJγ1K. . . .FJγnK.CJµcK(P )
where µc contains all globals const x = e in µ
and γ1, . . . , γn are the other globals of µ.

Translation Soundness. We currently do not formally prove
translation soundness, so proofs of the resulting ProVerif
model do not necessarily imply proof of the source code.
Instead, we use model translation as a pragmatic tool to
automatically generate readable protocol models faithful to
the implementation, and to find bugs in the implementation.
We have experimented with multiple protocols written in
ProScript, including OTR, SP, and TLS 1.3, and by carefully
inspecting the source code and target models, we find that
the compiler is quite reliable and that it generates models
that are not so far from what one would want to write
directly in ProVerif. In future work, we plan to prove the
soundness of this translation to get stronger positive guaran-
tees from the verification. To this end, we observe that our
source language is a simply-typed functional programming
language, and hence we should be able to closely follow the
methodology of [20].

Generating Top-Level Processes. We are also able to
automatically generate top-level ProVerif processes. Aiming
to implement this in a way that allows us to easily inte-
grate ProScript code into existing codebases, we decided
to describe top-level functions inside module.exports,
the export namespace used by modules for Node.js [21],
a popular client/server run-time for JavaScript applications
(based on the V8 engine). This makes intuitive sense:
module.exports is used specifically in order to define
the functions of a Node.js module that should be available
to the external namespace once that module is loaded, and
executing all this functionality in parallel can give us a
reasonable model of a potential attacker process. Therefore,
functions declared in this namespace will be translated into
top-level processes executed in parallel. We use ProVerif
tables in order to manage persistent state between these
parallel processes: each process fetches the current state
from a table, runs a top-level function in that state, and
stores the updated state returned by the function in the table.

7



4.4. Trusted Libraries for ProScript

Protocol implementations in ProScript rely on a few
trusted libraries, in particular, for cryptographic primitives
and for encoding and decoding protocol messages.

When deployed in Node.js or within a browser, the
protocol code may have access to native cryptographic APIs.
However, these APIs do not typically provide all mod-
ern cryptographic primitives; for example, the W3C Web
Cryptography API does not support Curve25519, which is
needed in Signal. Consequently, implementations like Signal
Messenger end up compiling cryptographic primitives from
C to JavaScript. Even if the desired primitives were available
in the underlying platform, accessing them in a hostile
environment is unsafe, since an attacker may have redefined
them. Consequently, we developed our own libraries for
cryptography and message encoding.

The ProScript Cryptography Library (PSCL) is a trusted
cryptographic library implementing a variety of modern
cryptographic primitives such as X25519, AES-CCM and
BLAKE2. All of its primitives are fully type-checked with-
out this affecting speed: in the majority of our benchmarks,
PSCL is as fast as or faster than popular JavaScript cryp-
tographic libraries like SJCL and MSR JavaScript Crypto,
which do not even benefit from defensive type checking

More crucially, PSCL functions used in ProScript code
are detected by the ProScript compiler as it produces the
applied pi model of the implementation, giving it the ability
to convert each call to a cryptographic primitive to a call
to the corresponding symbolic function in ProVerif. For
example, if the ProScript compiler sees a call to PSCL’s
X25519 implementation, it will automatically translate it to
a standard Diffie-Hellman construction in ProVerif.

5. Implementing and Verifying SP

We describe SP, a variant of Signal Protocol that closely
follows TextSecure version 3. We show how we implement
and verify this protocol in our framework.

5.1. Protocol Overview

In SP, as illustrated in Figure 2, each client publishes a
long-term Diffie-Hellman public key and a set of ephemeral
Diffie-Hellman public keys (called “pre-keys”). These keys
include both signed pre-keys, which can be reused for some
period of time, and non-signed, one-time pre-keys, which
are fresh at each session. To send a message to Bob, Alice
retrieves Bob’s long-term keys (gb3dh , gbsig ), a signed pre-
key gbs and a one-time pre-key gbo . She then chooses her
own ephemeral gae . A four-way Diffie-Hellman handshake
is accomplished using Alice and Bob’s long-term identity
keys and their short-term ephemeral keys in order to derive
the session secret S. The one-time pre-key is optional: when
there remains no available one-time pre-key, the exchange
is performed with a triple Diffie-Hellman handshake. An
encryption key, kenc, is then derived from S by Hash-
Based Key Derivation (HKDF) [22] and the message M0 is

sent encrypted under the authenticated encryption scheme
AES-GCM, with public and ephemeral keys as associated
data: ENC(k,m, ad) means that m is encrypted with k and
both the message m and the associated data ad are au-
thenticated. Subsequent messages in the conversation obtain
authentication by chaining to S via a forward-ratcheting
construction that also employs HKDF. Each sent message
includes its own newly generated ephemeral public key
and the protocol’s double ratchet key refresh mechanism
manages the key state by advancing key chaining with every
message.

SP’s forward and future secrecy goals are intended to
make it so that the compromise of Alice or Bob’s long-term
keys allows for their impersonation but not for the decryp-
tion of their messages. The use of a signed initial ephemeral
pre-key results in weaker forward secrecy guarantees for the
first flight of messages from A to B: no forward secrecy is
provided if both the long-term keys and pre-keys are leaked,
although the guarantees for subsequent flights remain strong.
If pre-keys are not signed, then the protocol only offers weak
forward secrecy with respect to long-term key leakage. We
note that the term “forward secrecy” can be confusing in
a protocol like Signal, because a number of keys are at
stake: long-term keys ((a3dh, asig), (b3dh, bsig)), signed pre-
key bs, one-time pre-key bo, ephemeral keys (ae, ae′, be′),
root keys (rkab, ckab, rk ba, ck ba) and message keys (kenc).
Any formal analysis of the protocol must precisely state
which of these keys can be compromised and when.

Differences from other versions of Signal. An earlier
version of the protocol, TextSecure Version 2, was cryp-
tographically analyzed in previous work [2]. There are two
key differences between SP and TextSecure Version 2.
Signed, Time-Based Pre-Keys. Version 2 uses a triple
Diffie-Hellman handshake with one of a hundred pre-keys
that Bob stores on the server (including a “last-resort” pre-
key). TextSecure Version 3 and all subsequent versions of
Signal, including SP, use a signed time-based pre-key, used
in conjunction with an unsigned one-time pre-key in case
it is available. Bob periodically replaces his signed pre-key
(for example, once every week), which may be re-used until
its replacement and refreshes his collection of unsigned one-
time pre-keys. In SP, when one-time pre-keys are exhausted,
no “last-resort” pre-key is used.
Stronger Identity Protection. Since Version 3, tagn is
expanded to include the long-term identities of the sender
and recipient, which is not the case in Version 2. This
provides a slightly stronger authentication guarantee in the
rare case that the encryption keys for different pairs of users
turns out to be the same.

In addition to these differences with Version 2, SP also
differs from other variants of Signal in one key aspect. In
SP, long-term identities are split into one Diffie-Hellman
key pair and one signing key pair. In Signal, the same key
pair is used for both operations, by applying an elliptic
curve conversion from the Montgomery curve-based Diffie-
Hellman key pair to obtain its twisted Edwards curve-based

8



Alice Bob

Has identity (a3dh, asig), (g
a3dh , gasig )

Knows identity (gb3dh , gbsig )
Has identity (b3dh, bsig), (g

b3dh , gbsig )
Knows identity (ga3dh , gasig )
Has signed pre-key bs, g

bs

Has one-time pre-key bo, g
bo

SIGN(bsig, g
bs), gbo

ae ∈ Zp

S = c0 | ga3dhbs | gaeb3dh | gaebs | gaebo

(rkba, ckba) ⇐ HKDF(S, c1, c2)

ae′ ∈ Zp

kshared = gae′ bs

(rkab, ckab) ⇐ HKDF(kshared , rkba, c2)
kenc ⇐ HKDF(HMAC(ckab, c3), c1, c4)

ga3dh , gasig , gae , gae′ , E0 = ENC(kenc ,M0, g
a3dh | gasig | gb3dh | gbsig | gae′ )

S = c0 | ga3dhbs | gaeb3dh | gaebs | gaebo

(rkba, ckba) ⇐ HKDF(S, c1, c2)
Delete pre-key(bo, gbo)

kshared = gae′ bs

(rkab, ckab) ⇐ HKDF(kshared , rkba, c2)
kenc ⇐ HKDF(HMAC(ckab, c3), c1, c4)
M0 ⇐ DEC(kenc , E0, g

a3dh | gasig | gb3dh | gbsig | gae′ )

be ∈ Zp

kshared = gae′ be

(rkba, ckba) ⇐ HKDF(kshared, rkab, c2)
kenc ⇐ HKDF(HMAC(ckba, c3), c1, c4)

gbe , E1 = ENC(kenc ,M1, g
b3dh | gbsig | ga3dh | gasig | gbe)

kshared = gae′ be

(rkba, ckba) ⇐ HKDF(kshared , rkab, c2)
kenc ⇐ HKDF(HMAC(ckba, c3), c1, c4)
M1 ⇐ DEC(kenc , E1, g

b3dh | gbsig | ga3dh | gasig | gbe)

Figure 2: SP, a variant of Signal with minor differences. Alice requests a signed pre-key from Bob (via the server) and
sends an initial message M0. Bob accomplishes his side of the key exchange and obtains M0. Bob later sends his reply M1,
illustrating the Axolotl ratchet post-AKE. We ignore the hash-based ratchet that occurs when two consecutive messages are
sent in the same direction. ci refers to various constants found throughout the protocol.

signing key pair equivalent. We choose to use separate keys
instead, because in our cryptographic proof, we do not
want to add a non-standard cryptographic assumption about
the use of the same key in two independent cryptographic
operations. In exchange for using standard cryptographic
assumptions, we consider the cost of adding an extra 32
byte key to the protocol to be acceptable.

5.2. Protocol Implementation

To implement SP in ProScript, we must first deconstruct
it into various protocol components: structures for managing
keys and user states, messaging functions, APIs and top-
level processes. ProScript is well-equipped to handle these

protocol components in a way that lends itself to model
extraction and verification. We break down our ProScript
SP implementation into:
Types for State and Key Management. ProScript’s type
declaration syntax can be used to declare types for individual
elements such as encryption keys but also for collections of
elements such as a conversation party’s state. These declara-
tions allow for the construction of common data structures
used in the protocol and also makes their management and
modification easier in the extracted ProVerif models.
Messaging Interface. The ProScript implementation ex-
poses the generic messaging API in a single global object.
All interface access provides purely state-passing function-
ality.

9



Goals Messages Parties Roles Time
Secrecy 1 A, B One 00h.04m.07s.
Secrecy 1 A, B Two 00h.11m.17s.
Indist. 1 A, B One 02h.06m.15s.
Authen. 1 A, B, M One 00h.58m.19s.
Authen. 1 A, B, M Two 29h.17m.39s.
Fo. Se. 1 A, B One 00h.04m.14s.
KCI 1 A, B One 00h.19m.20s.

Figure 3: Verification times for SP ProVerif models.

Long-Term and Session States. Protocol functions take
long-term and session states (Sa, T ab

n ) as input and return
T ab
n+1. Sa contains long-term values such identity keys,

while T includes more session-dependent values such as
ephemerals, containing the current ephemeral and chain-
ing keys for the session context and status, indicating
whether the application layer should perform a state update.
Internal Functions. Utility functionality, such as key
derivation, can also be described as a series of pure functions
that are not included in the globally accessible interface.
Top-Level Process. A top-level process can serve as a
harness for testing the proper functioning of the protocol
in the application layer. Afterwards, when this top-level
process is described in the extracted ProVerif model, the
implementer will be able to use it to define which events
and security properties to query for.
Inferred Types in ProScript. ProScript type declarations
allow for the easier maintenance of a type-checkable proto-
col implementation, while also allowing the ProScript com-
piler to translate declared types into the extracted ProVerif
model. Defining a key as an array of 32 bytes will allow
the ProScript compiler to detect all 32 byte arrays in the
implementation as keys and type their usage accordingly.

5.3. Protocol Verification

We use ProVerif to verify the security goals of our
extracted model by defining defining queries that accurately
test the resilience of security properties against an active ad-
versary. Under an active Dolev-Yao adversary, ProVerif was
able to verify confidentiality, authenticity, forward secrecy
and future secrecy for Alice and Bob initializing a session
and exchanging two secret messages, with a compromised
participant, Mallory, also being allowed to initialize sessions
and exchange non-secret messages with Alice and Bob.
Our analysis revealed two novel attacks: a key compromise
impersonation attack and a replay attack, for which we
propose a fix. Aside from these attacks, we were also able
to model the previously documented Unknown Keyshare
Attack [2].

Extracts of our compiled SP implementation are avail-
able online [23]. Models begin with type declarations

followed by public constant declarations, equational rela-
tionships for cryptographic primitives, protocol functions,
queries and relevant names and finally the top-level process
with its associated queries.

The top-level process queries for security properties such
as confidentiality, authenticity and forward secrecy between
two roles: an initiator (e.g. Alice) who sends an initial mes-
sage and thereby initializes an authenticated key exchange,
and a responder (e.g. Bob) who receives the message and
who may send a response. Some models include a third
compromised identity, Mallory, who also communicates
with Alice and Bob but while leaking her private keys to
the attacker beforehand. In some instances, we also model
parallel process executions where each identity (Alice, Bob
and optionally Mallory) assumes both the role of the initiator
and the responder. We informally call this latter scenario a
“two-way role” model.
Secrecy and Indistinguishability. For every message con-
sidered in our protocol model, we define a secret constant
Mn where M1 is the initial message in a session. These
secret values are then used as the plaintext for the encrypted
messages sent by the principals. We show that an active
attacker cannot retrieve a message’s plaintext Mn using the
query:

query(attacker(Mn)) (1)

Similarly, we show indistinguishability using the query
query(noninterf(Mn)).
Forward and Future Secrecy. We examine forward and
future secrecy in Signal Protocol in multiple scenarios:
the compromise of long-term keys and the compromise of
message keys in two different types of message flights. In
these scenarios, we need to model that keys are leaked after
sending or receiving certain messages. We rely on ProVerif
phases for that: intuitively, t represents a global clock, and
processes occurring after the declaration of a phase t are
active only during this phase.

We show that message M1 remains secret by query (1)
even if the long-term keys (a3dh, asig, b3dh, bsig) are leaked
after sending M1. Furthermore, we can modify our ProVerif
model to produce a sanity check: if responder Bob skips
the signature check on gas , ProVerif shows that an active
attacker becomes capable of violating this forward secrecy
property.

Next, we examine two different messaging patterns in
the Double Ratchet algorithm and find that they approach
forward and future secrecy differently:
• Single-Flight Pattern. In this scenario, Alice sends Bob

a number of messages Mn and Mn+1 where n > 1 and
does not receive a response. In this scenario, Bob’s lack of
response does not allow Alice to obtain a fresh ephemeral
key share gbe required to establish a new kshared in T ab

n+1

to be used for Mn+1, so Alice just updates the key ckab by
hashing it. If Alice’s session state T ab

n+1, (which, recall,
contains ae

n+1 and (rkab, ckab) for Mn+1), is leaked,
then Mn remains secret (forward secrecy). Obviously, to
take advantage of this property in case of compromise,

10



the keys (rkab, ckab) for Mn must have been appropriately
deleted, which is delicate when messages are received out-
of-order: if Mn1

, . . . ,Mnk
(n1 < . . . < nk) have been

received, the receiver should keep the chaining key ckab
for Mnk+1 and the encryption keys kenc for the messages
Mi not received yet with i < nk. If T ab

n is leaked, then
Mn+1 is not secret, so no future secrecy is obtained.

• Message-Response Pattern. In this scenario, Alice sends
Bob a single message Mn where n > 1 and receives
a response Mn+1 before sending Mn+2. Upon receiving
Mn+1, Alice will be able to derive a fresh kshared =
gae

n+2be
n+1

. As a result, if T ab
n+2 is leaked, then Mn

remains secret (forward secrecy) and if T ab
n is leaked

after Mn+1 is received, then Mn+2 remains secret (future
secrecy).

Message Authenticity. Signal Protocol relies on a Trust-
on-First-Use (TOFU) authentication model: Alice assumes
that Bob’s advertised identity key is authenticated and un-
tampered with and employs it as such until an event causes
the trust of the key to be put in question, such as a sudden
identity key change or an out of band verification failure.
We model TOFU by embedding Alice and Bob’s identity
keys into each other’s initial states. We are then free to
model for message authenticity: informally, if B receives a
message M from A, we want A to have sent M to B. In
ProVerif, we can specify two events: Send(A,B,M), which
means that A sends M to B and Recv(A,B,M), which
means that B receives M from A. We can then formalize
the correspondence

event(Recv(A,B,M)) =⇒ event(Send(A,B,M)) (2)

which checks if for all Recv(A,B,M) events, it must be the
case that a Send(A,B,M) event has also been executed.

ProVerif succeeds in proving correspondence (2) using
public keys A and B. While this implies the desired property
when the relation between the public keys and the identity
of the principals is bijective, a limitation of this approach
is that the identities of the principals are only expressed in
terms of keys and not as a more personally-linked element,
such as for example a phone number. Therefore, we cannot
formally express stronger identity binding as part of the
protocol model. This point leads to the Unknown Key Share
Attack first reported for Signal Protocol Version 2 [2]: if an
adversary can register the public keys (gb3dh , gbsig ) of B as
public keys of C and A sends a message to C, then C can
forward this message to B and B will accept it as coming
from A, since B and C have the same public keys.
No Replays. This property is similar to message authen-
ticity, but uses an injective correspondence instead, which
means that each execution of Recv(A,B,M) corresponds
to a distinct execution of Send(A,B,M):

inj-event(Recv(A,B,M)) =⇒ inj-event(Send(A,B,M))

When a optional one-time pre-key is involved in the initial
session handshake, ProVerif shows that the injective corre-
spondence holds for the first message in the conversation.
However, when this optional one-time pre-key is not used, a

replay attack is detected. Signal Protocol Version 3 will ac-
cept a Diffie-Hellman handshake that only employs identity
keys and signed pre-keys, both of which are allowed to be
reused across sessions. This reuse is what makes a replay
attack possible. We propose a fix for this issue by having
clients keep a cache of the ephemeral keys used by the
sender of received messages, associated with that sender’s
identity key. We are able to expand our event queries in
ProVerif to account for this fix by showing the non-injective
correspondence of the Send and Recv events with added
ephemeral keys. Coupled with a caching of ephemeral keys,
we can ensure that the Recv event is only executed once
per ephemeral key. Hence, the injective correspondence is
implied by the non-injective correspondence.
Key Compromise Impersonation (KCI). We present a
novel key compromise impersonation attack: to detect KCI,
we consider a scenario in which Alice or Bob’s keys
are compromised and test again for authenticity of mes-
sages received by the compromised principal. When Alice
or Bob’s long-term secret key is compromised, ProVerif
shows that message authenticity still holds. However, when
Bob’s signed pre-key is also compromised, ProVerif finds
an attack against message authenticity. This is a novel
key compromise impersonation attack: when the adversary
has Bob’s signed pre-key s, he can choose x and x′ and
compute the session keys using Alice’s and Bob’ public
keys (ga3dh , gasig ) and (gb3dh , gbsig ) and Bob’s one time
pre-key go and send his own message in Alice’s name. This
message is accepted by Bob as if it came from Alice: the
event Recv(A,B,M) is executed without having executed
Send(A,B,M).
Integrating Symbolic Verification into the Development
Cycle. Human-readability of the automatically compiled
ProVerif model is key to our verification methodology. In
the case of a query failure, users can opt to modify their
implementation and recompile into a new model, or they
can immediately modify the model itself and re-test for
security queries within reasonable model verification times.
For example, if an implementer wants to test the robustness
of a passing forward secrecy query, they can disable the
signature verification of signed pre-keys by changing a
single line in the model, causing the client to accept any
pre-key signature.

6. Cryptographic Proofs with CryptoVerif

To complement the results obtained in the symbolic
model using ProVerif, we use the tool CryptoVerif [5] in
order to obtain security proofs in the computational model.
This model is much more realistic: messages are bitstrings;
cryptographic primitives are functions from bitstrings to
bitstrings; the adversary is a probabilistic Turing machine.
CryptoVerif generates proofs by sequences of games [24],
[25], like those written manually by cryptographers, auto-
matically or with guidance of the user.

The computational model is more realistic, but it also
makes it more difficult to mechanize proofs. For this reason,

11



CryptoVerif is less flexible and more difficult to use than
ProVerif, and our results in the computational model are
more limited. We model only one message of the protocol
(in addition to the pre-keys), so we do not prove properties
of the ratcheting algorithm. Considering several data mes-
sages exceeds the current capabilities of CryptoVerif—the
games become too big.

Rather than directly using models generated from our
ProScript code, we manually rewrite the input scripts of
CryptoVerif, for two main reasons:
• The syntax of the protocol language of CryptoVerif differs

slightly from that of ProVerif. We plan to overcome
this difficulty in the future by modifying the syntax of
CryptoVerif so that it is compatible with ProVerif.

• The kinds of models that are easy to verify using Cryp-
toVerif differ from those that are easy for ProVerif; there-
fore, even if the source syntax were the same, we would
still need to adapt our compiler to generate specialized
models that would be more conducive to CryptoVerif’s
game-based proofs.

6.1. Assumptions

We make the following assumptions on the crypto-
graphic primitives:
• The elliptic curve Ec25519 satisfies the gap Diffie-

Hellman (GDH) assumption [26]. This assumption means
that given g, ga, and gb for random a, b, the adversary
has a negligible probability to compute gab (computational
Diffie-Hellman assumption), even when the adversary has
access to a decisional Diffie-Hellman oracle, which tells
him given G,X, Y, Z whether there exist x, y such that
X = Gx, Y = Gy, and Z = Gxy. When we consider
sessions between a participant and himself, we need the
square gap Diffie-Hellman variant, which additionally
says that given g and ga for random a, the adversary has
a negligible probability to compute ga

2

. This assumption
is equivalent to the GDH assumption when the group has
prime order [27], which is true for Ec25519 [28]. We also
added that xy = x′

y implies x = x′ and that xy = xy
′

implies y = y′, which hold when the considered Diffie-
Hellman group is of prime order.

• Ed25519 signatures, used for signing pre-keys, are un-
forgeable under chosen-message attacks (UF-CMA) [29].

• The functions

x1, x2, x3, x4 7→ HKDF(x1‖x2‖x3‖x4, c1, c2)

x1, x2, x3 7→ HKDF(x1‖x2‖x3, c1, c2)

x, y 7→ HKDF(x, y, c2)

x 7→ HKDF(x, c1, c4)

are independent random oracles, where x, y, x1, x2,
x3, x4, and c1 are 256-bit long. We further justify this
assumption in the full version of this work [23]: there, we
show that these functions are indifferentiable [30] from in-
dependent random oracles, assuming that the compression
function underlying SHA256 is a random oracle. (The

considered HKDF function [22] is defined from HMAC-
SHA256, which is itself defined from SHA256.)

• HMAC-SHA256 is a pseudo-random function (PRF) [31].
This assumption is used for HMAC(ckab, ·) and
HMAC(ck ba, ·).

• The encryption scheme ENC, which is AES-GCM, is
a secure authenticated encryption with associated data
(AEAD). More precisely, it is indistinguishable under cho-
sen plaintext attacks (IND-CPA) and satisfies ciphertext
integrity (INT-CTXT) [32], [33].

CryptoVerif provides a library that predefines the most com-
mon cryptographic assumptions, so that the user does not
have to write them for each protocol. In our work, we had to
adapt these predefined assumptions to our specific needs: the
GDH assumption is predefined, but the square GDH variant
is not; unary random oracles are predefined, but we also
needed binary, ternary, and 4-ary ones; predefined PRFs,
SUF-CMA MACs, and IND-CPA encryption schemes use a
key generation function, while in our schemes the key is a
plain random bitstring, without a key generation function.
Adapting the definition of primitives did not present any
major difficulty. As mentioned in § 5.1, we had to make
one modification to the original Signal Protocol, for it to
be provable in the computational model: we use different
keys for the elliptic curve Diffie-Hellman and elliptic curve
signatures. It is well-known that using the same keys for
several cryptographic primitives is undesirable, as proving
security requires a joint security assumption on the two
primitives in this case. Therefore, we assume each protocol
participant to have two key pairs, one for Diffie-Hellman
and one for signatures. This problem remains undetected in
a symbolic analysis of the protocol.

6.2. Protocol Model

We model SP as a process in the input language of
CryptoVerif, which is similar to the one of ProVerif. We
consider simultaneously the protocol of Figure 2 and the
version without the optional one-time pre-key bo. As men-
tioned above, we consider only one message in each session.
Our threat model includes an untrusted network, malicious
principals, and long-term key compromise, as mentioned in
§ 2. It does not include session state compromise, which is
less useful with a single message.

At a high level, we use the same messaging API as in
§ 2. However, to make verification easier for CryptoVerif,
we specify a lower-level interface. We consider two honest
principals Alice and Bob, and define separate processes for
Alice interacting with Bob, with herself, or with a malicious
participant, Bob interacting with Alice, and Bob interacting
with himself or a malicious participant, as well as similar
processes with the roles of Alice and Bob reversed. The
adversary can then implement the high-level interface of § 2
from this lower-level interface: the adversary is supposed to
implement the malicious principals (including defining keys
for them) and to call the low-level interface processes to run
sessions that involve the honest principals Alice and Bob.

12



We make two separate proofs: In the first one, we prove
the security properties for sessions in which Bob generates
pre-keys and runs the protocol with Alice. (Other protocol
sessions exist in parallel as described above; we do not prove
security properties for them. For sessions for which we do
not prove security properties, we give to the adversary the
ephemeral a′e and the key rk ba or rk ba and let the adversary
encrypt and MAC the message himself, to reduce the size
of our processes.) In the second one, we prove the security
properties for sessions in which Alice generates pre-keys
and runs the protocol with herself. Bob is included in the
adversary in this proof. The security for sessions in which
Alice generates pre-keys and runs the protocol with Bob
follows from the first proof by symmetry. The security for
sessions in which Bob generates pre-keys and runs the pro-
tocol with himself follows from the second proof. The other
sessions do not satisfy security properties since they involve
the adversary. (They must still be modeled, as they could
break the protocol if it were badly designed.) Therefore,
these two proofs provide all desired security properties.

6.3. Security Goals

We consider the following security goals from § 2:
Message Authenticity, No Replays, and Key Compromise
Impersonation (KCI). These properties are modeled by
correspondences as in ProVerif (§ 5.3). For key compromise
impersonation, we consider the compromise of the long-
term Diffie-Hellman and signature keys of Bob, and prove
again message authenticity. We do not consider the compro-
mise of the signed pre-key since we already know from the
symbolic analysis that there is an attack in this case.
Computational Indistinguishability. If A randomly
chooses between two messages M0, M1 of the same length
and sends one of them to B, then the adversary has a neg-
ligible probability of guessing which of the two messages
was sent. In our model, this is formalized by choosing a
random bit secb ∈ {0, 1}; then A sends message Mb to B,
and we show that the bit secb remains secret, with the query
secret secb.
Forward Secrecy. This is proved exactly like indistin-
guishability, but with an additional oracle that allows the
adversary to obtain the secret keys of the principals, thus
compromising them.

We do not consider future secrecy since we have a single
message. We do not consider secrecy since we directly deal
with the stronger property of indistinguishability.

6.4. Results

CryptoVerif proves message authenticity, absence of
key compromise impersonation attacks (when the long-
term keys of Bob are compromised), indistinguishability,
and forward secrecy, but cannot prove absence of replays.
This is due to the replay attack mentioned in § 5.3. Since
this attack appears only when the optional one-time pre-
key is omitted, we separate our property into two: we use

Goals Parties Running Time
Forward Secrecy A, B, M 3 min. 58 sec.
Forward Secrecy A, M 7 min. 04 sec.
KCI A, B, M 3 min. 15 sec.
Others A, B, M 4 min. 15 sec.
Others A, M 3 min. 35 sec.

Figure 4: Verification times for SP CryptoVerif models,
without anti-replay countermeasure. The runtimes with the
anti-replay countermeasure are of the same order of magni-
tude. Tested using CryptoVerif 1.24.

MA

Trusted
Messaging 

Protocol Process 
Thread

(ProScript)

Untrusted
Main 

Network 
Process 
Thread

(JavaScript)

Internet

Untrusted Chat Window 
Process Threads
(JavaScript)

MA

PA = Decrypt(MA)RenderMsg(PA)

PB

MB = Encrypt(PB)

MB

PB

Verified 
Protocol

Keys & 
State

1
2

3
4

5
6

7

8

Figure 5: Cryptocat Architecture: isolating verified and un-
trusted components in Electron apps within separate pro-
cesses.

events Send(A,B,M) and Recv(A,B,M) for the proto-
col with optional pre-key and events Send3(A,B,M) and
Recv3(A,B,M) for the protocol without optional pre-key.
CryptoVerif then proves

inj-event(Recv(A,B,M)) =⇒ inj-event(Send(A,B,M))

event(Recv3(A,B,M)) =⇒ event(Send3(A,B,M))

which proves message authenticity and no replays when the
one-time pre-key is present and only message authenticity
when it is absent. This is the strongest we can hope for the
protocol without anti-replay countermeasure.

With our anti-replay countermeasure (§5.3), CryptoVerif
can prove the absence of replays, thanks to a recent ex-
tension that allows CryptoVerif to take into account the
replay cache in the proof of injective correspondences,
implemented in CryptoVerif version 1.24. Our CryptoVerif
proofs have been obtained with some manual guidance: we
indicated the main security assumptions to apply, instructed
CryptoVerif to simplify the games or to replace some vari-
ables with their values, to make terms such as ma = mb

appear. The proofs were similar for all properties.

7. A Verified Protocol Core for Cryptocat

We now describe how we can rewrite Cryptocat to
incorporate our ProScript implementation of SP. We de-
construct the Cryptocat JavaScript code into the following
components, as advocated in Figure 1.

13



1) Unverified JavaScript Application This component,
which comprises the majority of the code, manages the
user’s state, settings, notifications, graphical interface and
so on. It is connected to the protocol only via the ability
to call exposed protocol functions (as documented in
§ 2.1). We adopt certain assumptions regarding the unver-
ified JavaScript application, for example that it will not
modify the protocol state outside of passing it through
the protocol implementation interface.

2) Verified Protocol Implementation This component is
written in ProScript and resides in a separate namespace,
functioning in a purely state-passing fashion. Namely, it
does not store any internal state or make direct network
calls. This implementation is type-checked, and automat-
ically verified every time it is modified.

3) Trusted Library This component provides crypto-
graphic functionality. A goal is to include modern cryp-
tographic primitives (X25519, AES-CCM) and provide
type-checking assurances without affecting speed or per-
formance.
This layered architecture is essential for our verification

methodology, but is quite different from other messaging ap-
plications. For example, the Signal Desktop application is a
Chrome browser application also written in JavaScript [34].
Parts of the protocol library are compiled from C using
Emscripten, presumably for performance, parts are taken
from third-party libraries, and other protocol-specific code
is written in JavaScript. The resulting code (1.5MB, 39Kloc)
is quite hard to separate into components, let alone verify
for security. We hope that our layered approach can lead to
verified security guarantees without sacrificing performance
or maintainability.

7.1. Isolating Verified Code

We build Cryptocat using Electron [35], a framework
for JavaScript desktop applications. Electron is built on top
of the Node.js JavaScript runtime and the Chromium web
renderer. By default, Electron allows applications to load
any Node.js low-level module, which can in turn perform
dangerous operations like accessing the file system and
exfiltrate data over the network. Since all Node.js modules in
a single process run within the same JavaScript environment,
malicious or buggy modules can tamper with other modules
via prototype poisoning or other known JavaScript attack
vectors. Consequently, all Electron apps, including other
desktop Signal implementations like WhatsApp and Signal
messenger effectively include all of Electron and Node.js
into their trusted computing base (TCB).

We propose a two-pronged approach to reduce this TCB.
Language-Based Isolation. Since ProScript is a subset of
Defensive JavaScript, ProScript protocol code is isolated
at the language level from other JavaScript code running
within the same process, even if this code uses dangerous
JavaScript features such as prototype access and modifica-
tion. To ensure this isolation, ProScript code must not call
any external (untyped) libraries.

Process Thread Isolation. We exploit features of Electron
in order to isolate components of our application in different
CPU threads as seen in Figure 5. When a message arrives on
the network (1), the main network thread can only communi-
cate with our Protocol TCB using a restrictive inter-process
communication API. The TCB then uses its internal verified
protocol functionality and state management to return a
decryption of the message (3), which is then forwarded again
via IPC to the chat window (4), a third separate CPU thread
which handles message rendering. Furthermore, the TCB
process is disallowed from loading any Node.js modules.

In particular, the network process is isolated from the
chat media rendering process; neither ever obtain access to
the key state or protocol functionality, which are all isolated
in the ProScript protocol process. When Bob responds,
a similar IPC chain of calls occurs in order to send his
reply back to Alice (5, 6, 7, 8). Even if an error in the
rendering code or in the XML parser escalated into a remote
takeover of the entire web renderer, the calls to the protocol
TCB would be restricted to those exposed by the IPC
API. However, these isolation techniques only protect the
ProScript code within our application when executed within
a correct runtime framework. None of these techniques can
guard against bugs in V8, Node.js, or Electron, or against
malicious or buggy Node.js or Electron modules loaded by
the application.

7.2. Performance and Limitations

Although we have verified the core protocol code in
Cryptocat and tried to isolate this code from unverified code,
the following limitations still apply: we have not formally
verified the soundness of the cryptographic primitives them-
selves, although writing them in Defensive JavaScript does
provide type safety. We have also not formally verified the
Electron framework’s isolation code. Similarly, we do not
claim any formal verification results on the V8 JavaScript
runtime or on the Node.js runtime. Therefore, we rely on
a number of basic assumptions regarding the soundness
of these underlying components. Cryptocat’s successful de-
ployment provides a general guideline for building, formally
verifying, and isolating cryptographic protocol logic from
the rest of the desktop runtime. Designing better methods
for implementing and isolating security-critical components
within Electron apps with a minimal TCB remains an open
problem.

8. Related Work

Extracting Protocol Models from Running Code. There
have been previous attempts [36] to extract ProVerif mod-
els from typed JavaScript, such as DJS2PV [7]. However,
DJS2PV was only tested on small code examples: attempt-
ing to translate a complete implementation such as Signal
Protocol resulted in a 3,800 line model that attempts to
precisely account for the heap, but could not verify due to an
exploding state space. Previous efforts such as FS2PV [20]

14



avoided this problem by choosing a purely functional source
language that translated to simpler pi calculus scripts. We
adopt their approach in ProScript to generate briefer, more
readable models.
Type Systems for JavaScript. TypeScript [37], Flow [38],
Defensive JavaScript and TS* [39] all define type systems
that can improve the security of JavaScript programs. The
type system in ProScript primarily serves to isolate protocol
code from untrusted application and to identify a subset of
JavaScript that can be translated to verifiable models.
Formal Analysis of Web Security Protocols. Tools like
WebSpi [40] and AuthScan [41] have been used to verify
the security of web security protocols such as OAuth. An
expressive web security model has also been used to build
manual proofs for cryptographic web protocols such as
BrowserID [42]. These works are orthogonal to ProScript
and their ideas can potentially be used to improve our target
ProVerif models.
Analysis of Secure Messaging Protocols. Unger et al.
survey previous work on secure messaging [10]. We discuss
three recent closely-related works here.

Future secrecy was formalized by Cohn-Gordon et al.
as “post-compromise security” [43]. Our symbolic formula-
tion is slightly different since it relies on the definition of
protocol phases in ProVerif.

Cryptographic security theorems and potential unknown
key-share attacks on TextSecure Version 2 were presented by
Frosch et al. [2]. In comparison to that work, our analysis
covers a variant of TextSecure Version 3, our analysis is
fully mechanized, and we address implementation details.
Our CryptoVerif model only covers a single message, but we
consider the whole protocol at once, while they prove pieces
of the protocol separately. Like we do, they consider that
HKDF is a random oracle. We further justify this assumption
by an indifferentiability proof.

More recently and in parallel with this work, Cohn-
Gordon et al. [44] prove, by hand, that the message encryp-
tion keys of Signal are secret in the computational model,
in a rich compromise scenario, under assumptions similar to
ours. Thereby, they provide a detailed proof of the properties
of the double ratcheting mechanism. However, they do not
model the signatures of the signed pre-keys, and they do not
consider key compromise impersonation attacks or replay
attacks or other implementation-level details. In contrast
to their work, our computational proof is mechanized, but
limited to only one message.

9. Conclusion and Future Work

Drawing from existing design trends in modern cryp-
tographic web application, we have presented a frame-
work that supports the incremental development of custom
cryptographic protocols hand-in-hand with formal security
analysis. By leveraging state-of-the-art protocol verification
tools and building new tools, we showed how many routine
tasks can be automated, allowing the protocol designer to

focus on the important task of analyzing her protocol for
sophisticated security goals against powerful adversaries.

We plan to continue to develop and refine ProScript
by evaluating how it is used by protocol designers, in the
spirit of an open source project. All the code and models
presented in this paper, and a full version of this paper are
available online [23]. Proving the soundness of translation
from ProScript to ProVerif, by relating the source JavaScript
semantics to the applied pi calculus, remains future work.
The process of transforming the compiled model to a veri-
fied CryptoVerif script remains a manual task, but we hope
to automate this step further, based on new and upcoming
developments in CryptoVerif.

Finally, a word of caution: a protocol written in ProScript
and verified with ProVerif or CryptoVerif does not imme-
diately benefit from assurance against all possible attacks.
Programming in ProScript imposes a strict discipline by
requiring defensive self-contained code that is statically
typed and can be translated to a verifiable model and sub-
sequent verification can be used to eliminate certain well-
defined classes of attacks. We believe these checks can add
confidence to the correctness of a web application, but they
do not imply the absence of security bugs, since we still have
a large trusted computing base. Consequently, improving the
robustness and security guarantees of runtime frameworks
such as Electron, Node.js, and Chromium, remains an im-
portant area of future research.
Acknowledgments. This work was funded by the following
grants: ERC CIRCUS, EU NEXTLEAP, and ANR AJACS.

References

[1] K. Bhargavan, A. Lavaud, C. Fournet, A. Pironti, and P. Strub, “Triple
handshakes and cookie cutters: Breaking and fixing authentication
over TLS,” in IEEE Symposium on Security & Privacy (Oakland),
2014, pp. 98–113.

[2] T. Frosch, C. Mainka, C. Bader, F. Bergsma, J. Schwenk, and T. Holz,
“How secure is TextSecure?” in IEEE European Symposium on
Security and Privacy (Euro S&P), 2016.

[3] B. Blanchet, “Modeling and verifying security protocols with the
applied pi calculus and ProVerif,” Foundations and Trends in Privacy
and Security, vol. 1, no. 1–2, pp. 1–135, Oct. 2016.

[4] D. Dolev and A. C. Yao, “On the security of public key protocols,”
IEEE Transactions on Information Theory, vol. 29, no. 2, pp. 198–
207, 1983.

[5] B. Blanchet, “A computationally sound mechanized prover for se-
curity protocols,” IEEE Transactions on Dependable and Secure
Computing, vol. 5, no. 4, pp. 193–207, 2008.

[6] K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis, “Language-based
defenses against untrusted browser origins,” in USENIX Security
Symposium, 2013, pp. 653–670.

[7] K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis, “Defensive
JavaScript - building and verifying secure web components,” in
Foundations of Security Analysis and Design (FOSAD VII), 2013,
pp. 88–123.

[8] M. Abadi and C. Fournet, “Mobile values, new names, and secure
communication,” in 28th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL’01). London,
United Kingdom: ACM Press, Jan. 2001, pp. 104–115.

15



[9] H. Krawczyk, “HMQV: A High-performance Secure Diffie-Hellman
Protocol,” in International Conference on Advances in Cryptology
(CRYPTO), ser. Lecture Notes in Computer Science, V. Shoup, Ed.,
vol. 3621. Springer, 2005, pp. 546–566.

[10] N. Unger, S. Dechand, J. Bonneau, S. Fahl, H. Perl, I. Goldberg, and
M. Smith, “SoK: Secure Messaging,” in IEEE Symposium on Security
& Privacy (Oakland), 2015.

[11] N. Durov, “Telegram MTProto protocol,” 2015, https://core.telegram.
org/mtproto.

[12] O. Schirokauer, “The number field sieve for integers of low weight,”
Mathematics of Computation, vol. 79, no. 269, pp. 583–602, 2010.

[13] D. Gillmor, “Negotiated Finite Field Diffie-Hellman Ephemeral Pa-
rameters for Transport Layer Security (TLS),” 2016, IETF RFC 7919.

[14] K. Bhargavan, A. Delignat-Lavaud, and A. Pironti, “Verified
contributive channel bindings for compound authentication,” in
Proceedings of the ISOC Network and Distributed System Security
Symposium (NDSS ’15), Feb 2015. [Online]. Available: http:
//antoine.delignat-lavaud.fr/doc/ndss15.pdf

[15] A. Rad and J. Rizzo, “A 2ˆ64 attack on Telegram, and why a super
villain doesn’t need it to read your telegram chats.” 2015.

[16] J. Jakobsen and C. Orlandi, “On the cca (in)security of mtproto,”
Cryptology ePrint Archive, Report 2015/1177, 2015, http://eprint.iacr.
org/2015/1177.

[17] N. Borisov, I. Goldberg, and E. A. Brewer, “Off-the-record
communication, or, why not to use PGP,” in Proceedings of the
2004 ACM Workshop on Privacy in the Electronic Society, WPES
2004, Washington, DC, USA, October 28, 2004, V. Atluri, P. F.
Syverson, and S. D. C. di Vimercati, Eds. ACM, 2004, pp. 77–84.
[Online]. Available: http://doi.acm.org/10.1145/1029179.1029200

[18] N. Wilcox, Z. Wilcox-O’Hearn, D. Hopwood, and D. Bacon, “Report
of Security Audit of Cryptocat,” 2014, https://leastauthority.com/blog/
least authority performs security audit for cryptocat.html.

[19] P. A. Gardner, S. Maffeis, and G. D. Smith, “Towards a program logic
for JavaScript,” SIGPLAN Not., vol. 47, no. 1, pp. 31–44, Jan. 2012.
[Online]. Available: http://doi.acm.org/10.1145/2103621.2103663

[20] K. Bhargavan, C. Fournet, A. D. Gordon, and S. Tse, “Verified inter-
operable implementations of security protocols,” ACM Transactions
on Programming Languages and Systems, vol. 31, no. 1, 2008.

[21] Joyent Inc. and the Linux Foundation, “Node.js,” 2016, https://nodejs.
org/en/.

[22] H. Krawczyk, “Cryptographic extraction and key derivation: The
HKDF scheme,” in Advances in Cryptology (CRYPTO), ser. Lecture
Notes in Computer Science. Springer, 2010, vol. 6223, pp. 631–648.

[23] N. Kobeissi, “SP code repository,” https://github.com/inria-
prosecco/proscript-messaging, February 2017.

[24] V. Shoup, “Sequences of games: a tool for taming complexity in
security proofs,” IACR Cryptology ePrint Archive, 2004, http://eprint.
iacr.org/2004/332.

[25] M. Bellare and P. Rogaway, “The security of triple encryption and
a framework for code-based game-playing proofs,” in Advances in
Cryptology (Eurocrypt), ser. Lecture Notes in Computer Science,
S. Vaudenay, Ed., vol. 4004. Springer, May 2006, pp. 409–426.

[26] T. Okamoto and D. Pointcheval, “The gap-problems: a new class
of problems for the security of cryptographic schemes,” in Practice
and Theory in Public Key Cryptography (PKC), ser. Lecture Notes
in Computer Science, K. Kim, Ed., vol. 1992. Springer, 2001, pp.
104–118.

[27] A. Fujioka and K. Suzuki, “Designing efficient authenticated key
exchange resilient to leakage of ephemeral secret keys,” in Topics
in Cryptology (CT-RSA), ser. Lecture Notes in Computer Science,
A. Kiayias, Ed., vol. 6558. Springer, 2011, pp. 121–141.

[28] D. J. Bernstein, “Curve25519: New Diffie-Hellman speed records,”
in Public Key Cryptography (PKC), 2006, pp. 207–228.

[29] S. Goldwasser, S. Micali, and R. Rivest, “A digital signature scheme
secure against adaptive chosen-message attacks,” SIAM Journal of
Computing, vol. 17, no. 2, pp. 281–308, April 1988.

[30] J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya, “Merkle-Damgård
revisited: How to construct a hash function,” in Advances in Cryptol-
ogy (CRYPTO), ser. Lecture Notes in Computer Science, vol. 3621.
Springer, 2005, pp. 430–448.

[31] M. Bellare, “New proofs for NMAC and HMAC: Security without
collision-resistance,” in Advances in Cryptology (CRYPTO), ser. Lec-
ture Notes in Computer Science, C. Dwork, Ed., vol. 4117. Springer,
2006, pp. 602–619.

[32] D. A. McGrew and J. Viega, “The security and performance of the
Galois/Counter Mode (GCM) of operation,” in Progress in Cryptol-
ogy - INDOCRYPT 2004, ser. Lecture Notes in Computer Science,
A. Canteaut and K. Viswanathan, Eds., vol. 3348. Chennai, India:
Springer, Dec. 2004, pp. 343–355.

[33] P. Rogaway, “Authenticated-encryption with associated-data,” in
Ninth ACM Conference on Computer and Communications Security
(CCS-9). Washington, DC: ACM Press, Nov. 2002, pp. 98–107.

[34] Open Whisper Systems, “Signal for the browser,” 2015, https://github.
com/WhisperSystems/Signal-Browser.

[35] GitHub, “Electron framework,” 2016, http://electron.atom.io/.

[36] M. Avalle, A. Pironti, R. Sisto, and D. Pozza, “The Java SPI frame-
work for security protocol implementation,” in Availability, Reliability
and Security (ARES), 2011 Sixth International Conference on, Aug
2011, pp. 746–751.

[37] G. Bierman, M. Abadi, and M. Torgersen, “Understanding Type-
Script,” in ECOOP 2014 Object-Oriented Programming, ser. Lecture
Notes in Computer Science, R. Jones, Ed., vol. 8586. Springer, 2014,
pp. 257–281.

[38] Facebook Inc., “Flow, a static type checker for JavaScript,” http://
flowtype.org/docs/about-flow.html.

[39] C. Fournet, N. Swamy, J. Chen, P.-E. Dagand, P.-Y. Strub, and
B. Livshits, “Fully abstract compilation to JavaScript,” SIGPLAN
Not., vol. 48, no. 1, pp. 371–384, Jan. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2480359.2429114

[40] C. Bansal, K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis, “Dis-
covering concrete attacks on website authorization by formal anal-
ysis,” Journal of Computer Security, vol. 22, no. 4, pp. 601–657,
2014.

[41] G. Bai, J. Lei, G. Meng, S. S. Venkatraman, P. Saxena, J. Sun, Y. Liu,
and J. S. Dong, “AUTHSCAN: automatic extraction of web authenti-
cation protocols from implementations,” in Network and Distributed
System Security Symposium (NDSS), 2013.

[42] D. Fett, R. Küsters, and G. Schmitz, “An Expressive Model for the
Web Infrastructure: Definition and Application to the BrowserID SSO
System,” in 35th IEEE Symposium on Security and Privacy (S&P
2014). IEEE Computer Society, 2014, pp. 673–688.

[43] K. Cohn-Gordon, C. Cremers, and L. Garratt, “On post-compromise
security,” in IEEE Computer Security Foundations Symposium (CSF),
2016, pp. 164–178.

[44] K. Cohn-Gordon, C. Cremers, B. Dowling, L. Garratt, and D. Stebila,
“A formal security analysis of the signal messaging protocol,” in IEEE
European Symposium on Security and Privacy (Euro S&P), 2017.

16



On the Content Security Policy Violations due to the
Same-Origin Policy

Dolière Francis Some
Université Côte d’Azur

Inria
France

doliere.some@inria.fr

Nataliiia Bielova
Université Côte d’Azur

Inria
France

nataliia.bielova@inria.fr

Tamara Rezk
Université Côte d’Azur

Inria
France

tamara.rezk@inria.fr

ABSTRACT
Modern browsers implement di�erent security policies such as the
Content Security Policy (CSP), a mechanism designed to mitigate
popular web vulnerabilities, and the Same Origin Policy (SOP), a
mechanism that governs interactions between resources of web
pages.

In this work, we describe how CSP may be violated due to the
SOP when a page contains an embedded iframe from the same
origin. We analyse 1 million pages from 10,000 top Alexa sites
and report that at least 31.1% of current CSP-enabled pages are
potentially vulnerable to CSP violations. Further considering real-
world situations where those pages are involved in same-origin
nested browsing contexts, we found that in at least 23.5% of the
cases, CSP violations are possible.

During our study, we also identi�ed a divergence among browsers
implementations in the enforcement of CSP in srcdoc sandboxed
iframes, which actually reveals a problem in Gecko-based browsers
CSP implementation. To ameliorate the problematic con�icts of the
security mechanisms, we discuss measures to avoid CSP violations.

CCS CONCEPTS
•Security and privacy →Web application security;

ACM Reference format:
Dolière Francis Some, Nataliiia Bielova, and Tamara Rezk. 2016. On the Con-
tent Security Policy Violations due to the Same-Origin Policy. In Proceedings
of WWW ’17, Perth, Western Australia, April 3–7, 2017, 9 pages.
DOI: 10.1145/1235

1 INTRODUCTION
Modern browsers implement di�erent speci�cations to securely
fetch and integrate content. One widely used speci�cation to pro-
tect content is the Same Origin Policy (SOP) [? ]. SOP allows
developers to isolate untrusted content from a di�erent origin. An
origin here is de�ned as scheme, host, and port number. If an
iframe’s content is loaded from a di�erent origin, SOP controls the
access to the embedder resources. In particular, no script inside

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’17, Perth, Western Australia
© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-2138-9. . . $$15.00
DOI: 10.1145/1235

Figure 1: An XSS attack despite CSP.

the iframe can access content of the embedder page. However, if
the iframe’s content is loaded from the same origin as the embed-
der page, there are no privilege restrictions w.r.t. the embedder
resources. In such a case, a script executing inside the iframe can
access content of the embedder webpage. Scripts are considered
trusted and the iframe becomes transparent from a developer view
point. A more recent speci�cation to protect content in webpages
is the Content Security Policy (CSP) [? ]. �e primary goal of CSP
is to mitigate cross site scripting a�acks (XSS), data leaks a�acks,
and other types of a�acks. CSP allows developers to specify, among
other features, trusted domain sources from which to fetch content.
One of the most important features of CSP, is to allow a web appli-
cation developer to specify trusted JavaScript sources. �is kind of
restriction is meant to permit execution of only trusted code and
thus prevent untrusted code to access content of the page.

In this work, we report on a fundamental problem of CSP. CSP[?
] de�nes how to protect content in an isolated page. However,
it does not take into consideration the page’s context, that is its
embedder or embedded iframes. In particular, CSP is unable to
protect content of its corresponding page if the page embeds (using
the src a�ribute) an iframe of the same origin. �e CSP policy of a
page will not be applied to an embedded iframe. However, due to
SOP, the iframe has complete access to the content of its embedder.
Because same origin iframes are transparent due to SOP, this opens
loopholes to a�ackers whenever the CSP policy of an iframe and
that of its embedder page are not compatible (see Fig. 1).

We analysed 1 million pages from the top 10,000 Alexa sites
and found that 5.29% of sites contain some pages with CSPs (as
opposed to 2% of home pages in previous studies [? ]). We have
identi�ed that in 94% of cases, CSP may be violated in presence



WWW ’17, April 3–7, 2017, Perth, Western Australia D.F. SOME, N. Bielova, and T. Rezk

of the document.domain API and in 23.5% of cases CSP may be
violated without any assumptions (see Table 3).

During our study, we also identi�ed a divergence among browsers
implementations in the enforcement of CSP [? ] in sandboxed
iframes embedded with srcdoc, which actually reveals an inconsis-
tency between the CSP and HTML5 sandbox a�ribute speci�cation
for iframes.

We identify and discuss possible solutions from the developer
point of view as well as new security speci�cations that can help
prevent this kind of CSP violations. We have made publicly available
the dataset that we used for our results in[? ]. We have installed
an automatic crawler to recover the same dataset every month to
repeat the experiment taking into account the time variable. An
accompanying technical report with a complete account of our
analyses can be found at [? ].

In summary, our contributions are: (i) We describe a new class
of vulnerabilities that lead to CSP violations. (Section 2). (ii) We
perform a large and depth scale crawl of top sites, highlighting CSP
adoption at sites-level, as well as sites origins levels. Using this
dataset, we report on the possibilities of CSP violations between the
SOP and CSP in the wild. (Section 3). (iii) We propose guidelines in
the design and deployment of CSP. (Section 4). (iv) We reveal an
inconsistency between the CSP speci�cation and HTML5 sandbox
a�ribute speci�cation for iframes. Di�erent browsers choose to
follow di�erent speci�cations, and we explain how any of these
choices can lead to new vulnerabilities. (Section 5).

2 CONTENT SECURITY POLICY AND SOP
�e Content Security Policy (CSP) [? ] is a mechanism that allows
programmers to control which client-side resources can be loaded
and executed by the browser. CSP (version 2) is an o�cial W3C
candidate recommendation [? ], and is currently supported by major
web browsers. CSP is delivered in the Content-Security-Policy
HTTP response header, or in a <meta> element of HTML.

CSP applicability A CSP delivered with a page controls the
resources of the page. However it does not apply to the page’s
embedding resources [? ]. As such, CSP does not control the
content of the iframes even if the iframe is from the same origin as
the main page according to SOP. Instead, the content of the iframe
is controlled by the CSP delivered with it, that can be di�erent from
the CSP of the main page.

CSP directives CSP allows a programmer to specify which re-
sources are allowed to be loaded and executed in the page. �ese
resources are de�ned as a set of origins and known as a source list.
Additionally to controlling resources, CSP allows to specify allowed
destinations of the AJAX requests by the connect-src directive.
A special header Content-Security-Policy-Report-Only con-
�gures a CSP in a report-only mode: violations are recorded, but
not enforced. �e directive default-src is a special fallback di-
rective that is used when some directive is not de�ned. �e directive
frame-ancestors (meant to supplant the HTTP X-Frame-Options
header[? ]), controls in which pages the current page may be in-
cluded as an iframe, to prevent clickjacking a�acks [? ]. See Table 1
for the most commonly used CSP directives [? ].

Source lists CSP source list is traditionally de�ned as a whitelist
indicating which domains are trusted to load the content, or to

Directive Controlled content
script-src Scripts
default-src All resources (fallback)
style-src Stylesheets
img-src Images
font-src Fonts
connect-src XMLH�pRequest, WebSocket or

EventSource
object-src Plug-in formats (object, embed)
report-uri URL where to report CSP violations
media-src Media (audio, video)
child-src Documents (frames), [Shared] Workers
frame-ancestors Embedding context

Table 1: Most common CSP directives [? ].

communicate. For example, a CSP from Listing 1 allows to include
scripts only from third.com, requires to load frames only over
HTTPS, while other resource types can only be loaded from the
same hosting domain.

1 Content-Security-Policy: default-src 'self';

2 script-src third.com; child-src https:

Listing 1: Example of a CSP policy.

A whitelist can be composed of concrete hostnames (third.com),
may include a wildcard * to extend the policy to subdomains
(*.third.com), a special keyword ’self’ for the same hosting
domain, or ’none’ to prohibit any resource loading.

Restrictions on scripts Directive script-src is the most used
feature of CSP in today’s web applications [? ]. It allows a pro-
grammer to control the origin of scripts in his application using
source lists. When the script-src directive is present in CSP, it
blocks an execution of any inline script, JavaScript event handlers
and APIs that execute string data code, such as eval() and other
related APIs. To relax the CSP, by allowing the execution of inline
<script> and JavaScript event handlers, a script-src whitelist
should contain a keyword ’unsafe-inline’. To allow eval()-like
APIs, the CSP should contain a ’unsafe-eval’ keyword. Because
’unsafe-inline’ allows execution of any inlined script, it e�ec-
tively removes any protection against XSS. �erefore, nonces and
hashes were introduced in CSP version 2 [? ], allowing to control
which inline scripts can be loaded and executed.

Sandboxing iframesDirective sandbox allows to load resources
but execute them in a separate environment. It applies to all the
iframes and other content present on the page. An empty sandbox
value creates completely isolated iframes. One can selectively en-
able speci�c features via allow-* �ags in the directive’s value. For
example, allow-scripts will allow executions of scripts in an
iframe, and allow-same-origin will allow iframes to be treated
as being from their normal origins.

Same-Site and Same-Origin De�nitions. In our terminology, we
distinguish the web pages that belong to the same site from the
pages that belong to the same origin. By page we refer to any HTML
document – for example, the content of an iframe we call iframe
page. In this case, the page that embeds an iframe is called a parent
page or embedder.



On the CSP Violations due to SOP WWW ’17, April 3–7, 2017, Perth, Western Australia

By site we refer to the highest level domain that we extract from
Alexa top 10,000 sites, usually containing the domain name and a
TLD, for example main.com. All the pages that belong to a site, and
to any of its subdomains as sub.main.com, are considered same-site
pages.

According to the Same Origin Policy, an origin of a page is
scheme, host and port of its URL. For example, in h�p://main.com:
81/dir/p.html, the scheme is “h�p”, the host is “main.com” and the
port is 81.

2.1 CSP violations due to SOP
Consider a web application, where the main page A.html and its
iframe B.html are located at http://main.com, and therefore be-
long to the same origin according to the same-origin policy. A.html,
shown in Listing 2, contains a script and an iframe from main.com.
�e local script secret.js contains sensitive information given in
Listing 3. To protect against XSS, the developer have installed the
CSP for its main page A.html, shown in Listing 4.

1 <html>

2 <script src="secret.js"></script>

3 ...

4 <iframe src="B.html"></iframe>

5 </html>

Listing 2: Source code of http://main.com/A.html.

1 var secret = "42";

Listing 3: Source code of secret.js.

1 Content-Security-Policy: default-src 'none';

2 script-src 'self'; child-src 'self'

Listing 4: CSP of http://main.com/A.html.

�is CSP provides an e�ective protection against XSS:

2.1.1 Only parent page has CSP. According to the latest version
of CSP1, only the CSP of the iframe applies to its content, and it
ignores completely the CSP of the including page. In our case, if
there is no CSP in B.html then its resource loading is not restricted.
As a result, an iframe B.html without CSP is potentially vulnerable
to XSS, since any injected code may be executed within B.html
with no restrictions. Assume B.html was exploited by an a�acker
injecting a script injected.js. Besides taking control over B.html,
this a�ack now propagates to the including page A.html, as we
show in Fig. 1. �e XSS a�ack extends to the including parent page
because of the inconsistency between the CSP and SOP. When a
parent page and an iframe are from the same origin according to
SOP, a parent and an iframe share the same privileges and can
access each other’s code and resources.

For our example, injected.js is shown in Listing 5.
�is script executed in B.html retrieves the secret value from

its parent page (parent.secret) and transmits it to an a�acker’s
server http://attacker.com via XMLH�pRequest2.

1h�ps://www.w3.org/TR/CSP2/#which-policy-applies
2�e XMLH�pRequest is not forbidden by the SOP for B.html because an a�acker
has activated the Cross-Origin Resource Sharing mechanism [? ] on her server
http://attacker.com.

1 function sendData(obj , url){

2 var req = new XMLHttpRequest ();

3 req.open('POST', url , true);

4 req.send(JSON.stringify(obj));

5 }

6 sendData ({ secret: parent.secret}, 'http://

attacker.com/send.php ');

Listing 5: Source code of injected.js.

A straightforward solution to this problem is to ensure that the
protection mechanism for the parent page also propagates to the
iframes from the same domain. Technically, it means that the CSP
of the iframe should be the same or more restrictive than the CSP
of the parent. In the next example we show that this requirement
does not necessarily prevent possible CSP violations due to SOP.

2.1.2 Only iframe page has CSP. Consider a di�erent web ap-
plication, where the including parent page A.html does not have a
CSP, while its iframe B.html contains a CSP from Listing 4. In this
example, B.html, shown in Listing 6 now contains some sensitive
information stored in secret.js (see Listing 3).

1 <html>

2 ...

3 <script src="secret.js"></script>

4 </html>

Listing 6: Source code of http://main.com/B.html.

Since the including page A.html now has no CSP, it is poten-
tially vulnerable to XSS, and therefore may have a malicious script
injected.js. �e iframe B.html has a restrictive CSP, that ef-
fectively contributes to protection against XSS. Since A.html and
B.html are from the same origin, the malicious injected script can
pro�t from this and steal sensitive information from B.html. For
example, the script may call the sendData function with the secret
information:

1 sendData ({ secret: children [0]. secret}, 'http:

// attacker.com/send.php ');

�anks to SOP, the script injected.js fetches the secret from
it’s child iframe B.html and sends it to http://attacker.com.

2.1.3 CSP violations due to origin relaxation. A page may change
its own origin with some limitations. By using the document.domain
API, the script can change its current domain to a superdomain. As
a result, a shorter domain is used for the subsequent origin checks3.

Consider a slightly modi�ed scenario, where the main page
A.html from http://main.com includes an iframe B.html from
its sub-domain http://sub.main.com. Any script in B.html is
able to change the origin to http://main.com by executing the
following line:

1 document.domain = "main.com";

If A.com is willing to communicate with this iframe, it should also
execute the above-wri�en code so that the communication with
B.html will be possible. �e content of B.html is now treated
by the web browser as the same-origin content with A.html, and
therefore any of the previously described a�acks become possible.
3h�ps://developer.mozilla.org/en-US/docs/Web/Security/Same-origin policy#
Changing origin

http://main.com:81/dir/p.html
http://main.com:81/dir/p.html
https://www.w3.org/TR/CSP2/#which-policy-applies
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy#Changing_origin
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy#Changing_origin


WWW ’17, April 3–7, 2017, Perth, Western Australia D.F. SOME, N. Bielova, and T. Rezk

2.1.4 Categories of CSP violations due to SOP. We distinguish
three di�erent cases when the CSP violation might occur because
of SOP:
Only parent page or only iframe has CSP A parent page and

an iframe page are from the same origin, but only one of
them contains a CSP. �e CSP may be violated due to the
unrestricted access of a page without CSP to the content
of the page with CSP. We demonstrated this example in
Sections 2.1.1 and 2.1.2.

Parent and iframe have di�erent CSPs A parent page and an
iframe page are from the same origin, but they have dif-
ferent CSPs. Due to SOP, the scripts from one page can
interfere with the content of another page thus violating
the CSP.

CSP violation due to origin relaxation A parent page and an
iframe page have the same higher level domain, port and
scheme, but however they are not from the same origin.
Either CSP is absent in one of them, or they have di�erent
CSPs – in both cases CSP may be violated because the pages
can relax their origin to the high level domain by using
document.domain API, as we have shown in Section 2.1.3.

3 EMPIRICAL STUDY OF CSP VIOLATIONS
We have performed a large-scale study on the top 10,000 Alexa
sites to detect whether CSP may be violated due to an inconsis-
tency between CSP and SOP. For collecting the data, we have used
CasperJS [? ] on top of PhantomJS headless browser [? ]. �e User-
Agent HTTP header was instantiated as a recent Google Chrome
browser.

3.1 Methodology
�e overview of our data collection and CSP comparison process is
given in Figure 2. �e main di�erence in our data collection process
from previous works on CSP measurements in the wild [? ? ] is
that we crawl not only the main pages of each site, but also other
pages. First, we collect pages accessible through links of the main
page and pointing to the same site. Second, to detect possible CSP
violations due to SOP, we have collected all the iframes present on
the home pages and linked pages.

3.1.1 Data Collection. Home Page Crawler For each site in
top 10,000 Alexa list, we crawl the home page, parse its source code
and extract three elements: (1) a CSP of the site’s home page stored
in HTTP header as well as in <meta> HTML tag; we denote the
CSPs of the home page by C; (2) to extract more pages from the
same site, we analyse the source of the links via <a href=...>
tag and extract URLs that point to the same site, we denote this
list by L. (3) we collect URLs of iframes present on the home page
via <iframe src=...> tag and record only those belonging to the
same site, we denote this set by F .

Page Crawler We crawl all the URLs from the list of pages L,
and for each page we repeat the process of extraction of CSP and
relevant iframes, similar to the steps (1) and (3) of the home page
crawler. As a result, we get a set of CSPs of linked pages CL and
a set of iframes URLs FL that we have extracted from the linked
pages in L.

Iframe Crawler

For every iframe URL present in the list of home page iframes
FH , and in the list of linked pages iframes FL , we extract their
corresponding CSPs and store in two sets: CF for home page iframes
and CLF for linked page iframes.

3.1.2 CSP adoption analysis. Since CSP is considered an e�ec-
tive countermeasure for a number of web a�acks, programmers
o�en use it to mitigate such a�acks on the main pages of their sites.
However, if CSP is not installed on some pages of the same site,
this can potentially leak to CSP violations due to the inconsistency
with SOP when another page from the same origin is included as
an iframe (see Figure 1). In our database, for each site, we recorded
its home page, a number of linked pages and iframes from the same
site. �is allows us to analyse how CSP is adopted at every popular
site by checking the presence of CSP on every crawled page and
iframe of each site. To do so, we analyse the extracted CSPs: C for
the home page, CL for linked pages, CF for home page iframes, and
CLF for linked pages iframes.

3.1.3 CSP violations detection. To detect possible CSP violations
due to SOP, we have analysed home pages and linked pages from
the same site, as well as iframes embedded into them.

CSP Selection
To detect CSP violations, we �rst remove all the sites where no

parent page and no iframe page contains a CSP. For the remaining
sites, we pointwise compare (1) the CSPs of the home pages C and
CSPs of iframes present on these pages CF ; (2) the CSPs of the
linked pages CL and CSPs of their iframes CLF . To check whether a
parent page CSP and an iframe CSP are equivalent, we have applied
the CSP comparison algorithm (Figure 2)

CSP Preprocessing We �rst normalise each CSP policy, by split-
ting it into its directives.

• If default-src directive is present (default-src is a fall-
back for most of the other directives), then we extract the
source list s of default-src. We analyse which directives
are missing in the CSP, and explicitly add them with the
source list s .

• If default-src directive is absent, we extract missing di-
rectives from the CSP. In this case, there are no restrictions
in CSP for every absent directive. We therefore explicitly
add them with the most permissive source list. A missing
script-src is assigned * ’unsafe-inline’ ’unsafe-eval’ as
the most permissive source list [? ].

• In each source list, we modify the special keywords: (i)
’self’ is replaced with the origin of the page containing the
CSP; (ii) in case of ’unsafe-inline’ with hash or nonce, we
remove ’unsafe-inline’ from the directive since it will be
ignored by the CSP2. (iii) ’none’ keywords are removed
from all the directives; (iv) nonces and hashes are removed
from all the directives since they cannot be compared; (iv)
each whitelisted domain is extended with a list of schemes
and port numbers from the URL of the page includes the
CSP4.

4For example, according to CSP2, if the page scheme is https, and a CSP con-
tains a source example.com, then the user agent should allow content only from
https://example.com, while if the current scheme is http, it would allow both
http://example.com and https://example.com.



On the CSP Violations due to SOP WWW ’17, April 3–7, 2017, Perth, Western Australia

Figure 2: Data Collection and Analysis Process

Sites successfully crawled 9,885
Pages visited 1,090,226
Pages with iframe(s) from the same site 648,324
Pages with same-origin iframe(s) 92,430
Pages with same-origin iframe(s) where
page and/or iframe has CSP

692

Pages with CSP 21,961 (2.00%)
Sites with CSP on home page 228 (2.3%)
Sites with CSP on some pages 523 (5.29%)

Table 2: Crawling statistics

CSP Comparison We compare all the directives present in the
two CSPs to identify whether the two policies require the same
restrictions. Whenever the two CSPs are di�erent, our algorithm
returns the names of directives that do not match. �e demonstra-
tion of the comparison is accessible on[? ]. For each directive in the
policies we compare the source lists and the algorithm proceeds if
the elements of the lists are identical in the normalised CSPs.

3.1.4 Limitations. Our methodology and results have two(2)
limitations that we explain here.

User interactions �e automatic crawling process did not in-
clude any real-user-like interactions with top sites. As such the set
of iframes and links URLs we have analysed is an underestimate of
all links and iframes a site may contain.

Pairs of (parent-iframe) In this study, we consider CSP viola-
tions in same origin (parent, iframe) couples only. �eir are though
further combinations such as couples of sibling iframes in a parent
page that we could have considered. Overall, our results are con-
servative, since the problem might have been worst without those
limitations.

3.2 Results on CSP Adoption
�e crawling of Alexa top 10,000 sites was performed in the end
of August, 2016. To extract several pages from the same site, we
have also crawled all the links and iframes on a page that point
to the same site. In total, we have gathered 1,090,226 from 9,885
di�erent sites. On median, from each site we extracted 45 pages,
with a maximum number of 9,055 pages found on tuberel.com. Our
crawling statistics is presented in Table 2. More than half of the

Figure 3: Percentage of pages with CSP per site

pages contain an iframe, and 13% of pages do contain an iframe
from the same site. �is indicates the potential surface for the CSP
violations, when at least one page on the site has a CSP installed.
We discuss such potential CSP violation in details in Section 3.3.3.
Similarly to previous works on CSP adoption [? ? ], we have found
that CSP is present on only 228 out of 9,885 home pages (2.31%).
While extending this analysis to almost a million pages, we have
found a similar rate of CSP adoption (2.00%).

Di�erently from previous studies that anlaysed only home pages,
or only pages in separation, we have analysed how many sites have
at least some pages that adopted CSP. We have grouped all pages by
sites, and found that 5.29% of sites contain some pages with CSPs.
It means that CSP is more known by the website developers, but
for some reason is not widely adopted on all the pages of the site.

We have then analysed how many pages on each site have
adopted CSPs. For each of 523 sites, we have counted how many
pages (including home page, linked pages and iframes) have CSPs.
Figure 3 shows that more than half of the sites have a very low CSP
adoption on their pages: on 276 sites out of 529, CSP is installed
on only 0-10% of their pages. �is becomes problematic if other
pages without CSP are not XSS-free. However, it is interesting
that around a quarter of sites do pro�t from CSP by installing it on
90-100% of their pages.

3.3 Results on CSP violations due to SOP
As described in Section 2.1.4, we distinguish several categories of
CSP violations when a parent page and an iframe on this page are
from the same origin according to SOP. To account for possible CSP
violations, we only consider cases when either parent, or iframe, or
both have a CSP installed. From all the 21,961 pages that have CSP

tuberel.com


WWW ’17, April 3–7, 2017, Perth, Western Australia D.F. SOME, N. Bielova, and T. Rezk

Same-origin parent-iframe Possible to relax origin Total
Only parent page CSP 83 1388 1471

Only iframe CSP 16 240 256
Di�erent CSP 70 44 114

No CSP violations 551 (76.5%) 109 (6%) 660
CSP violations total 169 (23.5%) 1672 (94%) 1841

Table 3: Statistics CSP violations due to Same-Origin Policy

Same-origin parent-iframe Possible to relax origin
Only parent page CSP yandex.ru twi�er.com, yandex.ru, mail.ru

Only iframe CSP amazon.com, imdb.com –*
Di�erent CSP twi�er.com –*

*Not found in top 100 Alexa sites.
Table 4: Sample of sites with CSP violations due to Same-Origin Policy

installed, we have removed the pages, where CSPs are in report-
only mode, having le� 18,035 pages with CSPs in enforcement
mode.

Table 3 presents possible CSP violations due to SOP.
We have extracted the parent-iframe couples that might cause a

CSP violation because either (1) only parent or only iframe installed
a CSP, or (2) both installed di�erent CSPs. First, to account for
direct violations because of SOP, we distinguish couples where
parent and iframe are from the same origin (columns 2,3), we have
found 720 cases of such couples. Second, we analyse possible CSP
violations due to origin relaxation: we have collected 1781 couples
that are from di�erent origins but their origins can be relaxed by
document.domain API (see more in Section 2.1.3) – these results
are shown in columns 4 and 5.

In Table 4 we present the names of the domains out of top 100
Alexa sites, where we have found di�erent CSP violations. Each
company in this table have been noti�ed about the possible CSP
violation. Concrete examples of the page and iframe URLs and
their corresponding CSPs for each such violation can be found in
the corresponding technical report [? ]. All the collected data is
available online[? ].

CSP violations in presence of document.domain According
to our results, in presence of document.domain, 94% of (parent,
iframe) pages can have their CSP violated. �ose violations can oc-
cur only if both parent and iframes pages execute document.domain
to the same top level domain. �us, our result is an over-approximation,
assuming that document.domain is used in all of those pages and
iframes. According to[? ], document.domain is used in less than
3% of web pages.

3.3.1 Only parent page or only iframe has CSP. We �rst consider
a scenario when a parent page and an iframe are from the same
origin, but only one of them contains a CSP. Intuitively, if only a
parent page has CSP, then an iframe can violate CSP by executing
any code and accessing the parent page’s DOM, inserting content,
access cookies etc. Among 720 parent-iframe couples from the
same origin, we have found 83 cases (11.5%) when only parent has
a CSP, and 16 cases (2.2%) when only iframe has a CSP. �ese CSP
violations originate from 13 (for parent) and 4 (for iframe) sites.

Figure 4: Di�erences in CSP directives for parent and iframe
pages

For example, such possible violations are found on some pages
of amazon.com, yandex.ru and imdb.com (see Table 4). CSP of a
parent or iframe may also be violated because of origin relaxation.
We have identi�ed 1388 cases (78%) of parent-iframe couples where
such violation may occur because CSP is present only in the parent
page. �is was observed on 20 di�erent sites, including twi�er.com,
yandex.ru and others. Finally, in 240 cases (13.5%) only iframe has
CSP installed, which was found on 11 di�erent sites. We manually
checked the parent and iframes involved in CSP violations for sites
in Table 4. In all of those sites, either the parent or the iframe page
is login page[? ]. We furthermore checked how e�ective are the
CSP of those pages, using CSPEvaluator5, proposed by Lukas et
al.[? ]. and found out that the CSP policies involved in these are
moreover all bypassable.

3.3.2 Parent and iframe have di�erent CSPs. In a case when a
page and iframe are from the same origin, but their corresponding
CSPs are di�erent, may also cause a violation of CSP. From the 720
same-origin parent-iframe couples, we have found 70 cases (9.7%)
(from 3 sites) when their CSPs di�er, and for an origin relaxation
(from 6 sites) case, we have identi�ed only 44 such cases (2.5%).
�is se�ing was found on some pages of twi�er.com for instance.

We have further analysed the di�erences in CSPs found on par-
ent and iframe pages. For all the 114 pairs of parent-iframe (either

5h�ps://csp-evaluator.withgoogle.com/



On the CSP Violations due to SOP WWW ’17, April 3–7, 2017, Perth, Western Australia

Pages Origins Sites
A same origin page has no CSP 4381 197 197
A same origin page has a di�erent
CSP

1223 23 23

A same origin (a�er relaxation)
page has no CSP

4728 340 183

A same origin (a�er relaxation)
has a di�erent CSP

2567 135 44

Potential violations total 12899
(72%)

591
(81%)

379
(52%)

Table 5: Potential CSP violations in pages with CSP

Figure 5: Di�erences in CSP directives for same-origin and
relaxed origin pages

same-origin or possible origin relaxation), we have compared CSPs
they installed, directive-by-directive. Figure 4 shows that every par-
ent CSP and iframe CSP di�er on almost every directive – between
90% and 100%. �e only exception is frame-ancestors directive,
which is almost the same in di�erent parent pages and iframes. If
properly set, this directive gives a strong protection against click-
jacking a�acks, therefore all the pages of the same origin are equally
protected.

3.3.3 Potential CSP violations. A potential CSP violation may
happen when in a site, either some pages have CSP and some others
do not, or pages have di�erent CSP. When those pages get nested
as parent-iframe, we can run into CSP violations, just like in the
direct CSP violations cases we have just reported above. To analyse
how o�en such violations may occur, we have analysed the 18,035
pages that have CSP in enforcement mode. �ese pages originate
from 729 di�erent origins spread over 442 sites. Table 5 shows
that 72% of CSPs (12,899 pages) are potentially violated, and these
CSPs originate from pages of 379 di�erent sites (85.75%). To detect
these violations, for each page with a CSP in our database, we have
analysed whether there exists another page from the same origin,
that does not have CSP. �is page could embed the page with CSP
and violate it because of SOP. We have detected 4381 such pages
(24%) from 197 origins. Similarly, we detected 1223 pages (7%) when
there are same-origin pages with a di�erent CSP. Similarly, we have
analysed when potential CSP violations may happen due to origin
relaxation. We have detected 4728 pages (26%), whose CSP may
be violated because of other pages with no CSP, and 2567 pages
(14%), whose CSP may be violated because of di�erent CSP on other
relaxed-origin pages.

For the pages that have di�erent CSPs, we have compared how
much CSPs di�er. Figure 5 shows that CSPs mostly di�er in script-src
directive, which protects pages from XSS a�acks. �is means, that
if one page in the origin does whitelist an a�acker’s domain or
an insecure endpoints [? ], all the other pages in the same origin
become vulnerable because they may be inserted as an iframe to
the vulnerable page and their CSPs can be easily violated.

3.4 Responses of websites owners
We have reported those issues to a sample of sites owners, using
either HackerOne6, or contact forms when available. Here are some
selected quotes from our discussions with them.

“Yes, of course we understand the risk that under
some circumstances XSS on one domain can be used
to bypass CSP on another domain, but it’s simply
impossible to implement CSP across all (few hun-
dreds) domains at once on the same level. We are
implementing strongest CSP currently possible for
di�erent pages on di�erent domains and keep going
with this process to protect all pages, a�er that we
will strengthen the CSP. We believe it’s be�er to have
stronger CSP policy where possible rather than have
same weak CSP on all pages or not having CSP at
all. Having in mind there are hundreds of domains
within mail.ru, at least few years are required be-
fore all pages on all domains can have strong CSP.”
– Mail.ru

“[…]the sandbox is a defense in depthmitigation[…]We
de�nitely don’t allow relaxing document.domain on
www.dropbox.com[…]” – Dropbox.com

“While this is an interesting area of research, are you
able to demonstrate that this behavior is currently
exploitable on Twi�er? It appears that the behavior
you have described can increase the severity of other
vulnerabilities but does not pose a security risk by
itself. Is our understanding correct? […]We consider
this to be more of a defensive in depth and will take
into account with our continual e�ort to improve
our CSP policy” – Twitter.com

“I believe we understand the risk as you’ve described
it.” – Imdb.com

4 AVOIDING CSP VIOLATIONS
Preventing CSP violations due to SOP can be achieved by having
the same e�ective CSP for all same-origin pages in a site, and
prevent origin relaxation.

Origin-wide CSP: Using CSP for all same-origin pages can be
manually done but this solution is error-prone. A more e�ective
solution is the use of a speci�cation such as Origin Policy [? ] in
order to set a header for the whole origin.

Preventing Origin Relaxation: Having an origin-wide CSP is
not enough to prevent CSP violations. By using origin relaxation,
pages from di�erent origins can bypass the SOP [? ]. Many authors

6h�ps://hackerone.com



WWW ’17, April 3–7, 2017, Perth, Western Australia D.F. SOME, N. Bielova, and T. Rezk

provide guidelines on how to design an e�ective CSP [? ]. Nonethe-
less, even with an e�ective CSP, an embedded page from a di�erent
origin in the same site can use document.domain to relax its origin.
Preventing origin relaxation is trickier.

Programmatically, one could prevent other scripts from modi-
fying document.domain by making a script run �rst in a page [? ].
�e �rst script that runs on the page would be:

1 Object.defineProperty(document , "domain", {

__proto__: null , writable: false ,

configurable: false });

A parent page can also indirectly disable origin relaxation in
iframes by sandboxing them. �is can be achieved by using sand-
box as an a�ribute for iframes or as directive for the parent page
CSP. Unfortunately, an iframe cannot indirectly disable origin relax-
ation in the page that embeds it. However, the frame-ancestors
directive of CSP gives an iframe control over the hosts that can
embed it. Finally, a more robust solution is the use of a policy to
deprecate document.domain as proposed in the dra� of Feature
policy [? ]. �e feature policy de�nes a mechanism that allows de-
velopers to selectively enable and disable the use of various browser
features and APIs.

Iframe sandboxing: Combining a�ribute allow-scripts and
allow-same-origin as values for sandbox successfully disables
document.domain in an iframe7. We recommend the use of sand-
box as a CSP directive, instead of an HTML iframe a�ribute. �e
�rst reason is that sandbox as a CSP directive, automatically ap-
plies to all iframes that are in a page, avoiding the need to manually
modify all HTML iframe tags. Second, the sandbox directive is not
programmatically accessible to potentially malicious scripts in the
page, as is the case for the sandbox a�ribute (which can be removed
from an iframe programmatically, replacing the sandboxed iframe
with another identical iframe but without the sandbox a�ribute).

Limitations An origin-wide CSP (the same CSP for all same
origin pages) can become very liberal if all same origin pages do not
require the same restrictions. In order to implement the solution
we propose, one needs to consider the intended relation between
a parent page and an iframe page, in presence of CSP. In the case
where the two(2) pages should be allowed direct access to each other
content, then, since same origin pages can bypass page-speci�c
security characteristics [? ], the solution is to have the same CSP
for both the page and the iframe. However, if direct access to each
other content is not a required feature, one can keep di�erent CSPs
in parent and iframe, or have no CSP at all in one of the parties, but
their contents should be isolated from each other. �e solution here
is to use sandboxing. Nonetheless, there are other means (such as
postMessage) by which one can securely achieve communication
between the pages.

5 INCONSISTENT IMPLEMENTATIONS
Combining origin-wide CSP with allow-scripts sandbox direc-
tive would have been su�cient at preventing the inconsistencies
between CSP and the same origin policy. Unfortunately, we have

7We found out that dropbox.com actually puts sandbox a�ribute for all its iframes,
and therefore avoids the possible CSP violations. We have had a very interesting
discussion on Hackerone.com with Devda�a Akhawe, a Security Engineer at Dropbox,
who told us more about their security practices regarding CSP in particular.

discovered that for some browsers, this solution is not su�cient.
Starting from HTML5, major browsers, apart from Internet Ex-
plorer, supports the new srcdoc a�ribute for iframes. Instead of
providing a URL which content will be loaded in an iframe, one
provides directly the HTML content of the iframe in the srcdoc
a�ribute. According to CSP2 [? ], §5.2, the CSP of a page should
apply to an iframe which content is supplied in a srcdoc a�ribute.
�is is actually the case for all majors browsers, which support the
srcdoc a�ribute. However, there is a problem when the sandbox
a�ribute is set to an srcdoc iframe.

Webkit-based8 andBlink-based9 browsers (Chrome, Chromium,
Opera) always comply with CSP. �e CSP of a page will apply to
all srcdoc iframes, even in those iframes which have a di�erent
origin than that of the page, because they are sandboxed without
allow-same-origin .

In contrast, we noticed that in Gecko-based browsers (Mozilla
Firefox), the CSP of the page applies to that of the srcdoc iframe if
and only if allow-same-origin is present as value for the a�ribute.
Otherwise it does not apply. �e problem with this choice is the
following. A third party script, whitelisted by the CSP of the page,
can create a srcdoc iframe, sandboxing it with allow-scripts only,
and load any resource that would normally be blocked by the CSP
of the page if applied in this iframe. �is way, the third party
script successfully bypasses the restrictions of the CSP of the page.
Even though loading additional scripts is considered harmless in
the upcoming version 3 [? ? ] of CSP, this speci�cation says
nothing about violations that could occur due to the loading of
other resources inside a srcdoc sandboxed iframe, like resources
whitelisted by object-src directive for instance, additional iframes
etc.

We have noti�ed the W3C, and the Mozilla Security Group.
Daniel Veditz, a lead at Mozilla Security Group, recognises this
as a bug and explains:

“Our internal model only inherits CSP into same-
origin frames (because in theory you’re otherwise
leaking info across origin boundaries) and iframe
sandbox creates a unique origin. Obviously we need
to make an exception here (I think we manage to do
the same thing for src=data: sandboxed frames).”

CSP speci�cation and srcdoc iframes �e problem of impos-
ing a CSP to an unknown page is illustrated by the following ex-
ample [? ]. If a trusted third party library, whitelisted by the CSP
of the page, uses security libraries inside an isolated context (by
sandboxing them in a srcdoc iframe, se�ing allow-scripts as sole
value for the sandbox) then, the page’s CSP will block the security
libraries and possibly introduce new vulnerabilities. Because of this,
it was unclear to us the intent of CSP designers regarding srcdoc
iframes. Mike West, one of the CSP editors at the W3C and also
Developper Advocate in Google Chrome’s team, clari�ed this to us:

“I think your objection rests on the notion of the
same-origin policy preventing the top-level docu-
ment from reaching into it’s sandboxed child. �at
seems accurate, but it neglects the bigger picture:
srcdoc documents are produced entirely from the

8h�ps://en.wikipedia.org/wiki/WebKit
9h�ps://en.wikipedia.org/wiki/Blink (web engine)

dropbox.com
Hackerone.com


On the CSP Violations due to SOP WWW ’17, April 3–7, 2017, Perth, Western Australia

top-level document context. Since those kinds of
documents are not delivered over the network, they
don’t have the opportunity to deliver headers which
might con�gure their se�ings. We impose the par-
ent’s policy in these cases, because for all intents
and purposes, the srcdoc document is the parent
document.”

6 RELATEDWORK
CSP has been proposed by Stamm et al.[? ] as a re�nement of
SOP[? ], in order to help mitigate Cross-Site-Scripting[? ] and data
ex�ltration a�acks. �e second version[? ] of the speci�cation
is supported by all major browsers, and the third version [? ] is
under active development. Even though CSP is well supported [? ],
its endorsement by web sites is rather slow. Weissbacher et al.[?
] performed the �rst large scale study of CSP deployment in top
Alexa sites, and found that around 1% of sites were using CSP at
the time. A more recent study by Calzavara et al.[? ], show that
nearly 8% of Alexa top sites now have CSP deployed in their front
pages. Another recent study, by Weichselbaum et al.[? ] come with
similar results to the study of Weissbacher et al.[? ]. Our work
extends previous results by analysing the adoption of CSP by site
not only considering front pages but all the pages in a site. Almost
all authors agree that CSP adoption is not a straightforward task,
and lots of (manual) e�ort are needed in order to reorganize and
modify web pages to support CSP.

�erefore, in order to help web sites developers in adopting CSP,
Javed proposed CSP Aider, [? ] that automatically crawl a set of
pages from a site and propose a site-wide CSP. Patil and Frederik[? ]
proposed UserCSP, a framework that monitors the browser internal
events in order to automatically infer a CSP for a web page based
on the loaded resources. Pan et al.[? ] propose CSPAutoGen, to
enforce CSP in real-time on web pages, by rewriting them on the �y
client-side. Weissbacher et al.[? ] have evaluated the feasibility of
using CSP in report-only mode in order to generate a CSP based on
reported violations, or semi-automatically inferring a CSP policy
based on the resources that are loaded in web pages. �ey concluded
that automatically generating a CSP is ine�ective. A di�culty
which remains is the use of inline scripts in many pages. �e �rst
solution is to externalize inline scripts, as can be done by systems
like deDacota[? ]. Kerschbaumer et al.[? ] �nd that too many
pages are still using ’unsafe-inline’ in their CSPs. �ey propose a
system to automatically identify legitimate inline scripts in a page,
thereby whitelisting them in the CSP of the underlying page, using
script hashes.

Another direction of research on CSP, has been evaluating its
e�ectiveness at successfully preventing content injection a�acks.
Calzavara et al.[? ] found out that many CSP policies in real web
sites have errors including typos, ill-formed or harsh policies. Even
when the policies are well formed, they have found that almost
all currently deployed CSP policies are bypassable because of a
misunderstanding of the CSP language itself. Patil and Frederik
found similar errors in their study[? ]. Hausknecht et al.[? ] found
that some browser extensions, modi�ed the CSP policy headers, in
order to whitelist more resources and origins. Van Acker et al.[? ]
have shown that CSP fails at preventing data ex�ltration specially

when resources are prefetched, or in presence of a CSP policy in the
HTML meta tag, because the order in which resources are loaded
in a web application is hard to predict. Johns[? ] proposed hashes
for static scripts, and PreparedJS, an extension for CSP, in order to
securely handle server-side dynamically generated scripts based
on user input. Weichselbaum et al.[? ] have extended nonces
and hashes, introduced in CSP level 2[? ], to remote scripts URLs,
specially to tackle the high prevalence of insecure hosts in current
CSP policies. Furthermore, they have introduced strict-dynamic.
�is new keyword states that any additional script loaded by a
whitelisted remote script URL is considered a trusted script as
well. �ey also provide guidelines on how to build an e�ective
CSP. Jackson and Barth[? ] have shown that same origin pages
can bypass page-speci�c policies, like CSP. �ough, their work
predates CSP. To the best of our knowledge, we are the �rst to
explore the interactions between CSP and SOP and report possible
CSP violations.

7 CONCLUSIONS
In this work, we have revealed a new problem that can lead to
violations of CSP. We have performed an in-depth analysis of the
inconsistency that arises due to CSP and SOP and identi�ed three
cases when CSP may be violated.

To evaluate how o�en such violations happen, we performed a
large-scale analysis of more than 1 million pages from 10,000 Alexa
top sites. We have found that 5.29% of sites contain pages with
CSPs (as opposed to 2% of home pages in previous studies).

We have also found out that 72% of current web pages with CSP,
are potentially vulnerable to CSP violations. �is concerns 379
(72.46%) sites that deploy CSP. Further analysing the contexts in
which those web pages are used, our results show that when a
parent page includes an iframe from the same origin according to
SOP, in 23.5% of cases their CSPs may be violated. And in the cases
where document.domain is required in both parent and iframes,
we identi�ed that such violations may occur in 94% of the cases.

We discussed measures to avoid CSP violations in web applica-
tions by installing an origin-wide CSP and using sandboxed iframes.
Finally, our study reveals an inconsistency in browsers implementa-
tion of CSP for srcdoc iframes, that appeared to be a bug in Mozilla
Firefox browsers.

ACKNOWLEDGMENTS
�e authors would like to thank the WebAppSec W3C Working
Group for useful pointers to related resources at the early stage of
this work, Mike West for very insightful discussions that consider-
ably helped improve this work, Devda�a Akhawe for discussing
some security practices at Dropbox, and anonymous reviewers and
Stefano Calzavara for their valuable comments and suggestions.



WWW ’17, April 3–7, 2017, Perth, Western Australia D.F. SOME, N. Bielova, and T. Rezk

REFERENCES
[1] Chrome Platform Status. h�ps://www.chromestatus.com/metrics/feature/

popularity#DocumentSetDomain.
[2] CSP violations online. h�ps://webstats.inria.fr?cspviolations.
[3] Same Origin Policy. h�ps://www.w3.org/Security/wiki/Same Origin Policy.
[4] S. V. Acker, D. Hausknecht, and A. Sabelfeld. Data Ex�ltration in the Face of

CSP. In X. Chen, X. Wang, and X. Huang, editors, Proceedings of the 11th ACM
on Asia Conference on Computer and Communications Security, AsiaCCS 2016,
Xi’an, China, May 30 - June 3, 2016, pages 853–864. ACM, 2016.

[5] S. Calzavara, A. Rabi�i, and M. Bugliesi. Content security problems?: Evaluating
the e�ectiveness of content security policy in the wild. In Weippl et al. [? ],
pages 1365–1375.

[6] A. Doupé, W. Cui, M. H. Jakubowski, M. Peinado, C. Kruegel, and G. Vigna. deDa-
cota: toward preventing server-side XSS via automatic code and data separation.
In A. Sadeghi, V. D. Gligor, and M. Yung, editors, 2013 ACM SIGSAC Conference
on Computer and Communications Security, CCS’13, Berlin, Germany, November
4-8, 2013, pages 1205–1216. ACM, 2013.

[7] D. Hausknecht, J. Magazinius, and A. Sabelfeld. May I? - Content Security Policy
Endorsement for Browser Extensions. In M. Almgren, V. Gulisano, and F. Maggi,
editors, Detection of Intrusions and Malware, and Vulnerability Assessment - 12th
International Conference, DIMVA 2015, Milan, Italy, July 9-10, 2015, Proceedings,
volume 9148 of Lecture Notes in Computer Science, pages 261–281. Springer, 2015.

[8] A. Hidayat. PhantomJS Headless Browser, 2010-2016.
[9] C. Jackson and A. Barth. Beware of �ner-grained origins. In Web 2.0 Security

and Privacy (W2SP 2008), 2008.
[10] A. Javed. CSP Aider: An Automated Recommendation of Content Security Policy

for Web Applications. In IEEE Oakland Web 2.0 Security and Privacy (W2SP’12),
2012.

[11] M. Johns. PreparedJS: Secure Script-Templates for JavaScript. In K. Rieck,
P. Stewin, and J. Seifert, editors, Detection of Intrusions and Malware, and Vulner-
ability Assessment - 10th International Conference, DIMVA 2013, Berlin, Germany,
July 18-19, 2013. Proceedings, volume 7967 of Lecture Notes in Computer Science,
pages 102–121. Springer, 2013.

[12] C. Kerschbaumer, S. Stamm, and S. Brunthaler. Injecting CSP for Fun and Security.
In O. Camp, S. Furnell, and P. Mori, editors, Proceedings of the 2nd International
Conference on Information Systems Security and Privacy (ICISSP 2016), Rome, Italy,
February 19-21, 2016., pages 15–25. SciTePress, 2016.

[13] X. Pan, Y. Cao, S. Liu, Y. Zhou, Y. Chen, and T. Zhou. Cspautogen: Black-box
enforcement of content security policy upon real-world websites. In Weippl et al.
[? ], pages 653–665.

[14] K. Patil and B. Frederik. A measurement study of the content security policy on
real-world applications. I. J. Network Security, 18(2):383–392, 2016.

[15] N. Perriault. CasperJS navigation and scripting tool for PhantomJS, 2011-2016.
[16] G. Rydstedt, E. Bursztein, D. Boneh, and C. Jackson. Busting frame busting: a

study of clickjacking vulnerabilities at popular sites. In in IEEE Oakland Web 2.0
Security and Privacy (W2SP 2010), 2010.

[17] K. Singh, A. Moshchuk, H. J. Wang, and W. Lee. On the incoherencies in web
browser access control policies. In 31st IEEE Symposium on Security and Privacy,
S&P 2010, 16-19 May 2010, Berleley/Oakland, California, USA, pages 463–478,
2010.

[18] D. F. Some, N. Bielova, and T. Rezk. On the Content Security Policy violations due
to the Same-Origin Policy. Technical report. h�p://www-sop.inria.fr/members/
Nataliia.Bielova/papers/CSP-SOP.pdf.

[19] S. Stamm, B. Sterne, and G. Markham. Reining in the web with content security
policy. In M. Rappa, P. Jones, J. Freire, and S. Chakrabarti, editors, Proceedings of
the 19th International Conference on World Wide Web, WWW 2010, Raleigh, North
Carolina, USA, April 26-30, 2010, pages 921–930. ACM, 2010.

[20] N. Swamy, C. Fournet, A. Rastogi, K. Bhargavan, J. Chen, P. Strub, and G. M.
Bierman. Gradual typing embedded securely in JavaScript. In S. Jagannathan
and P. Sewell, editors, �e 41st Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’14, San Diego, CA, USA, January
20-21, 2014, pages 425–438. ACM, 2014.

[21] A. van Kesteren. Cross Origin Resource Sharing. W3C Recommendation, 2014.
[22] L. Weichselbaum, M. Spagnuolo, S. Lekies, and A. Janc. CSP is dead, long live

csp! on the insecurity of whitelists and the future of content security policy. In
Weippl et al. [? ], pages 1376–1387.

[23] E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and S. Halevi, editors.
Proceedings of the 2016 ACM SIGSACConference on Computer and Communications
Security, Vienna, Austria, October 24-28, 2016. ACM, 2016.

[24] M. Weissbacher, T. Lauinger, and W. K. Robertson. Why Is CSP Failing? Trends
and Challenges in CSP Adoption. In A. Stavrou, H. Bos, and G. Portokalidis, edi-
tors, Research in A�acks, Intrusions and Defenses - 17th International Symposium,
RAID 2014, Gothenburg, Sweden, September 17-19, 2014. Proceedings, volume 8688
of Lecture Notes in Computer Science, pages 212–233. Springer, 2014.

[25] M. West. Content Security Policy: Embedded Enforcement, 2016.
[26] M. West. Content Security Policy Level 3. W3C Working Dra�, 2016.
[27] M. West. Origin Policy. A Collection of Interesting Ideas, 2016.

[28] M. West, A. Barth, and D. Veditz. Content Security Policy Level 2. W3C Candidate
Recommendation, 2015.

[29] M. West and I. Grigorik. Feature Policy. W3C Dra� Community Group Report,
2016.

[30] I. Yusof and A. K. Pathan. Mitigating Cross-Site Scripting A�acks with a Content
Security Policy. IEEE Computer, 49(3):56–63, 2016.

https://www.chromestatus.com/metrics/feature/popularity#DocumentSetDomain
https://www.chromestatus.com/metrics/feature/popularity#DocumentSetDomain
https://webstats.inria.fr?cspviolations
https://www.w3.org/Security/wiki/Same_Origin_Policy
http://www-sop.inria.fr/members/Nataliia.Bielova/papers/CSP-SOP.pdf
http://www-sop.inria.fr/members/Nataliia.Bielova/papers/CSP-SOP.pdf


Type Abstraction for Relaxed Noninterference∗

Raimil Cruz1, Tamara Rezk2, Bernard Serpette2, and Éric Tanter1

1 PLEIAD Lab, Computer Science Department (DCC), University of Chile
{racruz,etanter}@dcc.uchile.cl

2 INRIA - Indes Project-Team, Sophia Antipolis, France
first.last@inria.fr

Abstract
Information-flow security typing statically prevents confidential information to leak to public

channels. The fundamental information flow property, known as noninterference, states that a
public observer cannot learn anything from private data. As attractive as it is from a theoretical
viewpoint, noninterference is impractical: real systems need to intentionally declassify some
information, selectively. Among the different information flow approaches to declassification,
a particularly expressive approach was proposed by Li and Zdancewic, enforcing a notion of
relaxed noninterference by allowing programmers to specify declassification policies that capture
the intended manner in which public information can be computed from private data. This
paper shows how we can exploit the familiar notion of type abstraction to support expressive
declassification policies in a simpler, yet more expressive manner. In particular, the type-based
approach to declassification—which we develop in an object-oriented setting—addresses several
issues and challenges with respect to prior work, including a simple notion of label ordering
based on subtyping, support for recursive declassification policies, and a local, modular reasoning
principle for relaxed noninterference. This work paves the way for integrating declassification
policies in practical security-typed languages.

1998 ACM Subject Classification D.4.6 Security and Protection: Information flow controls,
D.3.2 Language Classifications: Object-oriented languages

Keywords and phrases type abstraction, relaxed noninterference, information flow control

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.53

1 Introduction

Information-flow security typing enables statically classifying program entities with respect
to their confidentiality levels, expressed via a lattice of security labels [17]. For instance,
a two-level lattice L 4 H allows distinguishing public or low data (e.g. IntL) from confid-
ential or high data (e.g. IntH). An information-flow security type system statically ensures
noninterference, i.e. that high-confidentiality data may not flow directly or indirectly to
lower-confidentiality channels [35]. To do so, the security type system tracks the confiden-
tiality level of computation based on the confidentiality of the data involved.

As attractive as it is, noninterference is too strict to be useful in practice, as it prevents
confidential data to have any influence whatsoever on observable, public output. Indeed,
even a simple password checker function violates noninterference. Consider the following:

∗ This work was partially funded by Project Conicyt REDES 140219 “CEV: Challenges in Practical
Electronic Voting”. Raimil Cruz is funded by CONICYT-PCHA/Doctorado Nacional/2014-63140148.

© Raimil Cruz, Tamara Rezk, Bernard Serpette and Éric Tanter;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 53; pp. 53:1–53:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.53
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


53:2 Type Abstraction for Relaxed Noninterference

String login( String guess , String password )
if( password == guess)

return "Login Successful "
else

return "Login failed "
}

By definition, a public observer that tries to log in should be able to “learn something”
about the confidential input (here, password), thereby violating the confidentiality restriction
imposed by noninterference.

This problem with noninterference has long been recognized. Supporting such intentional
downward information flows is called declassification, which can be supported in many dif-
ferent ways [28]. For example, Jif [23] supports an explicit declassify operator to allow
downward flows to be accepted by the security type system. In the above example, one
can use declassify(password == guess) to state that the returned value is public knowledge.
However, arbitrary uses of a declassify operator may lead to serious information flow leaks;
for instance declassify(password) simply makes the password publicly available. One solu-
tion adopted by Jif is to control declassification using principals with privileges, as in the
Decentralized Label Model (DLM) [24]. Trusted declassification [20] restricts Jif’s mech-
anism to specify authorization in a global policy file and formulate noninterference modulo
trusted methods. Robust declassification [39] relies on integrity to ensure that low integrity
flows do not influence high confidentiality data that will later be declassified.

To capture the essence of expressive declassification without appealing to additional
mechanisms like integrity or authority, Li and Zdancewic proposed an expressive mechanism
for declassification policies that supports the extensional specification of secrets and their
intended declassification [21]. A declassification policy is a function that captures what
information on a confidential value can be declassified to eventually produce a public value.
For the password checker example, if the declassification policy for password is λx.λy.x==y,
then an equality comparison with password can be declassified (and thus be made public).
However, this declassification policy for password disallows arbitrary declassifications such as
revealing the password. Furthermore, declassification can be progressive, requiring several
operations to be performed in order to obtain public data: e.g. λx.λy.hash(x)==y specifies
that only the result of comparing the hash of the password for equality can be made public.

The formal security property, called relaxed noninterference, states that a secure pro-
gram can be rewritten into an equivalent program without any variable containing confid-
ential data but whose inputs are confidential and declassified. For the password checker
example with p , λx.λy.x==y as the declassification policy for password, the program
login(guess,password) can be rewritten to the equivalent program login’(guess,p(password))
where login’ is:

String login ’( String guess , String→Bool eq){
if(eq(guess )) ...

}

Note that p(password) is a closure that strongly encapsulates the secret value, and only
allows equality comparisons.

While the proposal of Li and Zdancewic elegantly and formally captures the essence
of flexible declassification while retaining a way to state a clear and extensional security
property of interest, it suffers from a number of limitations that jeopardize its practical
adoption. First, security labels are sets of functions that form a security lattice whose or-
dering, based on a semantic interpretation of these sets of functions, is far from trivial [21]:



R. Cruz, T. Rezk, B. Serpette and É. Tanter 53:3

it relies on a general notion of program equivalences that would be both hard to implement
and to comprehend. Second, Li and Zdancewic explicitly rule out recursive declassifica-
tion policies, which are however natural when expressing declassification of recursive data
structures. Finally, the rewriting-based definition of relaxed noninterference is unsatisfying
for practical software development, as it rigidly requires all secrets to be both global and
external, thereby losing modular reasoning; as recognized by the authors, local language
constructs for introducing secrets and their policies are lacking [21].

In this work, we exploit the familiar notion of type abstraction to capture declassifica-
tion policies in a simpler, yet more expressive manner. Type abstraction in programming
languages manifests in different ways [25]; here, we specifically adopt the setting of object-
oriented programming, where object types are interfaces, i.e. the set of methods available
to the client of an object, and type abstraction is driven by subtyping. For instance, the
empty interface type—the root of the subtyping hierarchy—denotes an object that hides all
its attributes, which intuitively coincides with secret data, while the interface that coincides
with the implementation type of an object exposes all of them, which coincides with public
data. Our initial observation is that any interface in between these two extremes denotes
declassification opportunities. Additionally, choosing objects, as opposed to records, allows
us to explore recursive declassification policies from the start, given that the essence of data
abstraction in OOP are recursive types [16].

The type-based approach to confidentiality is very intuitive as it only relies on concepts
that are readily available in object-oriented languages: a declassification policy is simply a
method signature, a security label is an object interface, and label ordering boils down to
subtyping. Progressive declassification occurs through chaining of method invocations. In
fact, the only extension to the standard programming model is that a security type has two
facets, each representing the view available to a private and public observer, respectively. In
addition to being intuitive, the type-based approach addresses the issues and challenges of
the downgrading policies of Li and Zdancewic: a) there is no need to rely on general program
equivalences to define and decide label ordering, which is just standard, syntactic subtyping;
b) declassification naturally scales to recursive policies over recursive data structures; and
c) type-based relaxed noninterference is formulated as a modular reasoning principle, and
local secrets can be introduced with standard type annotations.

This work makes the following contributions:

We develop a novel type-based approach to declassification policies, which supports in-
teresting scenarios while appealing to standard programming concepts such as interface
types and subtyping (Section 2).

We capture the essence of type-based declassification in a core object-oriented language,
ObSEC, in which a security type is a pair of (recursive) object types (Section 3). We
describe the static and dynamic semantics of ObSEC and prove type safety.

We specify the formal semantic notion of type-based relaxed noninterference, which ac-
counts for type-based declassification policies, independently of any enforcement mechan-
ism (Section 4). We then prove type soundness of ObSEC: a well-typed program satisfies
type-based relaxed noninterference.

We informally explore how the expressiveness of declassification policies scales with the
expressiveness of types (Section 5), identifying interesting venues for extensions.

Section 6 discusses related work and Section 7 concludes. Auxiliary definitions are provided
in Appendix.

ECOOP 2017



53:4 Type Abstraction for Relaxed Noninterference

2 Type-Based Declassification Policies

We now progressively and informally introduce the type-based approach to declassification
policies, appealing first to a simple intuitive connection with type abstraction. We then
explain why this first intuition is insufficient, and refine it in order to support the key
features of a security-typed language with expressive declassification. We end by discussing
the security guarantee supported by the approach.

Type abstraction and confidentiality. It is well-known that type abstraction can capture
the need to expose only a subset of the operations of an object. For instance, if the password
secret is made available using the interface type StringEq , [eq : String→ Bool], the login
function from Section 1 can be rewritten as follows:

String login(String guess , StringEq password ){
if( password .eq(guess )) ...

}

Because password has type StringEq, the login function cannot accidentally leak information
about the password. In particular, note that the function cannot even return the password
because StringEq is a supertype of String, not a subtype. Therefore, the standard substitut-
ability expressed by subtyping seems to align well with the valid information flows permitted
in a confidentiality type system: a (public) string value at type String can be used freely,
and passed as argument expecting a (mostly) private StringEq, which only exposes equality
comparison. Similarly, any value can flow to a private variable, characterized by the empty
interface type, > , [ ].1

Progressive declassification policies can be expressive with nested interface types. For
instance, assume that String objects have a hash method, of type Unit → Int. To specify
that only the hash of the password can be compared for equality, it suffices to expose the
password at type StringHashEq , [hash : Unit→ IntEq], where IntEq , [eq : Int→ Bool]:

String login(Int guess , StringHashEq password ){
if( password .hash (). eq(guess )) ...

}

In the code above, the only available operation on password is hash(), which in turn returns
an integer that only exposes an equality comparison. Note that here again, StringHashEq >:
String and IntEq >: Int.

Recursive declassification. The informal presentation of type-based declassification so far
has exemplified two of the main advantages of our approach: security label ordering is
syntactic subtyping, and secrets and their declassification policies can be declared locally,
by standard type annotations. We now illustrate recursive declassification policies.

Recursive declassification policies are desirable to express interesting declassification of
either inductive data structures or object interfaces (whose essence are recursive types [16]).
Consider for instance a secret list of strings, for which we want to allow traversal of the

1 The reader might wonder at this point about the effect of using arbitrary downcasts, as supported in
Java. Indeed, downcasts are a way to violate type abstraction, and therefore to violate the type-based
security guarantees. For instance, the login function could return (String)password, thereby returning
the password for public consumption. Fortunately, there is a simple solution to this issue, which we
discuss in Section 5.



R. Cruz, T. Rezk, B. Serpette and É. Tanter 53:5

structure and comparison of its elements with a given string. This can be captured by the
recursive type StrEqList defined as:

StrEqList , [isEmpty : Unit→ Bool, head : Unit→ StringEq, tail : Unit→ StrEqList]

To allow traversal, the declassification policy exposes the methods isEmpty, head and tail,
with the specific constraints that a) accessing an element through head yields a StringEq, not
a full String, and b) the tail method returns the tail of the list with the same declassification
policy. Type-based declassification policies can therefore naturally be recursive, as long as
the underlying type language allows (some form of) recursive types.

Facets of computation. With the standard programming approach described so far, a
program that attempts to violate the declassification protocol of an object is rejected by the
(standard) type system because it is ill-typed. For instance:

String login(Int guess , StringEq password ){
if( password . length (). eq(guess )) ...

}

is rejected because length is not part of the exposed interface of password.
However, security-typed languages typically are more flexible than this: they allow com-

putation to proceed with private information, but ensure the result of such computation is
itself private [37]. For instance, adding a public integer and a private integer yields a private
result. Li and Zdancewic follow the same approach with declassification policies: using a
secret in a way that does not follow its declassification policy yields a private result [21].
The justification of these approaches is that computation with private data is relevant, but
only visible to a high security, private observer; noninterference only dictates that a low
security, public observer should not be able to deduce information about private data by
observing public outputs.

This means that security-typed languages inherently adopt a multi-faceted view of com-
putation, where each observation level corresponds to a different facet. Sticking to a two-
facet, private/public model, the definition of login above is well-typed if one “knows” that
password is in fact a String object. In this case using length is valid: it just yields a private
result. Flow-sensitivity then ensures that the result of login, which follows from a conditional
branching computed based on a private value, is also private.

Faceted types. To accommodate the possibility of computing with private data, we extend
standard types to faceted types. A security type S, noted T / U , consists of two standard
types: type T for the private interface, and type U for the public interface.2. In this paper,
we often use the notation TL as a shortcut for the lowest-confidentiality security type T / T ,
in which the public facet exposes the same interface as the private facet, and TH for the
fully-confidential security type T /> in which the public facet is empty.

To express that password is a private string that can only be declassified through equality
comparison, we can use the following signature for login:

StringL login(IntL guess , String/StringEq password )

2 Similarly to multi-faceted execution [?], one can extend the model to support n levels of observations,
by introducing security types with n facets.

ECOOP 2017



53:6 Type Abstraction for Relaxed Noninterference

With this signature the previous definition of login, which invokes length, is still ill-
typed. Indeed, the body of the function now has type StringL, capturing the fact that the
resulting string is private, but the signature pretends that the result of login is public, which
violates noninterference. For login to be well-typed, either the declared return type should
be changed to StringH, or the conditional should adhere to the public facet StringEq.

Note that subtyping naturally extends covariantly to faceted types, i.e. T1 / U1 <: T2 / U2
iff both T1 <: T2 and U1 <: U2. Therefore, it is invalid to pass a private string of type
String /> to a function expecting a declassifiable string of type String / StringEq, because
> is not a subtype of StringEq. Subtyping on the public facet corresponds to security label
ordering; compared to the semantic, equivalence-based interpretation of labels of Li and
Zdancewic, here label ordering is just standard syntactic subtyping.

Object types directly support the possibility to offer different declassification paths for the
same secret. For instance, the security type String / [hash : UnitL → IntL, length : UnitL → IntL]
allows a client to obtain a public integer from a string by using either its hash or its length.
Naturally, by breadth subtyping, such a secret with two possible declassification paths can
also be used as a more restricted secret, e.g. one that only exposes its hash publicly.

Type-based relaxed noninterference. The security property we establish in this work is a
particular form of termination insensitive noninterference, called typed-based relaxed nonin-
terference (TRNI for short). Like the relaxed noninterference result of Li and Zdancewic [21],
TRNI accounts for declassification policies.

To understand the intuition behind TRNI, we must first establish a notion of type-based
observational equivalence between objects. The starting point of the notion of equivalence is
that an object is defined by the observations that can be made on it, that is, by invoking its
methods [16]. More precisely, two objects o1 and o2 are said to be observationally equivalent
at type S, with S , T / U , if for each method m : S1 → S2 of the public facet U , invoking
m on o1 and o2 with equivalent arguments at type S1, yields equivalent results at type S2.
Crucially, the definition of equivalence uses the public facet of the type, thereby accounting
for observational equivalence only up to declassified information.

For example, the strings "john" and "mary" are not equivalent at type String / String,
because a public observer can observe the first character of each string and realize they
are different. However, these strings are equivalent when observed at String / StringLen,
where StringLen , [length : UnitL → IntL], because the only declassified information about
the strings is their length, which is here equal. This also means that "john" and "james" are
equivalent when are observed at type StringH (i.e. String />) since there are no observations
available to distinguish them. In fact, any two objects of type T are equivalent at type TH.

Given this notion of equivalence, a program satisfies TRNI at type Sout, if given two
inputs that are equivalent at type Sin, it produces two results that are equivalent at type
Sout. Intuitively, the types Sin and Sout capture the knowledge of public observers. Another
way to understand TRNI is that, if the initial knowledge implies the final knowledge, then
the program is secure for the public observer.

For instance, consider a program with an input x of type String / StringLen. The program
x.length satisfies TRNI at type Int / Int: two executions of the program with related inputs
at String / StringLen, such as "john" and "mary", yields two identical results at type Int / Int
(i.e. 4 in both cases). However, the program if(x.eq("mary")) return 1 else 2 does not satisfy
TRNI at type Int / Int because there are equivalent inputs at type String / StringLen ("john"

and "mary") that yield different outputs at type Int / Int (1 and 2). For this program, the
only secure observation level is Int />.



R. Cruz, T. Rezk, B. Serpette and É. Tanter 53:7

e ::= v | e.m(e) | x (terms)
v ::=

[
z : S ⇒ m (x) e

]
(values)

T,U ::= O | α (types)
O ::= Obj(α).

[
m : S → S

]
(object type)

S ::= T / U (security type)

x, y, z (variables)
α, β (type variables)
m (method labels)

TL , T / T TH , T />

Figure 1 ObSEC: Syntax

We formally define these notions, and prove that the type system we propose enforces
TRNI, in Section 4.

3 An Object Language for Type-Based Declassification

We develop type-based declassification and relaxed noninterference using a core object-
oriented language, ObSEC, whose syntax is presented in Figure 1. The syntax of ObSEC
is similar to that of the object calculi of Abadi and Cardelli [2]. It includes three kinds of
expressions: variables, objects and method invocations. Note that we do not include method
updates or classes, both unnecessary to formulate our proposal. An object

î
z : S ⇒ m (x) e

ó
is a collection of method definitions, where method names are unique. The object definition
explicitly binds the self variable z in method bodies, with ascribed security type S. The
distinguishing feature of ObSEC are security types: as introduced in Section 2, a security type
S is a two-faceted type T / U , where T (resp. U) is the private (resp. public) facet. The
public facet corresponds to the declassification policy of an object. A fully opaque secret
has type T /> (also noted TH), exposing no method at all, while a low-confidentiality object
has type T / T (also noted TL), publicly exposing its full interface. A type T or U is either
a (recursive) object type Obj(α).

[
m : S → S

]
, where method types can use the self type

variable α, or a type variable. Note that we do not model parametric polymorphism in this
core calculus, so type variables are only used for self types. Following the tradition of Abadi
and Cardelli [2], ObSEC does not include base (non-object) types, however they can be easily
added or encoded.

Subtyping. The ObSEC subtyping judgment Φ ` T <: U is presented in Figure 2. The
subtyping environment Φ is a set of subtyping assumptions between type variables, i.e.
Φ ::= · | Φ, α <: β.3 For all judgments in this work, we often omit the empty environment,
e.g. we write ` T <: U for · ` T <: U .

Rule (SObj) accounts for subtyping between object types. Object type T1 is a subtype of
object type T2 if T1 has at least the same methods as T2, possibly more specialized. For this,
the rule checks subtyping between method types under a subtyping assumption between the
self type variable of T1 and that of T2. For instance, consider the following object types:

Counter , Obj(α). [get : UnitL → IntL, inc : UnitL → αL, dec : UnitL → αL]
IncCounter , Obj(β). [get : UnitL → IntL, inc : UnitL → βL] .

To establish that Counter is a subtype of IncCounter, the covariance between the return
types of the inc method requires a subtyping assumption between type variables, here α <:
β. Rule (SVar) specifies subtyping between type variables, which only holds if the relation is

3 Type variables must appear at most once in the subtyping environment.

ECOOP 2017



53:8 Type Abstraction for Relaxed Noninterference

Φ ` T <: T

(SObj)

O1 , Obj(α).
[
m : S1 → S2

]
O2 , Obj(β).

[
m′ : S′1 → S′2

]
m′ ⊆ m

mi = m′j =⇒ (Φ, α <: β ` S′1j <: S1i Φ, α <: β ` S2i <: S′2j)
Φ ` O1 <: O2

(SVar)
α <: β ∈ Φ
Φ ` α <: β (SSubEq) O1 ≡ O2

Φ ` O1 <: O2
(STrans) Φ ` T1 <: T2 Φ ` T2 <: T3

Φ ` T1 <: T3

Φ ` S <: S

(TSubST) Φ ` T1 <: T2 Φ ` U1 <: U2

Φ ` T1 / U1 <: T2 / U2

Figure 2 ObSEC: Subtyping rules

methsig(O,m) = S → S

O , Obj(α).
[
m : S1 → S2

]
S , S1i [O/α] S′ , S2i [O/α]

methsig(O,mi) = S → S′

m ∈ O

O , Obj(α).
[
m : S1 → S2

]
mi ∈ O

methimpl(o,m) = x.e

o ,
[
z : S ⇒ m (x) e

]
methimpl(o,mi) = x.ei

Figure 3 ObSEC: Some auxiliary definitions

in the subtyping environment. Rule (SSubEq) justifies subtyping between equivalent types.
We consider type equivalence up to renaming and folding/unfolding of self type variables;
for instance:

Obj(α). [m : αL → αL] ≡ Obj(β). [m : βL → βL] (alpha equivalence)
Obj(α). [m : S → αL] ≡ Obj(α). [m : S → Obj(β). [m : S → βL]L] (fold/unfold equivalence)

(Appendix A.4 provides the complete definition of type equivalence.)
Rule (STrans) is standard. Rule (TSubST) justifies subtyping between security types,

which is covariant in both facets.
Figure 3 presents auxiliary functions used to test method membership in a type (m ∈ T ),

to get the type of a method in an object type (methsig) and to get the implementation of
a method (methimpl). These operations are standard; the only interesting thing to note is
that in methsig we close the types in the method signature, by replacing type variables with
their object types.

Static semantics. Figure 4 shows the typing rules of ObSEC. The type judgment Γ ` e : S
gives a security type to an expression under a type environment Γ that binds variables
to types (Γ ::= · | Γ, x : S). In what follows, we assume well-formedness of types and
environments: informally, an environment is well-formed if all security types are closed and
well-formed; a well-formed security type satisfies the requirement that the private type is a
subtype of the public type. We further discuss well-formedness at the end of this section.

Rules (TVar) and (TSub) are standard. The (TObj) rule accounts for objects. It requires



R. Cruz, T. Rezk, B. Serpette and É. Tanter 53:9

Γ ` e : S

(TVar)
x ∈ dom(Γ)
Γ ` x : Γ(x)

(TSub) Γ ` e : S′ ` S′ <: S
Γ ` e : S

(TObj)
S , T / U methsig(T,mi) = S′i → S′′i Γ, z : S, x : S

′
i ` ei : S′′i

Γ `
[
z : S ⇒ m (x) e

]
: S

(TmD)
Γ ` e1 : T / U m ∈ U methsig(U,m) = S1 → S2 Γ ` e2 : S1

Γ ` e1.m(e2) : S2

(TmH)
Γ ` e1 : T / U m /∈ U methsig(T,m) = S1 → T2 / U2 Γ ` e2 : S1

Γ ` e1.m(e2) : T2 / >

Figure 4 ObSEC: Static semantics

each method body to be well-typed with respect to the private facet of the object. In
particular, the method body must match the return type of the method signature in the
private facet of the self type S.

From a security point of view, the interesting rules are the ones for method invocation.
Rule (TmD) applies when the invoked method is part of the public facet of the receiver. In
this case, because the method invocation respects the declassification policy, the overall type
of the invocation is the return type of the method in the public facet. This expresses that
the invocation advances a step in the progressive declassification of the object. For instance,
if the expression e1 has the public type StringHashEq , [hash : UnitL → Int / IntEq], the
invocation e1.hash() has type Int / IntEq, expressing that the returned value is a secret that
can further be declassified by calling the method eq from IntEq.

Rule (TmH) applies when the method is not in the public type U , but only in the private
type T (if the method is not in T , the expression is ill typed). In this case, the method call is
accessing the “secret” part of the object: the result of the method invocation must therefore
be protected by changing its public facet to >. This rule captures the design decision that
using a secret beyond its declassification policy is allowed, but the result must be secret. In
other words, only a private observer can use objects beyond their declassification policies;
to a public observer, the results of these interactions are unobservable.4

Dynamic semantics. We define a standard call-by-value small-step semantics for ObSEC,
based on evaluation contexts E ::= [ ] | E.m(e) | v.m(E).

The language includes a single reduction rule, for method invocation, which is standard:

(EMInv)
o , [z : _⇒ _] methimpl(o,m) = x.e

E[o.m(v)] 7−→ E[e [o/z] [v/x]]

Type safety. We now establish that well-typed ObSEC programs are safe. Note that type
safety does not provide any security guarantees for ObSEC. (Security guarantees will be

4 Access modifiers in object-oriented languages, such as private and public in Java are a really differ-
ent mechanism. Such modifiers are about encapsulation, not about information flow. The essential
difference can be observed in rule (TmH), which propagates privacy on return values.

ECOOP 2017



53:10 Type Abstraction for Relaxed Noninterference

VkJSK = {v = [z : S1 ⇒ _] | S , T / U ` S1 <: S ∧
(∀j < k. v ∈ VjJS1K ∧

(∀m ∈ T, v′. methsig(T,m) = S′ → S′′ methimpl(v,m) = x.e

v′ ∈ VjJS′K =⇒ e [v/z] [v′/x] ∈ CjJS′′K))}

CkJSK = {e | ∀j < k. ∀e′.(e 7−→j e′ ∧ irred(e′)) =⇒ e′ ∈ Vk−jJSK}

Figure 5 ObSEC: Unary logical relation for safety

addressed in Section 4.) A program e is safe, noted safe(e), if it does not get stuck, i.e. if it
either reduces to a value or diverges.

I Definition 1 (Safety). safe(e)⇐⇒ ∀e′. e 7−→∗ e′ =⇒ e′ = v or ∃e′′. e′ 7−→ e′′

We prove type safety for ObSEC using a semantic interpretation of types as a unary lo-
gical relation [3]. We cannot however define the logical relation based on a direct induction
over the structure of types, because of recursive types, which would make such a definition
ill-founded. Therefore, we use a step-indexed logical relation [4, 6]. We establish an inter-
mediary result for a fixed number k of steps, meaning that a term is safe for k evaluation
steps, and then quantify ∀k ≥ 0 to obtain the general result. Step indexing ensures the
well-foundedness of the logical relation.

Figure 5 defines the unary logical relation that captures the safety interpretation of types
as values and computations, in a mutually recursive manner. The set VkJSK denotes the safe
value interpretation of type S for k steps; it contains all the values (i.e. objects) for which
it is safe (for any j < k number of steps) to invoke methods of the private type T of the
security type S , T / U . Note that the definition needs to assume that the self object is in
the value interpretation of S, for j < k steps; without step-indexing, this relation would be
ill-founded due to the recursive nature of objects through their self variables. The set CkJSK
contains all the expressions that can be safely executed for k steps at the security type S. In
the definition, the irred(e) predicate denotes irreducible expressions, i.e. expressions e such
that @e′.e 7−→ e′.

We define semantic typing, written |= e : S, to denote that a closed expression e executes
safely for any fixed number of steps:

I Definition 2 (Semantic typing). |= e : S ⇐⇒ ∀k ≥ 0. e ∈ CkJSK.

We then first prove that semantic typing does imply safety as per Definition 1.

I Lemma 3 (Semantic type safety). |= e : S =⇒ safe(e)

Proof. To show safe(e) we need to consider an arbitrary e′ such that e 7−→∗ e′ and then
show that either e′ = v or ∃e′′. e′ 7−→ e′′

Let us consider an arbitrary j1 to count the step that takes e 7−→∗ e′. Let us denote l = j1+1
By expanding the definition of |= e : S we have ∀k ≥ 0. e ∈ CkJSK. We instantiate this with
k = l to obtain e ∈ ClJSK. By expanding this we have:
∀j < l. ∀e1.(e 7−→j e1 ∧ irred(e1)) =⇒ e1 ∈ Vk−jJSK. We instantiate e ∈ ClJSK with j1
and e′ and we obtain: (e 7−→j1 e′ ∧ irred(e′)) =⇒ e′ ∈ Vk−j1JSK.
There are two cases to consider: ¬irred(e′) and irred(e′) . If ¬irred(e′), then by definition
∃e′′. e′ 7−→ e′′. If irred(e′), we have that e′ ∈ Vk−jJSK, so e′ is a value. J

Second, we prove that syntactic typing (Figure 4) implies semantic typing.



R. Cruz, T. Rezk, B. Serpette and É. Tanter 53:11

I Lemma 4 (Syntactic typing implies semantic typing). ` e : S =⇒ |= e : S

Proof. The result follows from a similar lemma on open terms: Γ ` e : S =⇒ Γ |= e : S.
We define a standard notion of safe value substitutions [3], i.e. partial maps from variables
to safe values, γ ∈ GkJΓK and Γ |= e : S as follows:
γ ∈ GkJΓK ⇐⇒ dom(γ) = dom(Γ) and ∀x ∈ dom(Γ).γ(x) ∈ VkJΓ(x)K
Γ |= e : S ⇐⇒ ∀k ≥ 0, ∀γ. γ ∈ GkJΓK =⇒ γ(e) ∈ CkJSK.
Then we prove that Γ ` e : S =⇒ Γ |= e : S by induction on the typing derivation
of e. The case (TVar) is direct from the definition of γ ∈ GkJΓK. The case (TSub) fol-
lows directly from a subsumption lemma (e ∈ CkJSK ∧ ` S <: S′ =⇒ e ∈ CkJS′K).
Cases (TObj), (TmD) and (TmH) are proven by unfolding the definitions of CkJSK and
VkJSK, and applying the induction hypotheses for smaller indexes. For these cases, we use
mainly a monotonicity lemma for the value interpretation of a type regarding the index,
i.e. e ∈ VkJSK ∧ j ≤ k =⇒ v ∈ VjJSK. J

Together, Lemmas 3 and 4 imply that well-typed programs are safe.

I Theorem 5 (Syntactic type safety). ` e : S =⇒ safe(e)

Now that we have established that ObSEC is a well-defined, type-safe language, Section 4
will develop its security guarantees.

A note on well-formedness. Before we proceed, however, we need to mention a technical
yet important issue that we overlooked so far. For the main results of Section 4 to hold,
we need to ensure that we work with well-formed security types, i.e. that the private facet
type is a subtype of the public facet type. In a language with simple, non-recursive types,
defining such subtyping constraints is straightforward. However, in the presence of recursive
(object) types, defining the rules for the subtyping constraint of security types is rather
subtle and involved. The subtlety with type variables is that, at some point, we might
have to check well-formedness of a security type with a type variable in one of its facets, e.g.
α / T , without knowing any relation between α and T . To address this, we need to remember
the surrounding recursive object type O that binds α, and to transform the check ` α <: T
to ` O <: T . For conciseness, we leave out the well-formedness rules from the main body
of the paper; they are fully described in Appendix A.2. In what follows, we systematically
assume that security types (and by extension, type environments) are well-formed.

4 Type-Based Relaxed Noninterference

Faceted security types support information-flow security with declassification. The security
property that type-based declassification supports is a form of relaxed noninterference [21],
which we informally explained in Section 2. This section formally defines the notion of
type-based relaxed noninterference (TRNI) independently of any enforcement mechanism.
Then, we prove that the type system of ObSEC is sound with respect to this property.

Type-based equivalence. As introduced in Section 2, TRNI is defined in terms of a notion
of type-based equivalence between objects: a program satisfies TRNI at type Sout, if given
two inputs at type Sin, it produces two equivalent results at type Sout. Equivalence at a type
accounts for the possible observations (i.e. method invocations) that one is allowed to make
on an object. We define this equivalence as a step-indexed logical relation [4], in Figure 6.

ECOOP 2017



53:12 Type Abstraction for Relaxed Noninterference

v1 ≈k v2 : VJSK ⇐⇒ S , T / U vi , [z : _⇒ _]
`1 vi : T ∧ (∀m ∈ U. methsig(U,m) = S′ → S′′ methimpl(vi,m) = x.ei

∀j < k, v′1, v
′
2. v1 ≈j v2 : VJSK ∧

(v′1 ≈j v
′
2 : VJS′K =⇒ e1 [v1/z] [v′1/x] ≈j e2 [v2/z] [v′2/x] : CJS′′K))

e1 ≈k e2 : CJSK ⇐⇒ S , T / U

`1 ei : T ∧ (∀j < k.(e1 7−→≤j v1 ∧ e2 7−→≤j v2) =⇒ v1 ≈k−j v2 : VJSK)

Figure 6 Step-indexed logical relation for type-based equivalence

We define how to relate values (i.e. objects) as well as computations (i.e. expressions). Step
indexing is required due to the recursive nature of object types, as explained below.

Note that the definitions use a simple typing judgment that does not account for security
typing at all; its sole purpose is to ensure safety. This is crucial: the public facets of security
types only play the role of specifications of declassification policies, and the logical relation
specifies the meaning of these specifications, without any consideration for an enforcement
mechanism. In particular, observe that the definitions in Figure 6 do not appeal to security
type judgments (`), but only to simple type judgments (`1).

I Definition 6 (Simple typing judgment). Based on the security typing judgment Γ ` e : S,
we define the simple typing judgment Γ `1 e : T by focusing only on the private facet of
security types. Formally: Γ `1 e : T ⇐⇒ Γ ` e : T / U for some U .
(The inductive definition of simple typing is in Appendix A.5.)

Intuitively, two objects v1 and v2 are equivalent at type S , T / U for k steps, noted
v1 ≈k v2 : VJSK, when one cannot distinguish them by invoking any method m of U . More
precisely, to ensure safety, we first demand that both values are well-typed at T with the
simple type system. Then, for each method m ∈ U and every j < k, the invocations of
m on v1 and v2 with related arguments at the argument type S′ of m must be equivalent
computations at the return type S′′ for j steps, as defined below. Finally, note that the
definition also requires that v1 and v2 are related self objects, for j < k steps; this is
necessary for the relation to be well-founded. (Observe that two simply well-typed objects
are vacuously equivalent for zero steps.)

Two expressions e1 and e2 are equivalent at security type S , T / U for k steps, noted
e1 ≈k e2 : CJSK, if they are both (simply) well-typed at T and, provided that they both
reduce to values in at most j < k steps (noted e 7−→≤j v), then both values are equivalent
at type S for the remaining k− j steps. Note that this definition is termination insensitive:
if one expression does not terminate in less than k steps, then both expressions are deemed
equivalent.

Defining TRNI. The type-based approach to declassification policies allows us to formulate
the corresponding relaxed noninterference property as a modular reasoning principle, simil-
arly to the common formulation of noninterference in languages without declassification [37],
thereby avoiding the global and external formulation of the transformation approach [21].

Standard noninterference is usually stated as a modular reasoning principle on open
terms [37]: given a well-typed open term, which depends on some private variables, clos-
ing the term with private inputs yields equivalent programs when observed by a low-
confidentiality observer. This statement can be generalized using the notion of value substi-
tutions, i.e. partial maps from variables to values: given an open term that typechecks in



R. Cruz, T. Rezk, B. Serpette and É. Tanter 53:13

a given environment Γ, applying two related substitutions yields equivalent computations.
Applying a substitution, noted γ(e), substitutes the free variables of e with their values in
γ.

I Definition 7 (Satisfactory substitution). A substitution γ satisfies type environment Γ,
noted γ |= Γ, iff dom(γ) = dom(Γ) ∧ ∀x ∈ dom(Γ). `1 γ(x) : T where Γ(x) , T / U

I Definition 8 (Related substitutions). Two substitutions γ1 and γ2 are equivalent for k steps
with respect to a type environment Γ, noted γ1 ≈k γ2 : GJΓK, if γi |= Γ and

∀x ∈ dom(Γ).γ1(x) ≈k γ2(x) : VJΓ(x)K

The statement of type-based relaxed noninterference is a direct generalization of standard
noninterference: an open term e, simply well-typed in environment Γ, satisfies type-based
relaxed noninterference at security type S, noted TRNI(Γ, e, S), if two executions of e with
related substitutions with respect to Γ produce equivalent computational expressions at type
S, for any number of steps.

I Definition 9 (Type-based relaxed noninterference).

TRNI(Γ, e, S) ⇐⇒ S , T / U Γ `1 e : T ∧
∀k ≥ 0. ∀γ1, γ2. γ1 ≈k γ2 : GJΓK =⇒ γ1(e) ≈k γ2(e) : CJSK

This definition captures the semantic characterization of TRNI-secure expressions, in-
dependently of any enforcement mechanism (recall that, in Figure 6, the public facets of
security types only play the role of specifications of declassification policies). The ObSEC
type system is a sound, conservative enforcement mechanism for TRNI.

Security type soundness. To establish that well-typed ObSEC programs satisfy TRNI, we
first introduce a general notion of type-based equivalence between open expressions. Two
open expressions, well-typed under a type environment Γ, are equivalent at a security type
S , T / U , if both expressions have simple type T , and given two related value substitutions
for Γ, closing each expression with a satisfactory substitution yields equivalent expressions
at type S.

I Definition 10 (Equivalence of open terms).

Γ ` e1 ≈ e2 : S ⇐⇒ S , T / U Γ `1 ei : T∧
∀k ≥ 0. ∀γ1, γ2. γ1 ≈k γ2 : GJΓK =⇒ γ1(e1) ≈k γ2(e2) : CJSK

As is clear from the definitions, if a term is equivalent to itself at type S, then it satisfies
TRNI at S.

I Lemma 11 (Self-equivalence). Γ ` e ≈ e : S =⇒ TRNI(Γ, e, S)

Type soundness of ObSEC follows from the fact that the ObSEC type system enforces such a
self-equivalence.

I Lemma 12 (Fundamental property). Γ ` e : S =⇒ Γ ` e ≈ e : S

Proof. The proof is by induction on the typing derivation of e. The (TVar) case follows
directly from Definition 8 and the (TSub) case follows from a subtyping lemma: if e1 ≈k

e2 : CJSK and ` S <: S′ then e1 ≈k e2 : CJS′K. The (TObj) case applies the induction
hypothesis (IH) on method bodies. To use the IH results, we need to show that the value

ECOOP 2017



53:14 Type Abstraction for Relaxed Noninterference

substitutions that result from extending the current substitutions with both self and actual
arguments are also related. This step requires auxiliary lemmas of monotonicity of the
logical relations regarding smaller indexes. The (TmD) case follows from applying the IH
over both subexpressions, selecting adequate indexes. The (TmH) case is simpler because
there is no method to invoke in the public type >. J

Finally, type soundness for ObSEC follows directly from Lemmas 11 and 12.

I Theorem 13 (Security type soundness). Γ ` e : S =⇒ TRNI(Γ, e, S)

Illustration. We now illustrate the relation between the security typing and the definition
of TRNI. In the examples we use some standard constructs like conditionals, not included
in ObSEC, but easily encodable.

As introduced in Section 2, the property TRNI(Γ, e, T / U) can be intuitively understood
as: the initial knowledge of a public observer in Γ (i.e. the declassification policies) implies
the final knowledge (i.e. the resulting public type U) that the observer has at hand to
distinguish the results of two arbitrary executions of the secure program e of simple type T .

Let us recall the type StringLen , [length : UnitL → IntL] from the end of Section 2.
Consider the open term e , x.length under the type environment Γ , x : String / StringLen.
The judgment Γ ` e : IntL ensures that TRNI(Γ, e, IntL) holds. It says that executing e, with
two different strings v1 and v2 of the same length is secure because the observer does not
learn anything new by exploiting the knowledge of distinguishing the resulting integers with
any method of Int. In fact, if we use the definition of TRNI, for any equivalent substitutions
γ1 and γ2 such that γ1 ≈k γ2 : GJΓK, such as γi , x 7→ vi, we need to show γ1(x).length()
≈k γ2(x).length() : CJIntLK. It is easy to see that this result follows from the assumption
that v1 and v2 have the same length (i.e. are equivalent at String / StringLen).

We have a different situation if we consider e′ , if(x.eq("mary")) return 1 else 2, with
the same type environment Γ. We cannot prove that TRNI(Γ, e′, IntL) holds, meaning this
program is not secure at type IntL. Indeed, take γ1 , x 7→ "mary" and γ2 , x 7→ "john".
Because both strings have the same length, we have "mary" ≈k "john" : VJString / StringLenK,
so the two substitutions are equivalent. However, we cannot show that γ1(e′) ≈k γ2(e′) :
CJIntLK, because this requires to show that 1 ≈k 2 : VJIntLK, which is obviously false.

The type system of ObSEC indeed rejects the judgment Γ ` e : IntL. It does accept the
judgment Γ ` e : IntH, meaning that e′ is secure at type IntH. This is correct because then
the public observer has no ability to compare the resulting values of e′. Note in fact that any
simply well-typed expression of type T is secure at type TH. Such expressions are opaque to
a public observer, but are observable by a private observer.

Principles of declassification. Our approach to type-based declassification satisfies the
declassification principles stated by Sabelfeld and Sands [28].5 We now briefly introduce
each principle and informally argue why it is respected.

Conservativity—i.e. “Security for programs with no declassification is equivalent to non-
interference”. It is easy to see that if a program satisfies TRNI(Γ, e, TL), for some T , and
all security types in both Γ and e are either highly confidential (TH) or not confidential

5 Sabelfeld and Sands mention a fourth principle, non-occlusion, which addresses the interaction between
declassification and covert channels, such as heap assignments, exceptions or termination behavior.
ObSEC has neither mutation nor control operators, and termination is not considered a covert channel
because we only deal with termination-insensitive noninterference.



R. Cruz, T. Rezk, B. Serpette and É. Tanter 53:15

at all (TL), then the definition of TRNI coincides exactly with the definition of pure
noninterference [37]. Therefore type-based relaxed noninterference is a generalization of
pure noninterference.

Monotonicity of Release—i.e. “Adding further declassifications to a secure program can-
not render it insecure”. This lemma follows from subtyping naturally. Recall that in
our approach, in the judgment TRNI(Γ, e, S), declassification policies come from types
ascribed in both Γ and e. “Adding further declassification” in the inputs means in our
context replacing security types in Γ with subtypes, more precisely, where the public
facets are subtypes of the original types. The security typing judgment also holds in
this scenario of additional declassification in the inputs. Similarly, adding declassific-
ation in the expression e means specializing the public facets of types in object type
declarations. Again, this does not affect the semantic TRNI judgment. Note, however,
that if argument types are specialized, the program might not be typable anymore with
the security type system, as such a change breaks the contravariance of subtyping for
argument method types.

Semantic Consistency—i.e. “The (in)security of a program is invariant under semantics-
preserving transformations of declassification-free subprograms.”. The principle says that
it is possible to replace an expression that does not use declassification with another
semantically-equivalent expression, without affecting security. As observed by Sabelfeld
and Sands, the approach to declassification policies of Li and Zdancewic [21] violates this
principle, because they rely on a restricted, mostly-syntactic form of program equivalence
to decide label ordering. Therefore, many semantically-equivalent programs are not
deemed equivalent, hence affecting their (in)security. In contrast, our notion of type-
based equivalence (Figure 6) is semantic, not syntactic.

Limitations of security typing. The ObSEC type system is a static enforcement mechanism
for type-based relaxed noninterference. As such, it is inherently conservative. This has two
implications regarding Theorem 12.

First, the type system can reject some programs that are in fact secure. For example,
consider the following definitions:
T , Obj(α). [n : StringL → StringL]
T ′ , Obj(α). [m : StringH → StringH]
v , [z : TL ⇒ n (x) "hello"]
v′ , [z : T ′L ⇒ m (x) v.n(x)]

Here, v′ is not well-typed using the security type system, because of the call v.n(x)
(` StringH ≮: StringL). However, we can show that v′ does satisfy TRNI(·, v′, T ′L), because a
public observer always obtains the same result (i.e. "hello") for any two secrets passed to
method m; the program is not leaking any information.

Second, the type system can assign the security type T /> to an expression, despite the
fact that > is not the tighter secure type for TRNI to hold. For instance, let us assume that
Int has built-in methods mod2 and mod4 with the standard mathematical meaning, and we
define the type IntMod4 , [mod4 : UnitL → IntL]. Consider Γ , v : Int / IntMod4 and e ,
v.mod2(). The type system admits Γ ` e : IntH, which implies TRNI(Γ, e, IntH), but it does
not admit Γ ` e : IntL; despite the fact that TRNI(Γ, e, IntL) also holds—because if a and b
are equivalent modulo 4, then they are also equivalent modulo 2.

ECOOP 2017



53:16 Type Abstraction for Relaxed Noninterference

5 Expressiveness of Declassification Policies

Our approach to type-based declassification policies builds upon an underlying type system.
While we have chosen a simple model of recursive object types to develop the approach in
the previous sections, it is interesting to explore how the expressiveness of the underlying
type discipline affects the range of declassification policies that can be defined.

Recursive types. It is possible to exploit the idea of type-based declassification policies
without recursive object types. We only need a type abstraction mechanism, such as that
enabled by subtyping. In fact, with only record types and subtyping, we can already capture
a set of interesting policies, such as those mentioned at the begin of Section 2 (e.g. StringEq,
StringHashEq). TRNI depends on the notion of equivalence between values and computa-
tions, which can be easily simplified for the non-recursive setting; in particular, we can get
rid of step-indexing in the logical relations.

Of course, without recursive object types in the core formalism, we lose the ability
to express recursive declassification policies (which are useful to declassify recursive data
structures, as illustrated in Section 2). With records but without objects, we can add
general recursive types of the form µX.T to support recursive declassification policies. Note
however that combining general recursive types and subtyping is challenging, and there are
different definitions that may not be complete (i.e. unable to establish a subtyping relation
that indeed holds); in particular, our subtyping rules are not complete regarding subtyping
between infinite trees [5]. This challenge solely affects the kinds of security types that can
be defined and deemed well-formed.

Finally, one characteristic of recursive declassification policies is that they potentially
allow to chain arbitrarily many invocations of a declassification method. For instance,
consider an infinite stream of strings, and a declassification that allows equality comparisons
on its elements:

StrEqStream , [head : UnitL → StringEqL, tail : UnitL → StrEqStreamL]

In case tolerating an unbounded number of observations would represent an unacceptable
accumulated leak, the programmer can define a more restrictive declassification policy that
restricts the number of tolerated calls by explicitly nesting interface types instead of defining
a fully recursive one. Obviously, to be practical, one would need to define a convenient
surface syntax such as:

StrEqStream , [head : UnitL → StringEqL, tail : UnitL → StrEqStreamL@k]

to specify that the declassification policy only supports at most k unfoldings of StrEqStream
through tail, and to desugar it to a finite nesting of interface types.

Universal types. Universal types allow programmers to define programs that are paramet-
erized by types. This can be used to define generic data structures, such as lists:

List [X] , {isEmpty : UnitL → BoolL, head : UnitL → XL, tail : UnitL → List[X ]L}

If we add parametric polymorphism to ObSEC, then in addition to get polymorphism
over implementation types, we naturally get a general form of security label polymorphism,
which is very useful (and supported in Jif [23]). For example, we can define generic data
structures that are polymorphic with respect to the security labels of their inner data; the
list structure defined above is a specific example.



R. Cruz, T. Rezk, B. Serpette and É. Tanter 53:17

Similarly, a declassification policy can exploit parametric polymorphism. Recall the
recursive declassification example of Section 2, in which we allow traversing a list and only
comparing its elements with a given public element. We can express a generic version of
this declassification policy with the following type:

ListEq [X] , [isEmpty : UnitL → BoolL, head : UnitL → X / Eq[X ], tail : UnitL → ListEq[X ]L]
Eq [X] , [eq : XL → BoolL]

Note that the above definition is however invalid, because ListEq is not well-formed: in order
to satisfy the subtyping constraint between the facets of a security type such as X / Eq[X ],
we need to bound the type variable X, which leads us to bounded parametric polymorphism.
Then, the type ListEq can be correctly defined as follows:

ListEq [X <: Eq [X ]] ,
[isEmpty : UnitL → BoolL, head : UnitL → X / Eq[X ], tail : UnitL → ListEq[X ]L]

Refinement types. Refinement types, as found in e.g. LiquidHaskell [34], enrich standard
types with predicates over a decidable logic. For instance, the type {x : Int | x ≥ 0} denotes
natural numbers. Additionally, refinement types usually support a form of dependent types,
allowing refinements to refer to variables in scope as well as function arguments. Combining
such expressive types with our approach allows interesting declassification policies to be
defined, such as restricting successive arguments of a progressive declassification.

As an example, consider the following policy:

IntModProd , [mod : {x : IntL} → [mult : {y : IntL | x = y} → IntL]L]

This progressive declassification allows revealing the result of the chain of invocations
mod then mult, only if the argument to both invocations is the same. Note that IntModProd
is a proper supertype of Int, since {y : Int | x = y} is a subtype of Int.

More advanced scenarios. There are other interesting declassification policies that seem
more challenging to support with our type-based approach. An interesting example is spe-
cifying that a string secret can be leaked only after it has been encrypted; it is highly unlikely
that the standard String class exposes an encryption method. However, our approach does
appeal to the actual interface of an object in order to define its declassification. Hicks et
al. [20] introduce special declassifier functions to express arbitrary declassification that can
involve operations that are not defined on the declassified object itself. Therefore a possible
solution to address this example in our setting would be to rely on an external method
specification mechanism, such as open classes or mixin-based composition of traits in Scala.

Nevertheless, the above approach would still fall short of expressing global declassification
policies, as described by Li and Zdancewic [21], which can relate the declassification of dif-
ferent secrets at once. While the value dependencies can be expressed using, e.g. refinement
types, the challenge is to ensure that the obtained security types are still well-formed (i.e. the
public facet must be a supertype of the private facet). These are interesting challenges for
future development of the approach.

A note about casts. In Section 2 we alluded to the challenge of integrating explicit down-
casts in a language that adopts type-based declassification policies. Casts can be soundly
incorporated in such a language provided that we only allow casting values from a security

ECOOP 2017



53:18 Type Abstraction for Relaxed Noninterference

type to another one that has the same public type, i.e. casts cannot affect the declassification
policy. Therefore the interesting typing rule for a cast expression 〈T 〉 e is:

(TCast) Γ ` e : T ′ / U ` T <: T ′
Γ ` 〈T 〉 e : T / U

As usual in security languages with casts, cast errors are seen as a non-termination
channel, hence not affecting the security definitions.

6 Related work

Information flow security in general, and declassification in particular, are very active areas
of research. We now discuss the most salient proposals related to this work.

Secure information flow and type abstraction. Our work shows a connection between
type abstraction and declassification policies for secure information flow. Previous works
also attempt to connect type abstraction and secure information flow.

Tse and Zdancewic [31] encode the Dependency Core Calculus (DCC) [?] in System F.
The correctness theorem of their translation aims at showing that the parametricity theorem
of System F implies the noninterference property. Unfortunately, Shikuma and Igarashi
identify a mistake in the proof of their main result [29]; they also gave a noninterference-
preserving translation for a version of DCC to the simply-typed lambda calculus. However,
this translation left open the connection between parametricity and noninterference, initially
aimed by Tse and Zdancewic.

Recently, Bowman and Ahmed [?] provide a translation from DCC to System Fω, suc-
cessfully demonstrating that noninterference can be encoded via parametricity. Our work
generalizes this by showing that type abstraction implies relaxed noninterference. Informa-
tion flow analyses have been proposed to generalize parametricity in the presence of runtime
type analysis [36]. Using security labels, a programmer can specify data structures that
should remain confidential in order to hide implementation details and rely on type abstrac-
tion for abstract datatypes.

An interesting research direction is to investigate whether our proposal of solving inform-
ation flow problems via type abstraction, here through subtyping, can be used to generalize
parametricity as proposed by Washburn and Weirich [36].

Declassification. As extensively discussed, our policies and security property are based on
the work of Li and Zdancewic [21], which proposes two kinds of downgrading policies (which
we call here declassification policies, since they only relate to confidentiality): local and
global policies. The declassification policies in this paper directly correspond to local policies,
as discussed in the introduction. Global policies refer to declassifications that involve more
than one secret simultaneously. As discussed in Section 5, it is unclear if and how global
policies can be supported using our type-driven approach; further exploration is necessary
to settle this issue. Additionally, in contrast to the definition of relaxed noninterference of Li
and Zdancewic [21], our definition is independent from the security enforcement mechanism.
This allows us to distinguish programs that are not secure from programs that are not
typable due to a necessarily conservative static security mechanism (see Section 4). Also,
our definition of relaxed noninterference is formulated as a generalization of the semantic
characterization of pure noninterference [37], providing a modular reasoning principle, as
opposed to the global translation approach of Li and Zdancewic.



R. Cruz, T. Rezk, B. Serpette and É. Tanter 53:19

In the following, we focus on the closest related work on declassification policies starting
from 2005 and refer the reader to [28] for a survey prior to 2005.

Typing declassification in object-oriented languages. Since 2005, several works have stud-
ied static enforcement of declassification in object-oriented languages [9, 20, 10, 15].

Banerjee and Naumann [9] study the interaction between security typing for noninter-
ference and access control in a Java-like language. Security levels are not fixed but rather
depend on access permissions. In contrast to our work, security levels are independent of
method signatures or types and thus their typing does not relate to type abstraction.

Hicks et al. [20] propose trusted declassification for an object calculus. Principals in
a program have access to specified trusted declassifier functions or methods. Typeable
programs are secure for noninterference modulo trusted methods, in the same spirit as
typing of noninterference of programs with cryptographic functions [19]. In contrast to
relaxed noninterference, trusted declassification does not consider declassifiers as part of
security levels. Instead, declassifiers need to be associated by a policy to different principals
(security labels in our setting) in the lattice.

Barthe et al. [10] propose a modular method to extend type systems and proofs for
noninterference to declassification and discuss how the method extends to object-oriented
languages. The declassification property called delimited non-disclosure [22] does not sup-
port fine-grained specification of how to declassify a given secret, as supported by relaxed
noninterference.

Tse and Zdancewic [32] propose a security-typed language for robust declassification:
declassification cannot be triggered unless there is a digital certificate to assert the proper
authority. Their language inherits many features from System F<: and uses monadic labels
as in DCC [?]. The monadic style allows them to integrate computational effects, which
we do not support. In contrast to our work, security labels are based on the Decentralized
Label Model (DLM) [24], and are not semantically unified with the standard safety types of
the language.

Chong and Myers [15] propose hybrid typing to enforce declassification and erasure
policies and implement it in Jif [23]. Their language features a special declassification func-
tion that takes as input the expression and levels to declassify and also the conditions under
which declassification can occur. Security policies are specified by means of security levels
and conditions to downgrade them. This resembles our declassification policies, which spe-
cify the methods that can be applied in order to (partially) declassify; at a more abstract
level, the interface types of the public facet can be seen as “conditions” for declassifying.
The type system developed by Chong and Myers statically checks that conditions in de-
classification commands comply with the specified security policies. A dynamic mechanism
enforces this, or returns a dummy value (instead of the declassified value) at runtime. In
contrast to our work, their type system significantly departs from standard typing rules, and
dynamic checks are required for guaranteeing security.

Extensional specification of declassification policies. The language Air [30] expresses
declassification policies as security automata. The policies, seen as automata, transition
when a release obligation is satisfied. When an accepting state is reached, declassification
is performed. These policies resemble relaxed noninterference and our own declassification
policies but they require very specific typing rules.

Banerjee et al. [?] study declassification properties using ideas from epistemic logic can
capture global policies (as in the original work of relaxed noninterference) with an extensional

ECOOP 2017



53:20 Type Abstraction for Relaxed Noninterference

property. Their policies are not expressed using standard types as in our work.
The language Paralocks [14] supports declassification policies represented as Horn clauses,

whose antecedents are conditions that should be satisfied for a flow to occur. There is a nat-
ural order between declassification policies that correspond to the logical entailment when
viewing policies as Horn clauses. The policies together with the logical entailment order
define a lattice that supports an extensional specification of secrets and their intended de-
classification, as in our work. However, declassification policies in Paralocks are not specified
by using the standard types of the language, and thus their enforcement requires specific
typing rules.

Multiple facets for dynamic enforcement of declassification Austin and Flanagan intro-
duce Multiple Facets [?] as a dynamic mechanism to enforce secure information flow. The
main idea behind multiple facets is to execute a program using multiple values, one value or
facet for each security level of observation. A value considered confidential will only flow to
a public facet by facet declassification, based on robust declassification [39]. Robust declas-
sification requires the decision to declassify to be trusted according to integrity labels used
to model trust. In our work, we do not consider integrity labels or robust declassification.
However, the idea of multiple facets (having a facet for each observer at a given security
level) is similar to our faceted types. Just as Austin and Flanagan can run a program for dif-
ferent facets simultaneously, we type check programs providing different views to observers
with different security clearances.

Multiple facets are also inspired by Secure Multi Execution (SME) [18, 11], a dynamic
mechanism that roughly executes a program multiple times in order to enforce noninterfer-
ence. Hence, observers with different security clearances will potentially observe different
values during the execution of a program. Several works have studied declassification in
the context of SME [26, 33, 12]. Rafnsson and Sabelfeld [26] propose declassification in
SME based on the gradual release property [7]. This property differs from the property we
consider in our work in that it is not possible to extensionally specify what is being released
or declassified. The latest works on SME declassification [33, 12] generalize security levels
as declassifier functions, resembling declassification policies of both Li and Zdancewic and
ours. Since SME is a dynamic enforcement mechanism, these declassification policies are
not used for relating declassification and type abstraction.

7 Conclusion

One of the open challenges in the area of information flow security is integrating informa-
tion flow mechanisms with existing infrastructures [38]. Our work partially addresses this
challenge by showing a connection between type abstraction, more precisely that induced
by the the subtyping relation in an object-oriented language, and the order relation in se-
curity lattices. In particular, we exploit an intuitive connection between object interfaces
and declassification policies: an object interface already gives a way to control the exposed
behavior of an object. These connections imply that standard type systems can be used as
a direct means to enforce secure information flow, when types express security policies. It is
left to explore how this connection scales in practice, but we expect the economy of concepts
to be an important asset for adoption.

We plan to study the impact of more advanced typing disciplines on the expressiveness of
type-based declassification, especially dependent object types [27] and refinement types [34].
It remains to be seen whether global policies can be expressed, and how. Another venue



R. Cruz, T. Rezk, B. Serpette and É. Tanter 53:21

for future work is to develop our approach in a setting that relies on other forms of type
abstraction, such as existential types. Finally, we intend to explore how to infer the minimal
knowledge that has to be exposed to a public observer in order to guarantee a relaxed
noninterference guarantee at a given type. Inferring the minimal input declassifications of a
secure program can for instance be useful to assess the impact some refactoring or extensions
of that program have on security.

References

1 Martín Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. A core calculus of
dependency. In Proceedings of the 26th ACM Symposium on Principles of Programming
Languages (POPL 99), pages 147–160, San Antonio, TX, USA, January 1999. ACM Press.

2 Martin Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag, 1996.
3 Amal Ahmed. Semantics of Types for Mutable State. PhD thesis, Princeton University,

2004.
4 Amal Ahmed. Step-indexed syntactic logical relations for recursive and quantified types. In

Peter Sestoft, editor, Proceedings of the 15th European Symposium on Programming (ESOP
2006), volume 3924 of Lecture Notes in Computer Science, pages 69–83. Springer-Verlag,
2006.

5 Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. In David S. Wise,
editor, Conference Record of the Eighteenth Annual ACM Symposium on Principles of
Programming Languages (POPL 91), pages 104–118. ACM Press, 1991.

6 Andrew W. Appel and David McAllester. An indexed model of recursive types for found-
ational proof-carrying code. ACM Transactions on Programming Languages and Systems,
23(5):657–683, September 2001.

7 Aslan Askarov and Andrei Sabelfeld. Gradual release: Unifying declassification, encryption
and key release policies. In Proceedings of the 27th IEEE Symposium on Security and
Privacy (S&P 2007), pages 207–221. IEEE Computer Society Press, May 2007.

8 Thomas H. Austin and Cormac Flanagan. Multiple facets for dynamic information flow. In
Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL 2012), pages 165–178. ACM Press, January 2012.

9 Anindya Banerjee and David A. Naumann. Stack-based access control and secure inform-
ation flow. Journal of Functional Programmming, 15(2):131–177, September 2005.

10 Anindya Banerjee, David A. Naumann, and Stan Rosenberg. Expressive declassification
policies and modular static enforcement. In Proceedings of the IEEE Symposium on Security
and Privacy (S&P 2008), pages 339–353. IEEE Computer Society Press, May 2008.

11 Gilles Barthe, Salvador Cavadini, and Tamara Rezk. Tractable enforcement of declassifica-
tion policies. In Proceedings of the 21st IEEE Computer Security Foundations Symposium
(CSF 2008), pages 83–97. IEEE Computer Society Press, June 2008.

12 Natalia Bielova and Tamara Rezk. Spot the difference: Secure multi-execution and multiple
facets. In Proceedings of the 21st European Symposium on Research in Computer Security
(ESORICS 2016), pages 501– 519, 2016.

13 Iulia Bolosteanu and Deepak Garg. Asymmetric secure multi-execution with declassific-
ation. In Proceedings of the 5th International Conference on Principles of Security and
Trust (POST 2016), pages 24–45. Springer-Verlag, April 2016.

14 William J. Bowman and Amal Ahmed. Noninterference for free. In Proceedings of the 20th
ACM SIGPLAN Conference on Functional Programming (ICFP 2015), pages 101–113.
ACM Press, August 2015.

ECOOP 2017



53:22 Type Abstraction for Relaxed Noninterference

15 Niklas Broberg and David Sands. Paralocks: role-based information flow control and bey-
ond. In Proceedings of the 37th annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL 2010), pages 431–444. ACM Press, January 2010.

16 Stephen Chong and Andrew C. Myers. End-to-end enforcement of erasure and declassific-
ation. In Proceedings of the 21st IEEE Computer Security Foundations Symposium (CSF
2008), pages 98–111. IEEE Computer Society Press, June 2008.

17 William R. Cook. On understanding data abstraction, revisited. ACM SIGPLAN Notices,
44(10):557–572, 2009.

18 Dorothy E. Denning. A lattice model of secure information flow. Communications of the
ACM, 19(5):236–243, May 1976.

19 Dominique Devriese and Frank Piessens. Noninterference through Secure Multi-execution.
In Proceedings of the 31st IEEE Symposium on Security and Privacy (S&P 2010), pages
109–124. IEEE Computer Society Press, May 2010.

20 Cédric Fournet, Jérémy Planul, and Tamara Rezk. Information-flow types for homomorphic
encryptions. In Proceedings of the Conference on Computer and Communications Security
(CCS 2011), pages 351–360. ACM Press, October 2011.

21 Boniface Hicks, Dave King, Patrick McDaniel, and Michael Hicks. Trusted declassification:
high-level policy for a security-typed language. In Proceedings of the workshop on Program-
ming Languages and Analysis for Security (PLAS 2006), pages 65–74. ACM Press, June
2006.

22 Peng Li and Steve Zdancewic. Downgrading policies and relaxed noninterference. In Pro-
ceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 2005), pages 158–170. ACM Press, January 2005.

23 Ana Almeida Matos and Gérard Boudol. On declassification and the non-disclosure policy.
In Proceedings of the IEEE Computer Security Foundations Workshop (CSFW 2005), pages
549–597. IEEE Computer Society Press, October 2005.

24 Andrew C. Myers. Jif homepage. http://www.cs.cornell.edu/jif/, accessed May 2017.
25 Andrew C. Myers and Barbara Liskov. Protecting privacy using the decentralized label

model. ACM Transactions on Software Engineering and Methodology, 9:410–442, October
2000.

26 Benjamin C. Pierce. Types and programming languages. MIT Press, Cambridge, MA, USA,
2002.

27 Willard Rafnsson and Andrei Sabelfeld. Secure multi-execution: Fine-grained,
declassification-aware, and transparent. In Proceedings of the 26th IEEE Computer Se-
curity Foundations Symposium (CSF 2013), pages 33–48. IEEE Computer Society Press,
June 2013.

28 Tiark Rompf and Nada Amin. Type soundness for dependent object types (DOT). In Eelco
Visser and Yannis Smaragdakis, editors, Proceedings of the 2016 ACM SIGPLAN Interna-
tional Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2016), pages 624–641. ACM Press, November 2016.

29 Andrei Sabelfeld and David Sands. Declassification: Dimensions and principles. Journal
of Computer Security, 17(5):517–548, 2009.

30 Naokata Shikuma and Atsushi Igarashi. Proving noninterference by a fully complete trans-
lation to the simply typed lambda-calculus. In Mitsu Okada and Ichiro Satoh, editors,
Proceedings of the 11th Asian Computing Science Conference (ASIAN 2006), volume 4435
of Lecture Notes in Computer Science, pages 301–315. Springer-Verlag, 2006.

31 Nikhil Swamy and Michael Hicks. Verified enforcement of stateful information release
policies. In Úlfar Erlingsson and Marco Pistoia, editors, Proceedings of the Workshop on
Programming Languages and Analysis for Security (PLAS 2008), pages 21–32. ACM Press,
December 2008.



R. Cruz, T. Rezk, B. Serpette and É. Tanter 53:23

32 Stephen Tse and Steve Zdancewic. Translating dependency into parametricity. In Pro-
ceedings of the 7th ACM SIGPLAN Conference on Functional Programming (ICFP 2004),
pages 115–125, Snowbird, Utah, USA, September 2004. ACM Press.

33 Stephen Tse and Steve Zdancewic. A design for a security-typed language with certificate-
based declassification. In Proceedings of the 14th European Symposium on Programming
Languages and Systems (ESOP 2005), volume 2986 of Lecture Notes in Computer Science,
pages 279–294. Springer-Verlag, 2005.

34 Mathy Vanhoef, Willem De Groef, Dominique Devriese, Frank Piessens, and Tamara Rezk.
Stateful declassification policies for event-driven programs. In Proceedings of the 27th IEEE
Computer Security Foundations Symposium (CSF 2014). IEEE Computer Society Press,
2014.

35 Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-Jones.
Refinement types for haskell. In Proceedings of the 19th ACM SIGPLAN Conference on
Functional Programming (ICFP 2014), pages 269–282. ACM Press, August 2014.

36 Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. A sound type system for secure flow
analysis. Journal of Computer Security, 4(2-3):167–187, January 1996.

37 Geoffrey Washburn and Stephanie Weirich. Generalizing parametricity using information-
flow. In Proceedings of the 20th IEEE Symposium on Logic in Computer Science (LICS
2005), pages 62–71. IEEE Computer Society Press, June 2005.

38 Steve Zdancewic. Programming Languages for Information Security. PhD thesis, Cornell
University, August 2002.

39 Steve Zdancewic. Challenges for information-flow security. In Proceedings of Programming
Language Interference and Dependence, 2004.

40 Steve Zdancewic and Andrew C. Myers. Robust declassification. In Proceedings of the 14th
IEEE Computer Security Foundations Workshop (CSFW-14), pages 15–23. IEEE Com-
puter Society Press, June 2001.

ECOOP 2017



53:24 Type Abstraction for Relaxed Noninterference

A Auxiliary Definitions

A.1 Environments
Γ ::= · | Γ, x : S (type environment)
Φ ::= · | Φ, α <: β (subtyping environment)
∆ ::= · | ∆, α (type variable environment)
Σ ::= · | Σ, α , O (type definition environment)

Γ is a finite map from variables to closed and well-formed security types. Σ is a finite
map from type variables to object types. Φ is a set of subtyping relations between type
variables. ∆ is a set of type variables.
dom(Env) (where Env could be Γ, Σ or Φ) is the set of variables for which the finite
map Env is defined. In the case of dom(Φ), it is the set of the type variables in the left
part of the subtyping relation.
We also use the notations Γ, x : S or Σ, α , O or Φ, α <: β to extend the environments
Γ, Σ , Φ with a new binding or relation, respectively. If x ∈ dom(Γ), α ∈ dom(Σ) or
either α or β ∈ dom(Φ)∪ cod(Φ) the extension operation is not defined for the respective
environment.
The notation ∆, α extends the set ∆ with a new type variable. If α ∈ ∆ the operation
is not defined.

We use the following functions to access to the elements of the environments:
Γ(x) returns the security type associated to x in Γ. If x /∈ dom(Γ), then Γ(x) is undefined.
Σ(α) returns the type associated to α in Σ. If α /∈ dom(Σ), then Σ(α) is undefined.
α <: β ∈ Φ is true if Φ(α) = β, false otherwise. Φ(α) returns the type variable in the
right part of the subtyping relation with α in Φ. If α /∈ dom(Φ), then Φ(α) is undefined.

A.2 Well-formedness of types and environments
For the main results of the Section 4 to hold we need to ensure we work with well-formed
security types.

Well formed types. We use the predicate valid(S) to denote that a security type S is closed
and that the object types that S contains have unique method members. The definition of
valid(S) is based on a standard notion well-formedness of object types [2] (Figure 7).

To check for well-formed security types, i.e. that the private type is a subtype of the
public type we define the judgment Σ `s S (Figure 8). The (WFS-ST) rule is the most
important. For this rule to hold, the subtyping relation between both facets must hold and
also the same principle must hold for the all the security types in each facet.

The presence of type variables in the facets of a security type and the corresponding
subtyping constraint introduces subtle cases to manage before using the subtyping judgment.
Consider the following object type: O , Obj(α). [m : S → α /Obj(β). [m : S → α / β]]. For
`s O to hold, α , O `s α /Obj(β). [m : S → α / β] must hold. It implies to check ` α <:
Obj(β). [m : S → α / β]. Note that, we can not justify that subtyping judgment, because we
do not have a subtyping premise involving the type variable α. To address this, we need to
remember (in Σ) the surrounding recursive object type O that binds α, and to transform the
check α , O `s α /Obj(β). [m : S → α / β] to ` O <: Obj(β). [m : S → O / β] by closing α
with the mappings in Σ (i.e. O). We use the notation Σ [T ] to substitute the free variables
in type T according to the bindings in Σ.



R. Cruz, T. Rezk, B. Serpette and É. Tanter 53:25

∆ `t T

(WF-V) α ∈ ∆
∆ `t α

(WF-O)

T ≡ Obj(α).
[
m : S1 → S2

]
(i 6= j =⇒ mi 6= mj)

∆, α `t S1i ∆, α `t S2i

∆ `t T

∆ `t S

(WF-ST) ∆ `t T ∆ `t U

∆ `t T / U

· `t S

valid(S)

Figure 7 Standard well-formedness of object types and type variables, and its lifting to security
types.

Σ `s T

T ≡ Obj(α).
[
m : S1 → S2

]
Σ, α : T `s S1i Σ, α : T `s S2i

Σ `s T
(WFS-V) Σ `s α

Σ `s S

(WFS-ST)
Σ `s T Σ `s U · ` Σ [T ] <: Σ [U ]

Σ `s T / U

` S

(WF)
valid(S) · `s S

` S

Figure 8 Well-formedness of security types

Finally, we say that a security type S is well-formed (notation ` S) if the type is valid
and the subtyping constraints for S hold (· `s S)

Well-formedness of a type environment. A type environment is well formed, noted Γ ` �,
if all types in the environment are well-formed:

(EEnvOk) · ` � (EnvOk)
Γ ` � ` S x /∈ dom(Γ)

Γ, x : S ` �

A.3 Subtyping
The gray parts in the subtyping rules of the Figure 9 were not included in the Figure 2 of the
main document. They prevent justifying inconsistent subtyping judgments by controlling
the uses of type variables.

For example, consider the following types:
T1 , Obj(α). [n : S → Obj(β). [m1 : βL → S′ m2 : S1 → S2]L]
T2 , Obj(β). [n : S → Obj(α). [m1 : αL → S′]L]
For ` T1 <: T2 to hold, after using the rule (SObj) twice, the contravariance of m1 parameters
·, α <: β, β <: α ` α <: β must hold. We can justify this by applying the rule (SVar) because
we have the assumption α <: β in the subtyping environment. So, we justify ` T1 <: T2 and
it is not the case that T1 is subtype of T2. The problem is the occurrence of the variables
α and β in both types, that creates subtyping assumptions in both directions and it allows
to justify subtyping between type variables that represent unrelated types (by subtyping).
The well-formedness condition of the subtyping environment Φ prevents this kind of cases,

ECOOP 2017



53:26 Type Abstraction for Relaxed Noninterference

Φ ` T <: T

(SObj)

O1 , Obj(α).
[
m : S1 → S2

]
O2 , Obj(β).

[
m′ : S′1 → S′2

]
m′ ⊆ m

mi = m′j =⇒ (Φ, α <: β ` S′1j <: S1i Φ, α <: β ` S2i <: S′2j)
Φ ` � dom(Φ) ∪ cod(Φ) `t Oi

Φ ` O1 <: O2

(SVar)

Φ ` �
α <: β ∈ Φ
Φ ` α <: β (SSubEq) T1 ≡ T2

Φ ` T1 <: T2
(STrans) Φ ` T1 <: T2 Φ ` T2 <: T3

Φ ` T1 <: T3

Φ ` S <: S

(TSubST) Φ ` T1 <: T2 Φ ` U1 <: U2

Φ ` T1 / U1 <: T2 / U2

Figure 9 Subtyping

Φ ` �

(EEnvSubOk)
· ` �

(EnvSubOk)
Φ ` � αi /∈ dom(Φ) ∪ cod(Φ)

Φ, α1 <: α2 ` �

Figure 10 Well-formedness of the subtyping environment

because we cannot extend the environment with a subtyping premise, where one of the
involved variables is already in the environment (Figure 10).

A.4 Type equivalence
Two types are equivalent (Figure 11) if the equivalence can be derived through the congru-
ence induced by rules (Alpha-Eq) and (Fold-Unfold). For example:
Obj(α). [m : α→ α] ≡ Obj(β). [m : β → β]
Obj(α). [m : > → α] ≡ Obj(α). [m : > → Obj(β). [m : > → β]]

A.5 Simple type system
The simple typing judgment Γ `1 e : T is defined in terms of “single-facet typing” (Fig-
ure 12). Single-facet typing Γ `sf e : S is a simplification of security typing: the rules
(TmD) and (TmH) are replaced by a single rule (T1mI) that simply ignores the public type.
Furthermore, the subtyping judgment Φ ` S1 <: S2 is replaced by the simple subtyping
judgment Φ `sf S1 <: S2 that only takes care of subtyping between the private facets of the
security types. Its definition is direct and omitted here.

I Lemma 14. Γ ` � ∧ Γ ` e : T / U then Γ `1 e : T

Proof. Trivial induction on typing derivations of e. J

I Lemma 15.

Γ ` � ∧ Γ `1 e : T =⇒ ∃U. Γ ` e : T / U



R. Cruz, T. Rezk, B. Serpette and É. Tanter 53:27

T ≡ T

(Sym)
T ≡ T (Refl) T1 ≡ T2

T2 ≡ T1
(Trans) T1 ≡ T2 T2 ≡ T3

T1 ≡ T3

(O-Congr)
S1i ≡ S′1i S2i ≡ S′2i

Obj(α).
[
m : S1 → S2

]
≡ Obj(α).

[
m : S′1 → S′2

]
(Alpha-Eq)

O , Obj(α).
[
m : S1 → S2

]
β fresh

O ≡ O [β/α]
(Fold-Unfold)

O ≡ O [O/α]

S ≡ S

T1 ≡ T2 U1 ≡ U2

T1 / U1 ≡ T2 / U2

Figure 11 Type equivalence

Γ `sf e : S

(T1Var)
x ∈ dom(Γ)

Γ `sf x : Γ(x)
(T1Sub) Γ `sf e : S′ `sf S

′ <: S ` S
Γ `sf e : S

(T1Obj)
` S S , T / U methsig(T,mi) = S′i → S′′i Γ, z : S, xi : S

′
i `sf ei : S′′i

Γ `sf
[
z : S ⇒ m (x) e

]
: S

(T1mI)
Γ `sf e1 : T / U methsig(T,m) = S1 → S2 Γ `sf e2 : S1

Γ `sf e1.m(e2) : S2

Γ `1 e : T

Γ `sf e : T / U
Γ `1 e : T

Figure 12 Simple typing, defined in terms of single-facet typing

Proof. By induction of the typing derivation of Γ `1 e : T . In all the cases, we simply
choose U to be the private type T . J

ECOOP 2017



Control What You Include!

Server-Side Protection against Third Party Web Tracking

Dolière Francis Somé, Nataliia Bielova, and Tamara Rezk

Université Côte d’Azur, Inria
{doliere.some,tamara.rezk,nataliia.bielova}@inria.fr

Abstract. Third party tracking is the practice by which third parties
recognize users accross different websites as they browse the web. Re-
cent studies show that 90% of websites contain third party content that
is tracking its users across the web. Website developers often need to
include third party content in order to provide basic functionality. How-
ever, when a developer includes a third party content, she cannot know
whether the third party contains tracking mechanisms. If a website devel-
oper wants to protect her users from being tracked, the only solution is to
exclude any third-party content, thus trading functionality for privacy.

We describe and implement a privacy-preserving web architecture that
gives website developers a control over third party tracking: developers
are able to include functionally useful third party content, the same time
ensuring that the end users are not tracked by the third parties.

1 Introduction

Third party tracking is the practice by which third parties recognize users accross
different websites as they browser the web. In recent years, tracking technologies
have been extensively studied and measured [25, 28, 31, 36, 24, 33] – researchers
have found that third parties embedded in websites use numerous technologies,
such as third-party cookies, HTML5 local storage, browser cache and device
fingerprinting that allow the third party to recognize users across websites [37]
and build browsing history profiles. Researchers found that more than 90% of
Alexa top 500 websites [36] contain third party web tracking content, while some
sites include as much as 34 distinct third party contents [30].

But why do website developers include so many third party contents (that
may track their users)? Though some third party content, such as images and
CSS [3] files can be copied to the main (first-party) site, such an approach has a
number of disadvantages for other kinds of content. Advertisement is the base of
the economic model in the web – without advertisements many website providers
will not be able to financially support their website maintenance. Third party
JavaScript libraries offer extra functionality: though copies of such libraries can
be stored on the main first party site, this solution will sacrifice maintenance
of these libraries when new versions are released. The developer would need to
manually check the new versions. Web mashups, as for example applications that

ar
X

iv
:1

70
3.

07
57

8v
1 

 [
cs

.C
R

] 
 2

2 
M

ar
 2

01
7



2 Dolière Francis Somé, Nataliia Bielova, and Tamara Rezk

use hotel searching together with maps, are actually based on reusing third-
party content, as well as maps, and would not be able to provide their basic
functionality without including the third-party content.

Including JavaScript libraries, content for mashups or advertisements means
that the web developers cannot provide to the users the guarantee of non-
tracking. Hence, the promise to provide privacy has a very high cost because
there are no existing automatic tools to maintain control of third party tracking
on the website. To keep a promise of non-tracking, the only solution today is to
exclude any third-party content1, thus trading functionality for privacy.

In this paper, we present a new Web application architecture that allows
web developers to gain control over certain types of third party content. Our
solution is based on the automatic rewriting of the web application in such a
way that the third party requests are redirected to a trusted web server, with
a different domain than the main site. This trusted web server may be either
controlled by a trusted party, or by a main site owner – it is enough that the
trusted web server has a different domain. A trusted server is needed so that the
user’s browser will treat all redirected requests as third party requests, like in the
original web application. The trusted server automatically eliminates third-party
tracking cookies and other technologies.

In summary our contributions are:

– A classification of third party contents that can and cannot be controlled by
the website developer.

– An analysis of third party tracking capabilities – we analyse two mechanisms:
recognition of a web user, and identification of the website she is visiting 2.

– A new architecture that allows to include third party content in web appli-
cations and eliminate stateful tracking.

– An implementation of our architecture, demonstrating its effectiveness at
preventing stateful third party tracking in several websites.

2 Background and Motivation

Third party web tracking is the ability of a third party to re-identify users as
they browse the web and record their browsing history [31]. Tracking is often
done with the purpose of web analytics, targeted advertisement, or other forms
of personalization. The more a third party is prevalent among the websites a user
interacts with, the more precise is the browsing history collected by the tracker.
Tracking has often been conceived as the ability of a third party to recognize
the web user. However, for successful tracking, each user request should contain
two components:

User recognition is the information that allows tracker to recognize the user;
Website identification is the website which the user is visiting.

1 For example, see https://duckduckgo.com/. 2 Tracking is often defined as the
ability of a third party to recognize a user through different websites. However, be-
ing able to identify the websites a user is interacting with is equally crucial for the
effectiveness of tracking.

https://duckduckgo.com/


Server-Side Protection against Third Party Web Tracking 3

Fig. 1. Third Party Tracking

For example, when a user visits news.com, the browser may make additional
requests to facebook.com, as a result, Facebook learns about the user’s visit
to news.com. Figure 1 shows a hypothetical example of such tracking where
facebook.com is the third party.

Consider that a third party server, such as facebook.com hosts different con-
tents, and some of them are useful for the website developers. The web developer
of another website, say mysite.com, would like to include such functional content
from Facebook, such as Facebook ”Like” button, an image, or a useful JavaScript
library, but the developer does not want its users to be tracked by Facebook. If
the web developer simply includes third party Facebook content in his applica-
tion, all its users are likely to be tracked by cookie-based tracking. Notice that
each request to facebook.com also contains an HTTP Referrer header, automat-
ically attached by the browser. This header contains the website URL that the
user is visiting, which allows Facebook to build user’s browsing history profile.

The example demonstrates cookie-based tracking, which is extremely com-
mon [36]. Other types of third party tracking, that use other client-side storage
mechanisms, such as HTML5 LocalStorage, or cache, and device fingerprinting
that do not require any storage capabilities, are also becoming more popular [25].

Web developer perspective A web developer may include third party con-
tent in her webpages, either because this content intentionally tracks users (for
example, for targeted advertising), or because this content is important for the
functioning of the web application. We therefore distinguish two kinds of third
party contents from a web developer perspective: tracking and functional. Track-
ing content is intentionally embedded by website owner for tracking purposes.
Functional content is embedded in a webpage for other purposes than tracking:
for example, JavaScript libraries that provide additional functionality, such as
jQuery, or other components, such as maps. In this work, we focus on functional
content and investigate the following questions:

– What kind of third content is possible to control from a server-side (web
developer) perspective?

– How to eliminate the two components of tracking (user recognition and web-
site identification) from the functional third party that the website embeds?



4 Dolière Francis Somé, Nataliia Bielova, and Tamara Rezk

2.1 Browsing Context

Browsers implement different specifications to securely fetch and aggregate third
party content. One widely used approach is the the Same Origin Policy (SOP) [14],
a security mechanism designed for developers to isolate legacy content from po-
tentially untrusted third party content. An origin is defined as scheme, host and
port number, of the URL3 of the third party content.

When a browser renders a webpage delivered by a first party, the page is
placed within a browsing context [2]. A browsing context represents an instance
of the browser in which a document such as a webpage is displayed to a user, for
instance browser tabs, and popup windows. Each browsing context contains 1)
a copy of the browser properties (such as browser name, version, device screen
etc), stored in a specific object; 2) other objects that depend on the origin of the
document according to SOP. For instance, the object document.cookie gives the
cookies related to the origin of the current context.

In-context and cross-context content Certain types of content embedded
in a webpage, such as images, links, and scripts, are associated with the context
of the webpage, and we call them in-context content. Other types of content, such
as <iframe>, <embed>, and <object> tags are associated with their own browsing
context, and we call them cross-context content. Usually, cross-context content,
such as <iframe> elements, cannot be visually distinguished from the webpage
in which they are embedded, however they are as autonomous as other browsing
contexts, such as tabs or windows. Table 1 shows different third party contents
and their execution contexts.

HTML Tags Third Party Content

in-context

<link> Stylesheets
<img> Images
<audio> Audios
<video> Videos
<form> Forms
<script> Scripts

cross-context
<(i)frame>, <frameset>, <a> Web pages
<object>, <embed>, <applet> Plugins and Web pages

Table 1. Third party content and execution context.

The Same Origin Policy manages the interactions between different browsing
contexts. In particular, it prevents in-context scripts from interacting with the
content from a cross-context content in case their origins are different. To com-
municate, both contexts should rely on inter-frame communications APIs such
as postMessage [12].

3 https://www.w3.org/TR/url/

https://www.w3.org/TR/url/


Server-Side Protection against Third Party Web Tracking 5

2.2 Third Party Tracking

In this work, we consider only stateful tracking technologies – they require an
identifier be stored client-side, the most common storage mechanism is cookies,
but others, such as HTML5 LocalStorage and browser cache are also stateful
tracking mechanisms. Figure 2 presents the well-known stateful tracking mech-
anisms. We distinguish two components necessary for successful tracking: user
recognition and website identification. For each component, we describe the ca-
pabilities of in-context and cross-context. We also distinguish passive tracking
(done through HTTP headers) and active tracking (through JavaScript or plugin
script execution).

User Recognition Website Identification
Passive Active Passive Active

in
-c

o
n
te

x
t

HTTP cookies
Cache-Control
Etag
Last-Modified

-
Referer
Origin

document.URL

document.location

window.location

cr
o
ss

-c
o
n
te

x
t

Flash LSOs
document.cookie

window.localStorage

window.indexedDB

Referer document.referrer

Fig. 2. Stateful tracking mechanisms

In-context tracking In-context third party content is associated with the
browsing context of the webpage that embeds it (see Table 1).

Passively, such content may use HTTP header to recognize the user and
identify the visited website. When a webpage is rendered, the browser sends a
request to fetch all third party contents embedded in the page. The response
from the third party with the requested content may contain HTTP headers
that may be used for tracking. For example, Set-cookie HTTP header tells the
browser to save the third party cookies, that will be later automatically attached
to every request to this third party in the Cookie header. Etag HTTP header and
other cache mechanisms like Last-Modified and Cache-Control HTTP headers
may also be used to store user identifier [37]. To identify the visited website, a
third party can either check the Referer HTTP header, automatically attached
by the browser, or an Origin header4.

Actively, in-context third party content cannot use browser storage mecha-
nisms, such as cookies or HTML5 Local Storage associated to the third party

4 Origin header is also automatically generated by the browser when the third party
content is trying to access data using Cross-Origin Resource Sharing [4] mechanism.



6 Dolière Francis Somé, Nataliia Bielova, and Tamara Rezk

because of the limitations imposed by the SOP (see Section 2.1). For example, if
a third party script uses document.cookie API, it is able only to read the cookies
of the main website, but not those associated to the third party. This allows
tracking within the main website but does not allow tracking cross-sites [36].
For website identification, third party active content, such as JavaScript, can
use several APIs, such as document.location and others.

Cross-context tracking Cross-context third party content, such as iframe,
is associated with the browsing context of the third party that provided this
content.

Passively, the browser may transmit HTTP headers used for user recogni-
tion and website identification, just like with the in-context third party con-
tent. Every third-party request for cross-context content will contain the URL
of the embedding webpage in its Referer header. Note that this is true only for
the cross-context content, say an <iframe>, directly embedded in the webpage.
Within the iframe, there may be additional third party contents. Since they are
not embedded directly in the webpage, and because the iframe is an autonomous
though nested browsing context, requests to fetch contents embedded within this
context will carry, not the URL of the webpage, but that of the iframe in their
Referer header, and the origin of the iframe in their CORS requests Origin
header.

Actively, cross-context third party content can use a number of APIs to store
user identifier in the browser. These APIs include cookies (document.cookie),
HTML5 LocalStorage (document.localStorage), IndexedDB, and Flash Local
Stored Objects (LSOs). For website identification, document.referrer API can
be used – it returns the value of HTTP Referrer header transmitted to the third
party when the third party content was fetched. Because cross-context third
party is associated with its own browsing context, it is able to embed even more
third party contents within this cross-context.

Combining in-context and cross-context tracking Imagine a third
party script from third.com embedded in a webpage – according to the con-
text and to the SOP, it is in-context. If the same webpage embeds another third
party content from third.com, which is cross-context, then because of SOP, such
script and iframe cannot interact directly. However, script and iframe can still
communicate through inter-frame communication APIs such postMessage [12].

This communication between different contexts allow them to exchange the
user identifiers and the website that the user visits. Efficient implementation of
such combination of tracking may profit from easily implementable user recogni-
tion by cross-context code using, say document.cookie, and website identification
by in-context through various APIs such as document.location. For example, so-
cial widgets, such as Facebook ”Like” button, or Google ”+1” button, may be
included in the webpages as a script. When the social widget script is executed on
the client-side, it loads additional scripts, and new browsing contexts (iframes)
allowing the third party to benefit from both in-context and cross-context capa-
bilities to track users.



Server-Side Protection against Third Party Web Tracking 7

3 Privacy-preserving Web Architecture

For third party tracking to be effective, it is necessary that it has two capa-
bilities: 1) it is able to identify the website in which it is embedded, and 2) to
recognize the user interacting with that website. Disabling only one of these two
capabilities for a given third party already prevents tracking. In order to miti-
gate the stateful tracking (see Section 2), we make the following design choices
in our architecture:

1. In-context content: prevent only user recognition. Preventing passive
user recognition for in-context content, such as images, forms and scripts is
possible by removing HTTP headers such as Set-cookie, ETag and others.
However, it is particularly difficult to remove active website identification
because trying to alter or redefine document.location and window.location

APIs, will cause the main page to reload.
2. Cross-context content: prevent only website identification. We pre-

vent passive website identification by instructing the browser not to send
HTTP Referer header along with requests to fetch a cross-context content.
Therefore, when the cross-context gets loaded, active website identification
is impossible. Indeed, executing document.referrer returns not the URL of
the embedding page, but an empty string. Because of the limitations of the
SOP, a website owner has no control over the cross-context third party con-
tent, such as iframes. Therefore, it is not possible to modify the results of
storage access APIs, such as document.cookie. We discuss other possibilities
to block such APIs in Section 4.3.

3. Prevent communication between in-context and cross-context con-
tents. Our architecture proposes a way to block such communications that
can be done by postMessage API. We discuss the limitations of this approach
in Section 4.3.

To help web developers keep their promises of non-tracking and still include
third-party content in their web applications, we propose a new Web application
architecture. This architecture has the capability to 1) automatically rewrite all
the third party in-context content of a Web application, 2) redirect the third
party HTTP requests issued by the in-context content, and 3) remove/disable
known stateful tracking mechanisms (see Section 2) for such third party content
and requests. 4) It also rewrites and redirects cross-context requests so as to
prevent website identification and communication with in-context scripts.

Figure 3 provides an overview of our web application architecture, that in-
troduces two new components that are fully controlled by the website owner:

Rewrite Server (Section 3.1) acts like a reverse proxy5 for the original
web server. It rewrites the web pages in such a way that all the third party
requests are redirected through the Middle Party Server before reaching the
intended third party server.

5 https://en.wikipedia.org/wiki/Reverse_proxy

https://en.wikipedia.org/wiki/Reverse_proxy


8 Dolière Francis Somé, Nataliia Bielova, and Tamara Rezk

Fig. 3. Privacy-Preserving Web Architecture

Middle Party Server (Section 3.1) is at the core of our solution since
it intercepts all browser third party requests, removes tracking, then forwards
them to the intended third parties. When they reply, it also removes tracking
information and forwards the responses back to the browser. On one hand, it
hides the third party destination from the browser, and therefore prevents the
browser from attaching third party HTTP cookies to such requests. Because
the browser will still attach some tracking information to the requests, such as
ETag, and Referer headers, Middle Party Server will also remove this information
when forwarding the requests to the third party. This prevents passive user
identification for in-context third party contents.

On the other hand, the Middle Party Server prevents website identification
for cross-context contents and communication with in-context scripts. This is
done by placing the cross-context within another cross-context controlled by
the Middle Party server as illustrated by Figure 4. For instance, if an iframe
was to be embedded within a webpage, it is placed within another iframe that
belongs to the Middle Party. The Middle Party then instructs the browser not to
send Referer header while loading the iframe, which prevents passive and active
website identification once it is loaded. Since the iframe is nested within a iframe
that belongs to Middle Party, this hides its reference to in-context scripts (see
Figure 4). Therefore, it is prevented from communicating with in-context scripts
in the main webpage.

3.1 Rewrite Server

The goal of the Rewrite Server is to rewrite the original content of the requested
webpages in such a way that all third party requests will be redirected to the



Server-Side Protection against Third Party Web Tracking 9

API Content

document.createElement inject contents from Table 1
document.write any content
window.open Web pages(popups)
Image images
XMLHttpRequest any data
Fetch, Request any content
Event Source stream data
WebSocket websocket data
Table 2. Embedding Dynamic Third Party Contents

Fig. 4. Prevent Combining in-context and cross-context tracking

Middle Party Server. It consists of three main components: static HTML rewriter
for HTML pages, static CSS rewriter and JavaScript injection component. Into
each webpage, we inject a JavaScript code that insures that all the dynamically
generated third party content is redirected to the Middle Party Server.

HTML and CSS Rewriter rewrites the URLs of static third party con-
tents embedded in original web pages and CSS files in order to redirect them to
the Middle Party Server. For example, the URL of a third-party script source
http://third.com/script.js is written so that it is instead fetched through the
Middle Party Server: http://middle.com/?src=http://third.com/script.js.

JavaScript Injection. The Rewrite Server also injects a script in an original
webpage, that controls APIs used to inject dynamic contents. This injected script
rewrites third party contents which are dynamically injected in webpages after
they are rendered on the client-side. Table 2 shows APIs that can be used to
dynamically inject third party content within a webpage that we control using
the injected script.

A Content Security Policy (CSP) [41] is injected in the response header
for each webpage in order to prevent third parties from bypassing the rewriting
and redirection to the Middle Party Server. A CSP delivered with the webpage
controls the resources of the page. It allows to specify which resources are allowed
to be loaded and executed in the page. By limiting the resource origins to only
those from the Middle Party Server and the website own domain, we prevent
third parties from bypassing our redirection to the Middle Party Server.

3.2 Middle Party

The main goal of the Middle Party is to proxy the requests and responses between
browsers and third parties in order to remove tracking information exchanged



10 Dolière Francis Somé, Nataliia Bielova, and Tamara Rezk

between them. For in-context contents, it removes any user recognition as well
as website identification information. For cross-context contents, it takes care of
preventing website identification and communication with in-context scripts.

In-Context Contents are scripts, images, etc. (see Table 1). Since a third
party script from http://third.com/script.js is rewritten by the Rewrite Server
to http://middle.com/?src=http://third.com/script.js, it is fetched through
the Middle Party Server. When the middle party receives such a request URL
from the browser, it takes the following steps. Remove Tracking from request
that are set by the browser as HTTP headers. Among those headers are Cookie,
Etag, If-Modified-Since, Cache-Control, Referer. Next, it makes a request to the
third party in order to get the content of the script http://third.com/script.js.
Remove Tracking from response returned by the third party. The head-
ers that the third party may send are Set-Cookie, Etag, Last-Modified, Cache-
Control. CSS Rewriter rewrites the response if the content is a CSS file. Finally,
the response is returned back to the browser.

Cross-context contents are iframes, links, popups, etc. (see Table 1).
For instance, a third party iframe from http://third.com/page.html is rewrit-
ten to http:// middle.com/?emb=http://third.com/page.html. When the Mid-
dle Party Server receives such a request URL from the browser, it takes the
following actions: URL Rewriting: instead of fetching directly the content
of http://third.com/page.html, the Middle Party Server generates a content
in which it puts the URL of the third party content as a hyperlink. <a href

= "http://third.com/page.html" rel = "noreferrer noopener"></a>. The most
important part of this content is in the rel attribute value. Therefore, noreferrer
noopener instructs the browser not the send the Referer header when the link
http://third.com/page.html is followed client-side. JavaScript injection mod-
ule adds a script to the content so that the link gets automatically followed once
the response is rendered by the browser. Once the link is followed, the browser
fetches the third party content directly on the third party server, without go-
ing through the Middle Party server anymore. Nonetheless, it does not include
the Referer header for identifying the website. Therefore, the document.referrer

API also returns an empty string inside the iframe context. This prevents it from
identifying the website.

The third party server response is placed within a new iframe nested within
a context that belongs to the Middle Party, and not directly within the site
webpage. This prevents in-context scripts and the cross-context contents from
exchanging tracking information as illustrated by Figure 4.

4 Implementation

We have implemented both the Rewrite Server and the Middle Party Server as
full Node.js [10] web servers supporting HTTP(S) protocols and web sockets.
Implementation details are available at https://webstats.inria.fr/sstp/.

https://webstats.inria.fr/sstp/


Server-Side Protection against Third Party Web Tracking 11

4.1 Rewrite Server

Simple Forward: requests that arrive to the Rewrite server are simply for-
warded to the main server.

HTML Rewriter is implemented with Jsdom HTML parser [8] and CSS
Rewriter using a CSS parser [5] for Node.js. JavaScript injection is done at
the end of rewriting webpages. The code script injected is available at https:

//webstats.inria.fr/sstp/dynamic.js. CSP set on webpages only whitelists
the website own domain and the Middle Party. It also prevents third party
plugins.

1 Content-Security-Policy: default-src ’self’ ’middle.com ’;

object-src ’self’;

4.2 Middle Party

In-Contexts Contents. Remove Tracking from requests component re-
moves tracking information from in-context third party requests (See Section 3).
The requests are then forwarded to the original third party server, to fetch the
third party content. Remove Tracking from responses : Tracking informa-
tion that are set by third parties in the responses, are removed. See Section 3
for details about information that are removed. CSS Rewriter: as in the case
of the Rewrite Server, this component is implemented using a a CSS parser [5]
for Node.js for rewriting CSS files.

Cross-Context Contents. URL Rewriting If the cross-context URL was
http://third.com/page.html, this URL is rewritten to

1 <a href="http: // third.com/page.html" rel="noreferrer

noopener" target=""></a>.

JavaScript injection : the content injected is as followed.

1 var third_party = document.getElementsByTagName("a")[0];

2 if(window.top == window.self){

3 third_party.target = "_blank";

4 third_party.click ();

5 window.close ();

6 }else{

7 var iframe = document.createElement("iframe");

8 iframe.name = "iframetarget";

9 document.body.appendChild(iframe);

10 third_party.target = "iframetarget";

11 third_party.click ();

12 }

Both the rewritten URL and the injected script are returned as a response to the
browser which renders it. The injected script gets executed within a context that
belongs to the Middle Party. If the original cross-context third party content was
to be loaded inside an iframe, the injected script creates an iframe in which the

https://webstats.inria.fr/sstp/dynamic.js
https://webstats.inria.fr/sstp/dynamic.js


12 Dolière Francis Somé, Nataliia Bielova, and Tamara Rezk

original third party content is loaded. However, if it was to be opened inside a
new tab, the injected script opens a new tab in which the third party content
is loaded. In both cases, while the cross-context content is loaded, the browser
does not sent the Referer header. This makes the value of document.referer

empty inside the cross-context preventing it from identifying the website. Fi-
nally, since those cross-context are loaded by the injected script from a context
that belongs to the Middle Party, in-context scripts cannot communicate with
the cross-context contents to exchange tracking information.

4.3 Discussion and Limitations

Our approach suffers from the following limitations. First, our implementation
prevents cross-context and in-context contents from communicating with each
other using postMessage API. However, in-context third party script can identify
the website a user visits via document.location.href API. Then the script can
include the website URL, say http://main.com, as a parameter of the URL of a
third party iframe, for example http://third.com/page.html?ref=http://main.com

and dynamically embed it in the webpage. In our architecture, this URL is
rewritten and routed to the Middle Party. Since, the Middle Party Server does
not inspect URL parameters, this information will reach the third party even
though the Referer is not sent with cross-context requests.

Another limitation is that of dynamic CSS changes. For instance, changing
the background image style of an element in the webpage is not captured by
the dynamic rewriting script injected in webpages. Therefore, if the image was
a third party image, the CSP will prevent it from loading.

Performance overhead There is a performance cost associated with the
Rewrite Server. Rewriting contents server-side and browser-side is also expensive
in terms of performance. Middle Party Server may also lead to performance
overhead especially for webpages with numerous third party contents. We believe
that server-side caching mechanisms may help to speed up responsiveness.

Extension to stateless tracking Even though this work did not address
stateless tracking, such as device fingerprinting, our architecture already hides
several fingerprintable device properties and can be extended to several others:
1) The redirection to the Middle Party anonymizes the real IP addresses of users;
2) Some stateless tracking APIs such as window.navigator, window.screen, and
HTMLCanvasElement can be easily removed or randomized from the context of the
webpage to mitigate in-context fingerprinting.

Possibility to blocking active user recognition in cross-context With
the prevalence of third party tracking on the web, we have shown the challenges
that a developer will face towards mitigating that. The sandbox attribute for
iframes help prevent access to security-sensitive APIs. As tracking has become
a hot concern, we suggest that similar mechanisms can help first party websites
tackle third party tracking. The sandbox attribute can for instance be extended
with specific values to tackle tracking. Nonetheless, the sandbox attribute can
be used to prevent cross-context from some stateful tracking mechanisms [9].



Server-Side Protection against Third Party Web Tracking 13

5 Evaluation and Case Study

Demo website We have set up a demo website that embeds a collection of
third party contents, both in-context and cross-context. In-context contents
include images, HTML5 audio and video, and a Google Map, which further
loads dynamic contents such as images, fonts, scripts, and CSS files; a Youtube
video as a cross-context content. Our demo website is accessible at http://

sstp-rewriteproxy.inria.fr. When we deployed the Rewrite Server on http:

//sstp-rewriteproxy.inria.fr, the original server has been moved to http:

//sstp-rewriteproxy.inria.fr:8080, so that it is no longer directly accessible
to users. The Middle Party server runs at http://sstp-middleparty.inria.

fr.
Originally, when all the third parties were simply included in the main web-

page, they may have also been tracking the website users (see Figure 1). After
the deployment of our solution, we have been able to redirect all in-context third
party contents to the Middle Party. We have been able to prevent the website
identification in the cross-context Youtube video. In the Appendix, we show a
screenshot of requests redirection to the Middle Party Server.

Real websites Since we did not have access to a real websites, we can-
not install a Rewrite Server and to evaluate our solution. We therefore im-
plemented a browser proxy based on a Node.js proxy [11], and included all
the logic of the Rewrite Server within the proxy. The proxy is running at
http://sstp-rewriteproxy.inria.fr:5555.

We then evaluated the solution on different kinds of websites: a news website
http://www.bbc.com, an entertainment website http://www.imdb.com, and a
shopping website http://verbaudet.fr. All three websites load content from
various third party domains. In all websites, we rewrote all third party contents
through the proxy (acts as Rewrite Server) and the Middle Party Server removed
tracking information. Visually, we did not notice any change in the behaviors of
the websites. We also interacted with them in a standard way (clicking on links
on a news website, choosing products and putting them in the basket on the
shopping website) and all the main functionalities of the websites was preserved.

Overall, these evaluation scenarios have helped us improve the solution, es-
pecially rewriting dynamically injected third party content. We believe that this
implementation will even get better in the future when we convince to deploy it
for some real websites.

6 Related Work

Many studies have demonstrated that third party tracking is very prevalent on
the web today as well as the underlying tracking technologies [25, 36, 31, 28].
Lerner et al. [30] dusted the story of this practice for a period of twenty years.
Trackers have been categorized according to either their business relationships
with websites [31], their prominence [28, 25] or the user browsing profile that
they can build [36]. Mayer and Mitchell [31] grouped tracking mechanisms in two

http://sstp-rewriteproxy.inria.fr
http://sstp-rewriteproxy.inria.fr
http://sstp-rewriteproxy.inria.fr
http://sstp-rewriteproxy.inria.fr
http://sstp-rewriteproxy.inria.fr:8080
http://sstp-rewriteproxy.inria.fr:8080
http://sstp-middleparty.inria.fr
http://sstp-middleparty.inria.fr
http://sstp-rewriteproxy.inria.fr:5555
http://www.bbc.com
http://www.imdb.com
http://verbaudet.fr


14 Dolière Francis Somé, Nataliia Bielova, and Tamara Rezk

categories called statefull (cookie-based and super-cookies) and stateless (finger-
printing). It is rather intuitive to convince ourselves about the effectiveness of a
statefull tracking, since the latter is based on unique identifiers that are set in
users browsers. Nonetheless, the efficacy of stateless mechanisms has been exten-
sively demonstrated. Since the pioneer work of Eckersley [24], new fingerprinting
methods have been revealed in the literature [38, 22, 25, 19, 21, 17, 39, 33, 18]. A
classification of fingerprinting techniques is provided in [40]. Those studies have
contributed to raising public awareness of tracking privacy threats. Mayer and
Mitchell [31] have shown that users are very sensitive to their online privacy,
thus hostile to third party tracking. Englehardt et al. [26] have demonstrated
that tracking can be used for surveillance purposes. The success of anti-tracking
defenses is yet another illustration of users concern regarding tracking [32].

There are many defenses that try to protect users against third party track-
ing. First, major browser vendors do natively provide mechanisms for users to
block third party cookies, browse in private mode. More and more privacy-
browsers even take a step further, putting privacy as a design and implementa-
tion principle. Examples of such browsers are the Tor Browser [16], TrackingFree
Browser [34] or Blink [29]. But the most popular defenses are by far browser ex-
tensions. Being tightly integrated to browsers, they provide additional privacy
features that are not natively implemented in browsers. Well known extensions
for privacy are Disconnect [6], Ghostery [7], AdBlock [1], ShareMeNot [36], which
is now part of PrivacyBadger [13], MyTrackingChoices [20], MyAdChoices [35].
Merzdovnik et al. [32] provide a large-scale study of anti-tracking defenses. Well
known trackers such as advertisers, which businesses hugely depend on tracking,
have also been taking steps towards limiting their tracking capabilities [31]. The
W3C is pushing forward the Do Not Tracking standard [23, 27] for users to easily
express their tracking preferences so that trackers may comply with them. To
the best of our knowledge, we are the first to investigate how a website owner
can embed third party content while preventing them from accidentally tracking
users. The idea of proxying requests within a webpage is inspired by web service
workers API [15], though the latter is still a working draft which is being tested
in Mozilla Firefox and Google Chrome.

7 Conclusions

Most of the previous research analysed third party tracking mechanisms, and
how to block tracking from a user perspective. In this work, we classified third
party tracking capabilities from a website developer perspective. We proposed a
new architecture for website developers that allows to embed third party contents
while preserving users privacy. We implemented our solution, and evaluated it
on real websites to mitigate stateful tracking.



Server-Side Protection against Third Party Web Tracking 15

References

[1] AdBlock - Block Ads - Browse Safe. https://getadblock.com/.
[2] Browsing Contexts. https://www.w3.org/TR/html51/browsers.html.
[3] Cascading Style Sheets. https://www.w3.org/Style/CSS/.
[4] Cross-origin-resource sharing. https://developer.mozilla.org/en-US/docs/

Web/HTTP/Access_control_CORS.
[5] CSS Parser for Node.js. https://github.com/reworkcss/css.
[6] Disconnect. https://disconnect.me/.
[7] Ghostery. https://www.ghostery.com/.
[8] HTML Parser for Node.js. https://github.com/tmpvar/jsdom.
[9] Iframe Sandbox Attribute. https://www.w3.org/TR/2011/WD-html5-20110525/

the-iframe-element.html#attr-iframe-sandbox.
[10] Node.js. https://nodejs.org/en/.
[11] Node.js Proxy. https://newspaint.wordpress.com/2012/11/05/

node-js-http-and-https-proxy.
[12] PostMessage - Cross-Origin Iframe Secure Communication. https://developer.

mozilla.org/en-US/docs/Web/API/Window/postMessage.
[13] Privacy Badger - Electronic Frontier Foundation. https://www.eff.org/fr/

privacybadger.
[14] Same Origin Policy. https://www.w3.org/Security/wiki/Same_Origin_Policy.
[15] Service Worker API. https://developer.mozilla.org/en-US/docs/Web/API/

Service_Worker_API.
[16] The Design and Implementation of the Tor Browser [Draft]. https://www.

torproject.org/projects/torbrowser/design/.
[17] E. Abgrall, Y. L. Traon, M. Monperrus, S. Gombault, M. Heiderich, and A. Rib-

ault. XSS-FP: browser fingerprinting using HTML parser quirks. CoRR,
abs/1211.4812, 2012.

[18] G. Acar, C. Eubank, S. Englehardt, M. Juárez, A. Narayanan, and C. Dı́az.
The web never forgets: Persistent tracking mechanisms in the wild. In G. Ahn,
M. Yung, and N. Li, editors, Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, Scottsdale, AZ, USA, November 3-7,
2014, pages 674–689. ACM, 2014.

[19] G. Acar, M. Juárez, N. Nikiforakis, C. Dı́az, S. F. Gürses, F. Piessens, and B. Pre-
neel. Fpdetective: dusting the web for fingerprinters. In A. Sadeghi, V. D. Gligor,
and M. Yung, editors, 2013 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS’13, Berlin, Germany, November 4-8, 2013, pages 1129–
1140. ACM, 2013.

[20] J. P. Achara, J. Parra-Arnau, and C. Castelluccia. Mytrackingchoices: Pacifying
the ad-block war by enforcing user privacy preferences. CoRR, abs/1604.04495,
2016.

[21] K. Boda, Á. M. Földes, G. G. Gulyás, and S. Imre. User tracking on the web via
cross-browser fingerprinting. In P. Laud, editor, Information Security Technology
for Applications - 16th Nordic Conference on Secure IT Systems, NordSec 2011,
Tallinn, Estonia, October 26-28, 2011, Revised Selected Papers, volume 7161 of
Lecture Notes in Computer Science, pages 31–46. Springer, 2011.

[22] Y. Cao, S. Li, and E. Wijmans. (cross-)browser fingerprinting via os and hardware
level features. In 24th Annual Network and Distributed System Security Sympo-
sium, NDSS 2017, San Diego, California, USA, 26 February - 1 March, 2017,
2017. To Appear.

https://getadblock.com/
https://www.w3.org/TR/html51/browsers.html
https://www.w3.org/Style/CSS/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://github.com/reworkcss/css
https://disconnect.me/
https://www.ghostery.com/
https://github.com/tmpvar/jsdom
https://www.w3.org/TR/2011/WD-html5-20110525/the-iframe-element.html#attr-iframe-sandbox
https://www.w3.org/TR/2011/WD-html5-20110525/the-iframe-element.html#attr-iframe-sandbox
https://nodejs.org/en/
https://newspaint.wordpress.com/2012/11/05/node-js-http-and-https-proxy
https://newspaint.wordpress.com/2012/11/05/node-js-http-and-https-proxy
https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
https://www.eff.org/fr/privacybadger
https://www.eff.org/fr/privacybadger
https://www.w3.org/Security/wiki/Same_Origin_Policy
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://www.torproject.org/projects/torbrowser/design/
https://www.torproject.org/projects/torbrowser/design/


16 Dolière Francis Somé, Nataliia Bielova, and Tamara Rezk

[23] N. Doty. Tracking Compliance and Scope, 2016. https://www.w3.org/TR/

tracking-compliance/.
[24] P. Eckersley. How unique is your web browser? In M. J. Atallah and N. J. Hopper,

editors, Privacy Enhancing Technologies, 10th International Symposium, PETS
2010, Berlin, Germany, July 21-23, 2010. Proceedings, volume 6205 of Lecture
Notes in Computer Science, pages 1–18. Springer, 2010.

[25] S. Englehardt and A. Narayanan. Online tracking: A 1-million-site measurement
and analysis. In E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and
S. Halevi, editors, Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, Vienna, Austria, October 24-28, 2016, pages 1388–
1401. ACM, 2016.

[26] S. Englehardt, D. Reisman, C. Eubank, P. Zimmerman, J. Mayer, A. Narayanan,
and E. W. Felten. Cookies that give you away: The surveillance implications of
web tracking. In A. Gangemi, S. Leonardi, and A. Panconesi, editors, Proceedings
of the 24th International Conference on World Wide Web, WWW 2015, Florence,
Italy, May 18-22, 2015, pages 289–299. ACM, 2015.

[27] R. T. Fielding. Tracking Preference Expression (DNT), 2015. https://www.w3.

org/TR/tracking-dnt/.
[28] B. Krishnamurthy and C. E. Wills. Privacy diffusion on the web: a longitudinal

perspective. In J. Quemada, G. León, Y. S. Maarek, and W. Nejdl, editors,
Proceedings of the 18th International Conference on World Wide Web, WWW
2009, Madrid, Spain, April 20-24, 2009, pages 541–550. ACM, 2009.

[29] P. Laperdrix, W. Rudametkin, and B. Baudry. Beauty and the beast: Diverting
modern web browsers to build unique browser fingerprints. In IEEE Symposium
on Security and Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016, pages
878–894. IEEE Computer Society, 2016.

[30] A. Lerner, A. K. Simpson, T. Kohno, and F. Roesner. Internet jones and the
raiders of the lost trackers: An archaeological study of web tracking from 1996 to
2016. In 25th USENIX Security Symposium (USENIX Security 16), Austin, TX,
2016. USENIX Association.

[31] J. R. Mayer and J. C. Mitchell. Third-party web tracking: Policy and technology.
In IEEE Symposium on Security and Privacy, SP 2012, 21-23 May 2012, San
Francisco, California, USA, pages 413–427. IEEE Computer Society, 2012.

[32] G. Merzdovnik, M. Huber, D. Buhov, N. Nikiforakis, S. Neuner, M. Schmiedecker,
and E. Weippl. Block me if you can: A large-scale study of tracker-blocking tools.
In 2nd IEEE European Symposium on Security and Privacy, Paris, France, 2017.
To appear.

[33] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, and G. Vigna.
Cookieless monster: Exploring the ecosystem of web-based device fingerprinting.
In 2013 IEEE Symposium on Security and Privacy, SP 2013, Berkeley, CA, USA,
May 19-22, 2013, pages 541–555. IEEE Computer Society, 2013.

[34] X. Pan, Y. Cao, and Y. Chen. I do not know what you visited last summer: Pro-
tecting users from stateful third-party web tracking with trackingfree browser. In
22nd Annual Network and Distributed System Security Symposium, NDSS 2015,
San Diego, California, USA, February 8-11, 2015. The Internet Society, 2015.

[35] J. Parra-Arnau, J. P. Achara, and C. Castelluccia. Myadchoices: Bringing trans-
parency and control to online advertising. CoRR, abs/1602.02046, 2016.

[36] F. Roesner, T. Kohno, and D. Wetherall. Detecting and defending against third-
party tracking on the web. In S. D. Gribble and D. Katabi, editors, Proceedings of
the 9th USENIX Symposium on Networked Systems Design and Implementation,

https://www.w3.org/TR/tracking-compliance/
https://www.w3.org/TR/tracking-compliance/
https://www.w3.org/TR/tracking-dnt/
https://www.w3.org/TR/tracking-dnt/


Server-Side Protection against Third Party Web Tracking 17

NSDI 2012, San Jose, CA, USA, April 25-27, 2012, pages 155–168. USENIX
Association, 2012.

[37] A. Soltani, S. Canty, Q. Mayo, L. Thomas, and C. J. Hoofnagle. Flash cookies and
privacy. In AAAI spring symposium: intelligent information privacy management,
pages 158–163, 2010.

[38] O. Starov and N. Nikiforakis. Extended tracking powers: Measuring the privacy
diffusion enabled by browser extensions. In Proceedings of the 26th International
Conference on World Wide Web, WWW 2017, Perth, Australia, April 3 - 7, 2017,
2017. To Appear.

[39] N. Takei, T. Saito, K. Takasu, and T. Yamada. Web browser fingerprinting using
only cascading style sheets. In L. Barolli, F. Xhafa, M. R. Ogiela, and L. Ogiela,
editors, 10th International Conference on Broadband and Wireless Computing,
Communication and Applications, BWCCA 2015, Krakow, Poland, November 4-
6, 2015, pages 57–63. IEEE Computer Society, 2015.

[40] R. Upathilake, Y. Li, and A. Matrawy. A classification of web browser finger-
printing techniques. In M. Badra, A. Boukerche, and P. Urien, editors, 7th In-
ternational Conference on New Technologies, Mobility and Security, NTMS 2015,
Paris, France, July 27-29, 2015, pages 1–5. IEEE, 2015.

[41] M. West, A. Barth, and D. Veditz. Content Security Policy Level 2. W3C Candi-
date Recommendation, 2015.



18 Dolière Francis Somé, Nataliia Bielova, and Tamara Rezk

Appendix

Screenshot of the demo website map console.

Fig. 5. Screenshot of the Browser console


