
Projet Ajacs

Deliverable WP3

Formalization of privacy

properties and their enforcement

by hybrid analysis

December 2018

This deliverable includes the following articles describing recent work done

on WP3.

Formal Verification of Smart Contracts, Karthikeyan Bhargavan, An-

toine Delignat-Lavaud, Cdric Fournet, Anitha Gollamudi, Georges Gonthier,

Nadim Kobeissi, Aseem Rastogi, Thomas Sibut-Pinote, Nikhil Swamy, and San-

tiago Zanella-Bguelin

A Better Facet of Dynamic Information Flow Control, Minh Ngo,

Nataliia Bielova, Cormac Flanagan, Tamara Rezk, Alejandro Russo, and Thomas

Schmitz

Short Paper: Formal Verification of Smart Contracts

Karthikeyan Bhargavan2 Antoine Delignat-Lavaud1 Cédric Fournet1

Anitha Gollamudi3 Georges Gonthier1 Nadim Kobeissi2 Aseem Rastogi1

Thomas Sibut-Pinote2 Nikhil Swamy1 Santiago Zanella-Béguelin1

1Microsoft Research 2Inria 3Harvard University

{antdl,fournet,gonthier,aseemr,nswamy,santiago}@microsoft.com

{karthikeyan.bhargavan,nadim.kobeissi,thomas.sibut-pinote}@inria.fr agollamudi@g.harvard.edu

Abstract

Ethereum is a cryptocurrency framework that uses blockchain

technology to provide an open distributed computing plat-

form, called the Ethereum Virtual Machine (EVM). EVM

programs are written in bytecode which operates on a sim-

ple stack machine. Programmers do not usually write EVM

code; instead, they can program in a JavaScript-like lan-

guage called Solidity that compiles to bytecode. Since the

main application of EVM programs is as smart contracts that

manage and transfer digital assets, security is of paramount

importance. However, writing trustworthy smart contracts

can be extremely difficult due to the intricate semantics of

EVM and its openness: both programs and pseudonymous

users can call into the public methods of other programs.

This problem is best illustrated by the recent attack on

TheDAO contract, which allowed roughly $50M USD worth

of Ether to be transferred into the control of an attacker. Re-

covering the funds required a hard fork of the blockchain,

contrary to the code is law premise of the system. In this

paper, we outline a framework to analyze and verify both

the runtime safety and the functional correctness of Solidity

contracts in F⋆, a functional programming language aimed

at program verification.

Categories and Subject Descriptors F.3 [F.3.1 Specifying

and Verifying and Reasoning about Programs]

Keywords Ethereum, Solidity, EVM, smart contracts

1. Introduction

The blockchain technology, pioneered by Bitcoin [7] pro-

vides a globally-consistent append-only ledger that does not

rely on a central trusted authority. In Bitcoin, this ledger

records transactions of a virtual currency, which is created

by a process called mining. In the proof-of-work mining

scheme, each node of the network can earn the right to ap-

pend the next block of transactions to the ledger by finding

a formatted value (which includes all transactions to appear

in the block) whose SHA256 digest is below some difficulty

threshold. The system is designed to ensure that blocks are

mined at a constant rate: when too many blocks are submit-

ted too quickly, the difficulty increases, thus raising the com-

putational cost of mining.

Ethereum is similarly built on a blockchain based on

proof-of-work; however, its ledger is considerably more ex-

pressive than that of Bitcoin’s: it stores Turing-complete

programs in the form of Ethereum Virtual Machine (EVM)

bytecode, while transactions are construed as function calls

and can carry additional data in the form of arguments. Fur-

thermore, contracts may also use non-volatile storage and

log events, both of which are recorded in the ledger.

The initiator of a transaction pays a fee for its execution

measured in units of gas. The miner who manages to ap-

pend a block including the transaction gets to claim the fee

converted to Ether at a specified gas price. Some operations

are more expensive than others: for instance, writing to stor-

age and initiating a transaction is four orders of magnitude

more expensive than an arithmetic operation on stack val-

ues. Therefore, Ethereum can be thought of as a distributed

computing platform where anyone can run code by paying

for the associated gas charges.

The integrity of the system relies on the honesty of a

majority of miners: a miner may try to cheat by not running

the program, or running it incorrectly, but honest miners will

reject the block and fork the chain. Since the longest chain is

the one that is considered valid, miners are incentivized not

to cheat and to verify that others do as well, since their block

reward may be lost unless malicious miners can supply the

majority of new blocks to the network.

While Ethereum’s adoption has led to smart contracts

managing millions of dollars in currency, the security of

these contracts has become highly sensitive. For instance,

a variant of a well-documented reentrancy attack was re-

cently exploited in TheDAO [2], a contract that implements

a decentralized autonomous venture capital fund, leading to

the theft of more than $50M worth of Ether, and raising the

question of whether similar bugs could be found by static

analysis [6].

In this paper, we outline a framework to analyze and

formally verify Ethereum smart contracts using F⋆ [9], a

functional programming language aimed at program verifi-

cation. Such contracts are generally written in Solidity [3],

1 2016/8/11

a JavaScript-like language, and compiled down to bytecode

for the EVM. We consider the Solidity compiler as untrusted

and develop a language-based approach for verifying smart

contracts. Namely, we present two tools based on F⋆:

Solidity⋆ a tool to translate Solidity program to shallow-

embedded F⋆ programs (Section 2).

EVM⋆ a decompiler for EVM bytecode that produces

equivalent shallow-embedded F⋆ programs that operate

on a simpler machine without stack (Section 3).

These tools enable three different forms of verification:

1. Given a Solidity program, we can use Solidity⋆ to trans-

late it to F⋆ and verify at the source level functional cor-

rectness specifications such as contract invariants, as well

as safety with respect to runtime errors.

2. Given an EVM bytecode, we can use EVM⋆ to decompile

it and analyze low-level properties, such as bounds on the

amount of gas consumed by calls.

3. Given a Solidity program and allegedly functionally

equivalent EVM bytecode, we can verify their equiva-

lence by translating each into F⋆. Thus, we can check the

correctness of the output of the Solidity compiler on a

case-by-case basis using relational reasoning [1].

1.1 Architecture of the Framework

Solidity*
Subset	of	F*

EVM*
Subset	of	F*

Verified	Translation

Verified	Decompilation

✅

✅

Functional	 Correctness

Runtime	Safety

F*
Solidity
Source	Code

EVM
Compiled	Bytecode

Verify

Verify

Equivalence	

Proof

Figure 1. Overview of the architecture of our framework

Our smart contract verification framework is a two-

pronged approach (Figure 1) based on F⋆. F⋆ comes with

a type system that includes dependent types and monadic

effects, which we apply to generate automated queries to

statically verify properties on EVM bytecode and Solidity

sources.

While it is clearly favorable to obtain both the Solidity

source code and EVM bytecode of a target smart contract,

we design our architecture with the assumption that the veri-

fier may only have the bytecode. At the moment of this writ-

ing, only 396 out of 112,802 contracts have their source code

available on http://etherscan.io. Therefore we provide

separate tools for decompiling EVM bytecode (EVM⋆), and

analyzing Solidity source code (Solidity⋆).

〈solidity〉 ::= (〈contract〉)*

〈contract〉 ::= ‘contract ’ @identifier ‘{’ (〈st〉)*‘}’

〈st〉 ::= 〈typedef 〉 | 〈statedef 〉 | 〈method〉

〈typedef 〉 ::= ‘struct ’ @identifier ‘ {’ (〈type〉 @identifier ‘;’)* ‘}’

〈type〉 ::= ‘uint’ | ‘address’ | ‘bool’

| ‘mapping (’ 〈type〉 ‘=>’ 〈type〉 ‘)’

| @identifier

〈statedef 〉 ::= 〈type〉 @identifier

〈method〉 ::= ‘function’ (@identifier)?‘()’ (〈qualifier〉)* ‘{’

(‘var’ (@identifier (‘=’ 〈expression〉)? ‘,’)+)?

(〈statement〉 ‘;’)* ‘}’

〈qualifier〉 ::= ‘private’ | ‘public’ | ‘internal’

| ‘returns (’ 〈type〉 (@identifier)? ‘)’

〈statement〉 ::= ε

| 〈type〉 @identifier (‘=’ 〈expression〉)? (*decl*)

| ‘if(’ 〈expression〉 ‘)’ 〈statement〉
(‘else’ 〈statement〉)?

| ‘{’ (〈statement〉 ‘;’)* ‘}’

| ‘return’ (〈expression〉)?
| ‘throw’

| 〈expression〉

〈expression〉 ::= 〈literal〉
| 〈lhs expression〉 ‘(’ (〈expression〉 ‘,’)* ‘)’

| 〈expression〉 〈binop〉 〈expression〉
| 〈unop〉 〈expression〉
| 〈lhs expression〉 ‘=’ 〈expression〉
| 〈lhs expression〉

〈lhs expression〉 ::=

| @identifier

| 〈lhs expression〉 ‘[’ 〈lhs expression〉‘]’

| 〈lhs expression〉 ‘.’ @identifier

〈literal〉 ::= 〈function〉
| ‘{’ (@identifier ‘:’ 〈expression〉 ‘,’)* ‘}’

| ‘[’ (〈expression〉 ‘,’)* ‘]’

| @number | @address | @boolean

〈binop〉 ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘%’

| ‘&&’ | ‘||’ | ‘==’ | ‘!=’ | ‘>’ | ‘<’ | ‘>=’ | ‘<=’

〈unop〉 ::= ‘+’ | ‘-’ | ‘!’

Figure 2. Syntax of the translated Solidity subset

2. Translating Solidity to F
⋆

In the spirit of previous work on type-based analysis of

JavaScript programs [8], we advocate an approach where the

programmer can verify high-level goals of a contract using

F⋆. In this section, we present a tool to translate Solidity to

F⋆, and a simple automated analysis of extracted F⋆ con-

tracts.

Solidity programs consist of a number of contract decla-

rations. Once compiled to EVM, contracts are installed us-

ing a special kind of account-creating transaction, which al-

locates an address to the contract. Unlike Bitcoin, where an

2 2016/8/11

http://etherscan.io

address is the hash of the public key of an account, Ethereum

addresses can refer indistinguishably to a contract or a user

public key. Similarly, there is no distinction between trans-

actions and method calls: when sending Ether to a contract,

it will implicitly call the fallback function (the unnamed

method of the Solidity contract). In fact, compiled contracts

in the blockchain consist of a single entry point that de-

cides depending on the incoming transaction which method

code to invoke. The methods of a Solidity contract have

access to ambient global variables that contain information

about the contract (such as the balance in this.balance),

the transaction used to invoke the contract’s method (such

as the source address in msg.sender and the amount of

ether sent in msg.value), or the block in which the invo-

cation transaction is mined (such as the miner’s timestamp

in block.timestamp).

In this exploratory work, we consider a restricted subset

of Solidity, shown in Figure 2. Notably, the fragment we con-

sider does not include loops. The three main types of decla-

rations within a contract are type declarations, property dec-

larations and methods. Type declarations consist of C-like

structs and enums, and mappings (associative arrays imple-

mented as hash tables). Although properties and methods are

reminiscent of object oriented programming, it is somewhat

a confusing analogy: contracts are “instantiated” by the ac-

count creating transaction; this will allocate the properties

of the contract in the global storage and call the construc-

tor (the method with the same name as the contract). De-

spite the C++/Java-like access modifiers, all properties of a

contract are stored in the Ethereum ledger, and as such, the

internal state of all contracts is completely public. Methods

are compiled in EVM into a single function that runs when

a transaction is sent to the contract’s address. This transac-

tion handler matches the requested method signature with

the list of non-internal methods, and calls the relevant one.

If no match is found, a fallback handler is called instead (in

Solidity, this is the unnamed method).

2.1 Translation to F
⋆

We perform a shallow translation of Solidity to F⋆ as fol-

lows:

1. contracts are translated to F⋆ modules;

2. type declarations are translated to type declarations:

enums become sums of nullary data constructors, structs

become records, and mappings become F⋆ maps;

3. all contract properties are packaged together within a

state record, where each property is a reference;

4. each method gets translated to a function, no defunction-

alization is required since Solidity is first-order only;

5. we rewrite if statements that have a continuation de-

pending on whether one branch ends in return or throw

(moving the continuation in the other branch) or not (we

then duplicate the continuation in each branch).

6. to translate assignments, we keep an environment of lo-

cal, state, and ambient global variable names: local vari-

able declarations and assignments are translated to let

bindings; globals are replaced with library calls; state

properties are replaced with update on the state type;

7. built-in method calls (e.g.address.send()) are re-

placed by library calls.

We show a minimalistic Solidity contract and its F⋆ trans-

lation in Figure 3. The only type annotation added by the

translation is a custom Eth effect on the contract’s methods,

which we describe in Section 2.2. The Solidity library de-

fines the mapping type (a reference to a map) and the as-

sociated functions update map and lookup. Furthermore,

it defines the numeric types used in Solidity, which are un-

signed 256-bit by default.

2.2 An effect for detecting vulnerable patterns

The example in Figure 3 captures two major pitfalls of So-

lidity programming. First, many contracts fail to realize that

send and its variants are not guaranteed to succeed (send

returns a bool). This is highly surprising for Solidity pro-

grammers because all other runtime errors (such as run-

ning out of gas or call stack overflows) trigger an exception.

Such exceptions (including the ones triggered by throw) re-

vert all transactions and all changes to the contract’s prop-

erties. This is not the case of send: the programmer needs

to undo side effects manually when it returns false, e.g.

if(!addr.send(x)) throw.

The other problem illustrated in MyBank is reentrancy.

Since transactions are also method calls, calling send is a

transfer of program control. Consider the following mali-

cious contract:

contract Malicious {
uint balance;

MyBank bank = MyBank(0xdeadbeef8badf00d...);

function Malicious(){
balance = msg.value;

bank.Deposit.value(balance)();

bank.Withdraw.value(0)(balance); // forwarding gas

}

function (){ // fallback function

bank.Withdraw.value(0)(balance);

}
}

It attacks the Withdraw method of MyBank by calling recur-

sively into it at the point where it does its send. The if

condition in the second Withdraw call is still satisfied (be-

cause the balances are updated after send, and there is no

check that it was successful). Even though the send in the

second call to Withdraw is guaranteed to fail (because un-

like method calls, send allocates only 2300 gas for the call),

it still corrupts the balance by decreasing twice, causing an

unsigned integer underflow. After corrupting the balance,

3 2016/8/11

contract MyBank {
mapping (address ⇒ uint) balances;

function Deposit() {
balances[msg.sender] += msg.value;

}

function Withdraw(uint amount) {
if(balances[msg.sender] ≥ amount) {

msg.sender.send(amount);

balances[msg.sender] −= amount;

}
}

function Balance() constant returns(uint) {
return balances[msg.sender];

}
}

moduleMyBank

open Solidity

type state = { balances: mapping address uint; }
val store : state = {balances = ref empty map}

let deposit () : Eth unit =

update map store.balances msg.sender

(add (lookup store.balances msg.sender) msg.value)

let withdraw (amount:uint) : Eth unit =

if (ge (lookup store.balances msg.sender) amount) then
send msg.sender amount;

update map store.balances msg.sender

(sub (lookup store.balances msg.sender) amount)

let balance () : Eth uint =

lookup store.balances msg.sender

Figure 3. A simple bank contract in Solidity translated to F⋆

the malicious contract can freely withdraw any remaining

funds in the bank.

Using the effect system of F⋆, we now show how to detect

some vulnerable patterns such as unchecked send results in

translated contracts. The base construction is a combined

exception and state monad (see [9] for details) with the

following signature:

EST (a:Type) = h0:heap // input heap

→ send failed:bool // send failure flag

→Tot (option (a ∗ heap) // result and new heap, or exception

∗ bool) // new failure flag

return (a:Type) (x:a) : EST a =

fun h0 b0 → Some (x, h0), b0

bind (a:Type) (b:Type) (f:EST a) (g:a →EST b) : EST b =

fun h0 b0 →
match f h0 b0 with
| None, b1 →None, b1 // exception in f: no output heap

| Some (x, h1), b1 → g x h1 b1 // run g, carry failure flag

The monad carries a send failure flag to record

whether or not a send() or external call may have failed

so far. It is possible to enforce several different styles based

on this monad; for instance, one may want to enforce that

a contract always throws when a send fails. As an example,

we defined the following effect based on EST:

effect Eth (a:Type) = EST a

(fun b0 → not b0) // Start in non-failsure state

(fun h0 b0 r b1 →
// What to do when a send failed

b1 =⇒ (match r with | None →True // exception

| Some (, h1) → no mods h0 h1)) // no writes

The standard library then defines the post-condition

of throw to fun h0 b0 r b1 → b0=b1 ∧ is None r and the post-

condition of send to fun h0 b0 r b1 → r == Some (b1, h0).

Simply by typechecking extracted methods in the Eth

effect, we can detect dangerous patterns such as the send()

followed by an unconditional write to the balances table

in MyBank. Note that the safety condition imposed by Eth

is not sufficient to prevent reentrency attacks, as there is no

guarantee that the state modifictions before and after send

preserve the functional invariant of the contract. Therefore,

this analysis is useful for detecting dangerous patterns and

enforcing a failure handling style, but it doesn’t replace a

manual F⋆ proof that the contract is correct.

Evaluation Despite the limitations of our tool (in particu-

lar, it doesn’t support many syntactic features of Solidity),

we are able to translate and typecheck 46 out of the 396

contracts we collected on https://etherscan.io. Out of

these, only a handful are valid in the Eth effect. This is a

clear sign that a large scale analysis of published contract is

likely to uncover widespread vulnerabilities; we leave such

analysis to future work.

3. Decompiling EVM Bytecode to F
⋆

In this section we present EVM⋆, a decompiler for EVM

bytecode that we use to analyze contracts for which the

Solidity source is unavailable (as is the case for the majority

of live contracts in the Ethereum blockchain), as well as

low-level properties of contracts. A third use case of the

decompiler that we do not further explore in this paper is to

use EVM⋆ together with Solidity⋆ to check the equivalence

between a Solidity program and the bytecode output by the

Solidity compiler, thus ensuring not only that the compiler

did not introduce bugs, but also that any properties verified at

the source level are preserved. This equivalence proof could

be done, for instance, using rF⋆ [1] a version of F⋆ with

relational refinement types.

4 2016/8/11

https://etherscan.io

EVM⋆ takes as input the bytecode of a contract as stored

in the blockchain and translates it into a representation in F⋆.

The decompiler performs a stack analysis to identify jump

destinations in the program and detect stack under- and over-

flows. The result is an equivalent F⋆ program that, morally,

operates on a machine with infinite single-assignment regis-

ters which we translate as let bindings.

The EVM is a stack-based machine with a word size of

256 bits [10]. Bytecode programs have access to a word-

addressed non-volatile storage modeled as a word array, a

word-addressed volatile memory modeled as an array of

bytes, and an append-only non-readable event log. The in-

struction set includes the usual arithmetic and logic opera-

tions (e.g. ADD, XOR), stack and memory operations (e.g.

PUSH, POP, MSTORE, MLOAD, SSTORE, SLOAD), con-

trol flow operations (e.g. JUMP, CALL, RETURN), instruc-

tions to inspect the environment and blockchain (e.g. BAL-

ANCE, TIMESTAMP), as well as specialized instructions

unique to EVM (e.g. SHA3, CREATE, SUICIDE). As a pe-

culiarity, the instruction JUMPDEST is used to mark valid

jump destinations in the code section of a contract, but be-

haves as a NOP at runtime. This is convenient for identifying

potential jump destinations during decompilation, as jump-

ing to an invalid address halts execution.

The static analysis done by EVM⋆ marks stack cells as

either of 3 types: 1. Void for initialized cells, 2. Local for

results of operations, and 3. Constant for immediate argu-

ments of PUSH operations The analysis identifies jumpable

addresses and blocks, contiguous sections of code starting at

a jumpable address and ending in a halting or control flow

instruction (we treat branches of conditionals as indepen-

dent blocks). A block summary consists of the address of

its entry point, its final instruction, and a representation of

the initial and final stacks summarizing the block effects on

the stack. An entry point may be either the 0 address, an ad-

dress marked with JUMPDEST, an immediate argument of

a PUSH used in a jump, or a fall-through address of a con-

ditional.

As a result of the static analysis, EVM⋆ emits F⋆ code,

using variables bound in let bindings instead of stack cells.

Many instructions can be eliminated in this way; the analysis

keeps an accurate account of the offsets of instructions in

the remaining code. Because the instructions eliminated may

incur gas charges, we keep track of the fuel consumption by

instrumenting the code with calls to burn, a library function

whose sole effect is to accumulate gas charges. Figure 4

shows the F⋆ code decompiled from the Balance method

of the MyBank contract in Fig. 3.

We wrote a reference cost model for bytcode operations

that can be used to prove bounds on the gas consumption of

contract methods. As an example, Fig. 5 shows a type anno-

tation for the entry point of the MyBank contract decompiled

to F⋆ that proves that a method call to the Balance function

will consume at most 390 units of gas.

let x 29 = pow [0x02uy] [0xA0uy] in
let x 30 = sub x 29 [0x01uy] in
let x 31 = get caller () in
let x 32 = land x 31 x 30 in
burn 17 (∗ opcodes: SUB, CALLER, AND, PUSH1 00, SWAP1, DUP2 ∗);

mstore [0x00uy] x 32;

burn 9 (∗ opcodes: PUSH1 20, DUP2, DUP2 ∗);

mstore [0x20uy] [0x00uy];

burn 9 (∗ opcodes: PUSH1 40, SWAP1, SWAP2 ∗);

let x 33 = sha3 [0x00uy] [0x40uy] in
let x 34 = sload x 33 in
burn 9 (∗ opcodes: PUSH1 60, SWAP1, DUP2 ∗);

mstore [0x60uy] x 34;

loadLocal [0x60uy] [0x20uy] (∗ returned value ∗)

Figure 4. Decompiled version of the Balance method of

the MyBank contract, instrumented with gas consumption.

valmyBank: unit → ST word

(requires (fun h → sel h mem = 0 ∧ sel h gas = 0 ∧
nonZero (eqw

(div (get calldataload [0x00uy]) (pow [0x02uy] [0xE0uy]))

[0xF8uy; 0xF8uy; 0xA9uy; 0x12uy]))) // hash of Balance method

(ensures (fun h0 h1 → sel h1 gas ≤ 390))

letmyBank () =

burn 6 (∗ opcodes: PUSH1 60, PUSH1 40 ∗);

mstore [0x40uy] [0x60uy];

...

let x 28 = eqw [0xF8uy; 0xF8uy; 0xA9uy; 0x12uy] x 3 in
burn 10 (∗ opcode JUMPI ∗);

if nonZero x 28 then
begin (∗ offset: 165 ∗)

// decompiled code of Balance method

end

Figure 5. A proof of a bound on the gas consumed by a call

to the Balance method of MyBank.

4. Conclusion

Our preliminary experiments in using F⋆ to verify smart con-

tracts show that the type and effect system of F⋆ is flexible

enough to express and prove non-trivial properties. In par-

allel, Luu et al. [6] used symbolic execution to detect flaws

in EVM bytecode programs, and an experimental Why3 [5]

formal verification backend is now available from the Solid-

ity web IDE [4].

The examples we considered are simple enough that we

did not have to write a full implementation of EVM byte-

code. We plan to complete a verified reference implementa-

tion and use it to verify that the output of the Solidity com-

piler is functionally equivalent to the sources.

We implemented EVM⋆ and Solidity⋆ in OCaml. It would

be interesting to implement and verify parts of these tools

using F⋆ instead. For instance, we could prove that the stack

and control flow analysis done in EVM⋆ is sound with re-

spect to a stack machine semantics.

5 2016/8/11

References

[1] G. Barthe, C. Fournet, B. Grégoire, P.-Y. Strub, N. Swamy,

and S. Zanella-Béguelin. Probabilistic relational verification

for cryptographic implementations. In 41st ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Lan-

guages, POPL ’14, pages 193–205. ACM, 2014.

[2] V. Buterin. Critical update re: Dao vulnerability.

https://blog.ethereum.org/2016/06/17/critical-

update-re-dao-vulnerability, 2016.

[3] Ethereum. Solidity documentation – Release 0.2.0. http:

//solidity.readthedocs.io/, 2016.

[4] Ethereum. Solidity-browser. https://ethereum.github.

io/browser-solidity, 2016.

[5] J.-C. Filliâtre and A. Paskevich. Why3 — where programs

meet provers. In 22nd European Symposium on Program-

ming, ESOP ’13, volume 7792 of Lecture Notes in Computer

Science, pages 125–128. Springer, 2013.

[6] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor.

Making smart contracts smarter. Cryptology ePrint Archive,

Report 2016/633, 2016. http://eprint.iacr.org/2016/

633.

[7] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system.

http://bitcoin.org/bitcoin.pdf.

[8] N. Swamy, C. Fournet, A. Rastogi, K. Bhargavan, J. Chen,

P. Strub, and G. M. Bierman. Gradual typing embedded

securely in javascript. In POPL ’14, pages 425–438. ACM,

2014.

[9] N. Swamy, C. Hriţcu, C. Keller, A. Rastogi, A. Delignat-

Lavaud, S. Forest, K. Bhargavan, C. Fournet, P.-Y. Strub,

M. Kohlweiss, J.-K. Zinzindohoué, and S. Zanella-Béguelin.

Dependent types and multi-monadic effects in F*. In 43rd

Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL ’16, pages 256–270. ACM,

2016.

[10] G. Wood. Ethereum: A secure decentralised generalised trans-

action ledger. http://gavwood.com/paper.pdf.

6 2016/8/11

https://blog.ethereum.org/2016/06/17/critical-update-re-dao-vulnerability
https://blog.ethereum.org/2016/06/17/critical-update-re-dao-vulnerability
http://solidity.readthedocs.io/
http://solidity.readthedocs.io/
https://ethereum.github.io/browser-solidity
https://ethereum.github.io/browser-solidity
http://eprint.iacr.org/2016/633
http://eprint.iacr.org/2016/633
http://bitcoin.org/bitcoin.pdf
http://gavwood.com/paper.pdf

A Better Facet of Dynamic Information Flow Control

Minh Ngo
INRIA, France

nguyen-nhat-minh.ngo@inria.fr

Nataliia Bielova
INRIA, France

nataliia.bielova@inria.fr

Cormac Flanagan
UCSC, USA

cormac@ucsc.edu

Tamara Rezk
INRIA, France

tamara.rezk@inria.fr

Alejandro Russo
Chalmers University of Technology,

Sweden

russo@chalmers.se

Thomas Schmitz
UCSC, USA

tschmitz@ucsc.edu

ABSTRACT

Multiple Facets (MF) is a dynamic enforcement mechanism which

has proved to be a good fit for implementing information flow se-

curity for JavaScript. It relies on multi executing the program, once

per each security level or view, to achieve soundness. By looking

inside programs, MF encodes the views to reduce the number of

needed multi-executions.

In this work, we extend Multiple Facets in three directions. First,

we propose a new version of MF for arbitrary lattices, called Gener-

alised Multiple Facets, or GMF. GMF strictly generalizes MF, which

was originally proposed for a specific lattice of principals. Second,

we propose a new optimization on top of GMF that further reduces

the number of executions. Third, we strengthen the security guar-

antees provided by Multiple Facets by proposing a termination

sensitive version that eliminates covert channels due to termina-

tion.

KEYWORDS

Multiple Facets; Dynamic Information Flow Control; Secure Multi-

Execution; Noninterference

1 INTRODUCTION

JavaScript has become the de facto programming language of the

Web. Web browsers daily execute thousands of JavaScript lines

which usually have access to confidential information, for example

cookies that mark that the user in a web session is authenticated.

It is not surprising that JavaScript is a common target for attacks.

While browsers deploy security measures in the form of access

control (e.g., SOP and CSP), they are insufficient [12, 17, 30] to

protect confidentiality of data.

Information flow control (IFC) is a promising technology which

provides a systematic solution to handle unintentional or malicious

leaks of confidential information. Recently, dynamic IFC analyses

have received a lot of attention [1ś3, 5, 7, 9, 10, 14, 26, 33], due, in

part, to its applicability to JavaScriptÐwhere static analyses are

rather an awkward fit [29].

This paper is published under the Creative Commons Attribution 4.0 International
(CC BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.

WWW ’18 Companion, April 23ś27, 2018, Lyon, France

© 2018 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC BY 4.0 License.
ACM ISBN 978-1-4503-5640-4/18/04.
https://doi.org/10.1145/3184558.3186348

In order to scale, a suitable IFC technique for the web not only

needs to be dynamic but also needs to reduce to the minimum the

modifications required to existing JavaScript code. In this light,

an interesting dynamic IFC technique which fulfills both of these

requirements consists in executing several copies of a program: one

execution per each security level or view. In that manner, each copy

of the program (view) depends only on information observable

to the corresponding security level, where no leaks are therefore

possible. Secure Multi Execution (SME) [14] and Multiple Facets

(MF) [3] are two techniques based on this idea.

Both techniques have been proved to be a good fit for informa-

tion flow security in the web since they have been successfully

implemented as extensions of the Firefox browser [13, 33].

Although both SME and MF are based on multi-executions, they

present important differences [7]. On one hand, SME is black-

box [24], i.e., it is a mechanism that does not look inside programs

but rather change the semantics of inputs and outputs to ensure

security. For a moment, we assume a scenario where security levels

are simply sets of principals (e.g., web origins) which denote those

authorities with confidentiality concerns over data. In such a sce-

nario, SME needs to spawn one execution for any possible set of

principalsÐwhere the number of executions grows exponentially

with respect to the number of principals! Instead, MF [3] is designed

to reduce the number of multi-executions and the memory footprint

of SME. It does so by inspecting programs code and multi-executing

instructions and multiplexing memory only when needed. While

MF is more resource-friendly than SME, SME provides stronger se-

curity guarantees when it comes to leaks via abnormal termination

[7].

Our broad goal is to augment the efficiency of techniques based

on MF and SME to general cases. In particular, we discovered that

MF might sometimes spawn more multi-executions than SMEÐ

something that is counter-intuitive when considering the purpose

of MF (see Section 2). Our first contribution consists on a novel

technique to further reduce the number of multi-executions (and

memory footprint) of MF. Our second contribution is to generalize

MF to work for arbitrary finite lattices (see Section 3) rather than

being restricted to the security lattice of principals as in the original

proposal [3]. This becomes useful when, for instance, a program

depends on 5 security levels. In such case, as stated originally, MF

will need to encode them by using (at least) 3 principals (23 > 5),

and thus execute the program 23 = 8 times, while SME will execute

it only 5 times (one per security level). Finally, we combine MF and

SME into a single new dynamic IFC mechanism in order to provide

security guarantees as strong as SME (i.e., termination sensitive

https://doi.org/10.1145/3184558.3186348

WWW ’18 Companion, April 23ś27, 2018, Lyon, France M. Ngo et al.

skip
(skip, µ) ⇓ µ

assign
v = µ (e)

(x := e, µ) ⇓ µ[x 7→ v]

if
µ (e) = v (Pv , µ) ⇓ µ

′

(if e then Ptt else Pff, µ) ⇓ µ
′

seq
(P1, µ) ⇓ µ

′ (P2, µ
′) ⇓ µ′′

(P1; P2, µ) ⇓ µ
′′

while
(if e then P ;while e do P else skip, µ) ⇓ µ′

(while e do P, µ) ⇓ µ′

Figure 1: Language semantics

non-interference) while avoiding multi-executions as much as our

optimized version of MF allows it. All proofs can be found in [23].

2 BACKGROUND ON SME AND MF

In this section, we discuss how on one hand, the underpinning

mechanism in MF reduces the number of executions compared

to SME, and on the other hand, may run more multi executions

than SME because of the security lattice based on principals. Our

goal here is partly pedagogical and partly to motivate and provide

intuition on the optimization proposed in Section 4.

Language and Semantics To investigate the foundation of mul-

tiple facets, we use a simple, deterministic while language. Its syntax

includes programs P , variables x , expressions e , and values v . We

use the symbol ⊕ for binary expression operators. A value is either

an integer value or a boolean value.

(programs) P ::= skip | x := e | if e then P1 else P2 |

while e do P | P1; P2
(expressions) e ::= v | x | e ⊕ e

Figure 1 presents standard big-step semantics of the language.

Memories µ map variables to values; we overload the notation of

memory and use µ (e) as the evaluation function for expression e in

memory µ, where µ (v) = v and µ (e1⊕e2) = µ (e1)⊕ µ (e2). We write

(P ,µ) ⇓ µ ′ to mean that the evaluation of program P on memory µ

terminates with memory µ ′. We use µ[x 7→ v] for the memory µ ′

where µ ′(y) = µ (y) if y , x , and µ ′(y) = v if y = x .

MF may use fewer resources than SME SME [14] multi exe-

cutes programs, in a blackbox manner, as many times as security

levels in a lattice. Let’s define an SME memory as a function that

maps each variable to an array of values, one value per security

level. For the sake of simplicity, let’s consider first a security lattice

with only two elements H and L where H ̸⊑ L is the only disal-

lowed flow. Thus, an SME memory µ̂ maps variables to an array

of 2 (possibly different) values: one corresponding to the H view

and one corresponding to the L view. Let’s denote such array of

values as ⟨v1 : v2⟩, where v1 is a private, H , view and v2 is a public,

L, view. Assume that H (µ̂) (resp. L(µ̂)) is a memory in the standard

semantics, obtained by projection of µ̂, mapping variables to single

values of the high view (resp. low view). Then, the SME monitoring

rule1 for such a language can be given by the relation ⇓SME−T IN I

as follows:

1We give here the termination insensitive version of SME.

SME-TINI
(P ,H (µ̂)) ⇓ µ1 (P ,L(µ̂)) ⇓ µ2

(P , µ̂) ⇓SME−T IN I µ1 ⊙ µ2

where ⊙ combines two normal memories into a SME memory in

such a way that H (µ1 ⊙ µ2) = µ1 and L(µ1 ⊙ µ2) = µ2. The SME

mechanism will blindly execute the program as many times as

possible views (or positions of the array) may exist.

Consider a program h := l where initial views for variables l

and h are given by: µ̂ (h) = ⟨1 : 0⟩ and µ̂ (l) = ⟨1 : 1⟩. In SME,

using the SME-TINI rule, the assignment will be executed twice:

once with H (µ̂) = [h 7→ 1,l 7→ 1] for the high view and once

with L(µ̂) = [h 7→ 0,l 7→ 1] for the low view. After execution, the

final SME memory will map h to ⟨1 : 1⟩. One way to reduce the

number of executions is to exploit the knowledge that the high

and the low view for variable l are equal, i.e., H (µ̂) (l) = L(µ̂) (l).

Since the semantics is deterministic, there is no need to execute the

program twice. We can use this knowledge by specialising SME at

the granularity of commands and include the following assignment

rule:

SME-optim
H (µ̂) (e) = L(µ̂) (e) (x := e,L(µ̂)) ⇓ µ

(x := e, µ̂) ⇓SME µ̂[x 7→ ⟨µ (x),µ (x)⟩]

Notice that this SME optimization requires to look inside the

shape of the program to evaluate if expression e of an assignment

satisfies the hypothesis.

In general, in order to reduce the number of executions using

the multi-execution technique of SME-TINI, it is sufficient to (i)

identify in an SME memory which values in the array of values are

equal and (ii) remember which values correspond to which views.

MF uses the multi-execution technique, implements (i) and (ii) and

hence, reduces the number of executions. MF encodes values in SME

memories (arrays with as many positions as lattice elements) as

ordered binary trees, where the order is given by the elements of the

lattice. For example, for a SME memory where µ̂ (h) = ⟨1 : 0 : 0 : 0⟩

for a lattice of 4 elements with top element ⊤, an equivalent MF

memory encodes this array as ⟨⊤?1 : 0⟩ with the meaning that 1 is

the view for ⊤ and 0 for the rest. Every execution that depends on

that value, will multi execute twice instead of 4 times as in SME.

Moreover, MF further uses the view information provided by

the encoding in order to multi execute less in case of branching

commands. For example, for SME-TINI with SME memory µ̂ (h) =

⟨1 : 0 : 0 : 0⟩ the program:

1: if h = 0 then

2: h := h + 1

executes 4 times (where the assignment at line 2 executes 3 times).

Using theMFmemory encoding µ̂ (h) = ⟨⊤?1 : 0⟩, MF remembers

that at line 2 there is no possible observation for the view⊤ (because

for view ⊤ the value of h is 1 so it doesn’t take the then branch).

Hence, the assignmenth := h+1 only executes once with a memory

where h is 0 (the view of variable h corresponding to the 3 levels

which are not ⊤).

For a program h := l , where µ̂ (l) is ⟨1 : 1⟩ in SME, MF keeps only

the value 1: a single value represents the fact that all views can

observe the same value. Thus the assignment h := l executes once

(and all future executions dependent on h will also be reduced).

A Better Facet of Dynamic Information Flow Control WWW ’18 Companion, April 23ś27, 2018, Lyon, France

⊤
B1 B2 B3

⊥
Figure 2: Lattice ⟨LB,⊑⟩

Hence when encoding of an

SME memory can be reduced ef-

fectively, multi executions are re-

duced accordingly. As shown in

the following sections, preserva-

tion of MF memories encoding

through execution requires: to

represent arrays of values as trees

called faceted values and to eval-

uate expressions depending on faceted values. In particular, the

definition of the evaluation of expressions on faceted values de-

pends highly on the shape of expressions and their values according

to different views, and thus is contradictory to the blackbox prop-

erty of a monitor.

MFmay run more multi executions than SME Original MF

has one limitation with respect to SME: it was designed only for

a security lattice of principals: for n principals, such a lattice con-

tains 2n security levels. The following Ad Exchange platform [35]

example demonstrates that MF may be less efficient than SME in

practice, when the security lattice is not based on principals.

Example 2.1. AnAd Exchange platform needs to put an advertise-

ment on a publisher’s website. For that, it implements a Real-time

Bidding (RTB) system [36], where advertisers can bid for the space

on the publisher’s website to get their ad published. The system

receives as input all the bid offers from bidders and sorts them.

According to the RTB algorithm, the second best offer wins.

We present the lattice of 5 elements for this example in Fig. 2.

For simplicity, we consider only 3 bidders called B1, B2, and B3, an

Ad Exchange (⊤ level) which is able to see all the bids, and a public

view ⊥. Because MF is designed for a principal lattice, to encode 5

security levels, it uses 3 principals k1, k2, and k3, and create a lattice

of 8 = 23 levels, and thus has a potential to run some parts of the

program 8 times, while SME always executes the program 5 times.

We consider one test that naively checks the order of bid of-

fers and decides the winner. The encoding of the lattice is: ⊤ =

{k1,k2,k3}, Bi = {ki }, and ⊥ = ∅.

1: winner := 0;

2: test := (x1 ≤ x2) and (x2 ≤ x3);

3: if test then winner := 2 else skip

The bid values from bidders are x1 = ⟨k1 ? 10 : 0⟩, x2 = ⟨k2 ? 5 : 0⟩,

and x3 = ⟨k3 ? 7 : 0⟩. Thus, the resulting value of test at line 2 is

⟨k1 ? ⟨k2 ? ⟨k3 ?ff :ff⟩ : ⟨k3 ?ff :ff⟩⟩ : ⟨k2 ? ⟨k3 ?tt :ff⟩ : ⟨k3 ?tt :tt ⟩⟩⟩.

Therefore, the original MF executes the if instruction 8 times

with 3 useless executions for levels {k1,k2}, {k2,k3}, and {k1,k3}.

Moreover, because different views of a variable may contain the

same values, MF may execute the same statement several times. For

example, in the execution described above, original MF executes

the then branch 3 times, while it only needs to run once since the

threes executions for the then branch can be merged into one.

3 MF FOR ARBITRARY SECURITY LATTICE

We present an extension to the original Multiple Facets mecha-

nism [3] for an arbitrary security lattice ⟨L,⊑⟩, which we call Gen-

eralised Multiple Facets mechanism, or GMF. Similarly to Multiple

Facets, GMF operates over a faceted memory µ̂ that maps variables

to simple values or faceted values. A faceted value is of the form

⟨l ?V1 :V2⟩ where l ∈ L is a security level, and Vi can be either

a faceted value or a simple value. The first facet V1 of ⟨l ?V1 :V2⟩

is called private, and visible to the observers at security level l or

higher levels in the lattice; the second facet V2 is called public, and

visible to security levels that are lower or incomparable to l . We

use V as a meta-variable for faceted values or simple values. Every

evaluation in GMF (see Fig. 6) is marked with a set of security levels

pc , for which the current computation is visible.

3.1 Expression evaluation

⊤

⊥
H

M1 M2

L

Figure 3: Lattice ⟨L⋄,⊑⟩

By µ̂pc (e) we denote the evalu-

ation of expression e in faceted

memory µ̂ with set of security lev-

els pc . The definition of µ̂pc (e) is

presented in Fig. 4. For example,

consider the evaluation of x when

the faceted value x in memory µ̂ is

⟨l ?V1 :V2⟩. To define which facet

is useful given a pc , we consider

the following cases:

• All the levels in pc are greater than or equal to l , denoted

l ≼ pc (i.e. ∀l ′ ∈ pc . l ⊑ l ′): the evaluation can use the

private facet V1 because the public facet V2 is anyway not

useful for every level in this pc .

• All the levels in pc are lower than or incomparable to l ,

denoted l ̸≼ pc (i.e. ∀l ′ ∈ pc . l ̸⊑ l ′): the evaluation can only

use the public facet V2 because V2 is a facet visible to any

view that is lower than or incomparable to l .

• Otherwise, we say that l and pc are incomparable and denote

it by l 9pc (i.e. ∃l ′,l ′′ ∈ pc . l ⊑ l ′∧ l ̸⊑ l ′′): we first evaluate

V1 with pc1 = {l
′ ∈ pc | l ⊑ l ′} ś the set of all levels in pc

which are greater than or equal to l . Then, we evaluate V2
with pc2 = pc \ pc1 which is the set of all levels in pc which

are lower than or incomparable to l . Finally, we combine the

two results in a new faceted value.

To evaluate a variablex , we use a special unary operator ⊖pc (µ̂ (x)),

which returns the value that is visible to all the levels in the pc .

Let’s consider the case of ⊖pc (⟨l ?V1 :V2⟩). Notice that, if pc and l

are incomparable, meaning that there are some levels in pc that are

higher than or equal to l and other levels in pc that are lower than

or incomparable to l , denoted by l 9pc , then the evaluation returns

the faceted value ⟨l ? ⊖pc1 (V1) : ⊖
pc2 (V2)⟩. The form of the result

of µ̂pc (e) is described in Lemma 3.1.

Lemma 3.1. If µ̂pc (e) = ⟨l ?V1 :V2⟩, then l 9 pc .

Example 3.2 (Expression evaluation). Consider the lattice ⟨L⋄,⊑

⟩ from Fig. 3, and the evaluation of x + y in µ̂, where µ̂ (x) =

⟨M1 ? 10 : 0⟩ and µ̂ (y) = ⟨M2 ? 5 : 0⟩.

Suppose that pc = {M1,H }. Since all the levels in pc are higher

than or equal toM1, the evaluation of x returns µ̂pc (x) = 10. Since

pc andM2 are incomparable, the evaluation of y returns µ̂pc (y) =

⟨M2 ? 5 : 0⟩. Next, the evaluation of 10 +pc ⟨M2 ? 5 : 0⟩ is split into

two: one uses a facet visible toM2 (and hence H), and another one

WWW ’18 Companion, April 23ś27, 2018, Lyon, France M. Ngo et al.

µ̂pc (v) = v

µ̂pc (x) = ⊖pc (µ̂ (x))

µ̂pc (e1 ⊕ e2) = µ̂pc (e1) ⊕
pc µ̂pc (e2)

⊖pc (v) = v

⊖pc (⟨l ?V1 :V2⟩) =

⊖pc (V1) if l ≼ pc

⊖pc (V2) if l ̸≼ pc

⟨l ? ⊖pc1 (V1) : ⊖
pc2 (V2)⟩ otherwise

v1 ⊕
pc v2 = v1 ⊕ v2

v ⊕pc ⟨l ?V1 :V2⟩ =

v ⊕pc V1 if l ≼ pc

v ⊕pc V2 if l ̸≼ pc

⟨l ? (v ⊕pc1 V1) : (v ⊕
pc2 V2)⟩ otherwise

⟨l ?V1 :V2⟩ ⊕
pc V =

V1 ⊕
pc V if l ≼ pc

V2 ⊕
pc V if l ̸≼ pc

⟨l ? (V1 ⊕
pc1 V) : (V2 ⊕

pc2 V)⟩ otherwise

where pc1 = {l
′ ∈ pc | l ⊑ l ′ } and pc2 = pc \ pc1.

Figure 4: Expression evaluation

µ ↑
def
Γ

(x) =

µ (x) if Γ(x) = glb(L),

⟨Γ(x) ? µ (x) : def (x)⟩ otherwise.

µ̂ |Γ (x) = l (µ̂) (x) where l = Γ(x)

Figure 5: Functions for faceted and normal memories.

uses a public facet that will be visible toM1.

µ̂pc (x + y) = µ̂pc (x) +pc µ̂pc (y)

= ⊖pc (⟨M1 ? 10 : 0⟩) +
pc ⊖pc (⟨M2 ? 5 : 0⟩)

= 10 +pc ⟨M2 ? 5 : 0⟩ = ⟨M2 ? 10 +
{H } 5 : 10 +{M1 } 0⟩

= ⟨M2 ? 15 : 10⟩

3.2 Semantics

We abuse the notation and use l as a projection function on simple

values, faceted values and facetedmemories. For anyV , l (V) returns

the value in V which is visible to users at level l . For any µ̂, l (µ̂)

returns the memory in µ̂ which is visible to users at level l .

l (v) = v l (⟨l1 ?V1 :V2⟩) =

l (V1) if l1 ⊑ l ,

l (V2) otherwise.

l (µ̂) (x) = l (µ̂ (x))

The projection function l is used in the definition of µ̂ |Γ function

that converts a faceted memory to a simple memory (see Fig. 5).

The semantics of GMF is defined in Fig. 6 as a big-step evaluation

relation Γ ⊢ (P ,µ) ⇓GMF µ ′, where program P is executed in a

memory µ and a security environment Γ that maps variables to

security levels in a given security lattice ⟨L,⊑⟩.

The main rule GMF first constructs a faceted memory from the

standard memory using the transformation µ ↑
def
Γ

from Fig. 5,

where glb(L) is the greatest lower bound of L. The resulting

faceted memory keeps original value of each variable x in a private

GMF
(P, µ ↑

def
Γ

) ↓L
G
µ̂′

Γ ⊢ (P, µ) ⇓GMF µ̂′ |Γ

GSkip
(skip, µ̂) ↓

pc

G
µ̂

GAssign
(x := e, µ̂) ↓

pc

G
µ̂[x 7→ µ̂pc (e)]

GSeq
(P1, µ̂) ↓

pc

G
µ̂′ (P2, µ̂

′) ↓
pc

G
µ̂′′

(P1; P2, µ̂) ↓
pc

G
µ̂′′

GIf-C
µ̂pc (e) = v (Pv , µ̂) ↓

pc

G
µ̂′

(if e then Ptt else Pff, µ̂) ↓
pc

G
µ̂′

GIf-S

µ̂pc (e) = ⟨l ?V1 :V2⟩ pc1 = {l
′ ∈ pc | l ⊑ l ′ }

pc2 = pc \ pc1 µ̂1 = µ̂ ⊎ (y 7→ V1) µ̂2 = µ̂ ⊎ (y 7→ V2)

P ′ = if y then P1 else P2 (P ′, µ̂1) ↓
pc1
G

µ̂′1 (P ′, µ̂2) ↓
pc2
G

µ̂′2

(if e then P1 else P2, µ̂) ↓
pc

G
(µ̂′1 \\y) ⊗

l (µ̂′2 \\y)

GWhile
(if e then P ;while e do P else skip, µ̂) ↓

pc

G
µ̂′

(while e do P, µ̂) ↓
pc

G
µ̂′

where µ̂1 ⊗
l µ̂2 (x) = [[⟨l ? µ̂1 (x) : µ̂2 (x)⟩]]

Figure 6: Multiple facets for arbitrary security lattice

facet, and adds default values (defined by def function) in a public

facet. In a special case when the level of x is the smallest level in a

lattice, we keep only a simple value µ (x) that is visible to all security

levels. We then evaluate the program with the constructed faceted

memory and pc = L. The resulting faceted memory is transformed

back to a normal memory by using the projection function µ̂ |Γ .

The semantics rules for skip, sequence andwhile loop are straight-

forward. The GAssign rule uses a faceted evaluation µ̂pc (e) defined

in Section 3.1.

Before describing the semantics of if instruction, we first define

several auxiliary functions. Let dom(µ̂) be the domain of µ̂ and y

be a fresh variable, i.e. y < dom(µ̂)). By µ̂ ⊎ (y 7→ V) we denote

a new memory µ̂ ′, such that dom(µ̂ ′) = dom(µ̂) ∪ {y}, µ̂ ′(y) = V

and for all x ∈ dom(µ̂), µ̂ ′(x) = µ̂ (x). By µ̂ \\y, we remove y from

the domain of µ̂, that is, µ̂ \\y constructs a new memory µ̂ ′, where

dom(µ̂ ′) = dom(µ̂) \ {y} and for all x , y, µ̂ (x) = µ̂ ′(x).

Consider the evaluation of the if instruction if e then P1 else P2
with µ̂ and pc . If e is evaluated to a constant value (tt or ff), then

only Ptt or Pff is evaluated (see rule GIf-C).

When e is evaluated to a faceted value ⟨l ?V1 :V2⟩, we construct a

new program if y then P1 else P2, wherey is a fresh variable. From

Lemma 3.1, we have that l 9 pc , and hence pc1 = {l
′ ∈ pc | l ⊑ l ′}

and pc2 = pc \ pc1 are non-empty. In this case, we run the new

program if y then P1 else P2 twice: once with the "higher view"

than l , i.e., with pc1 = {l
′ ∈ pc | l ⊑ l ′} and y set to a private facet

V1, and another time with "lower or incomparable view" than l , i.e.

with pc2 = pc \ pc1 and y set to a public facet V2. We then combine

the resulting memories using the ⊗l operator. The combination of

faceted memories is based on the fact that when pc is split into pc1
and pc2 in the GIf-S rule, all levels in pc1 is larger than or equal to

l , and all levels in pc2 is smaller than or incomparable to l .

A Better Facet of Dynamic Information Flow Control WWW ’18 Companion, April 23ś27, 2018, Lyon, France

[[v]] = v

[[⟨l ?V1 :V2⟩]] =

[[V]] if V1 = V2,

[[⟨l ?V11 :V22⟩]] elseif l1 ⊑ l, l ⊑ l2 ,V1 = ⟨l1 ?V11 :V12⟩,

V2 = ⟨l2 ?V21 :V22⟩,

[[⟨l ?V11 :V2⟩]] elseif l1 ⊑ l , V1 = ⟨l1 ?V11 :V12⟩,

[[⟨l ?V1 :V22⟩]] elseif l ⊑ l2, V2 = ⟨l2 ?V21 :V22⟩,

⟨l ? [[V1]] : [[V2]]⟩ otherwise.

Figure 7: Optimisation of a faceted value.

Notice that the form of a faceted value constructed by combining

values can be reduced. For example, a faceted value of the form

⟨H ? ⟨M1 ?V11 :V12⟩ :V2⟩ can be reduced to ⟨H ?V11 :V2⟩ because

M1 ⊑ H and the projection of the original value at any level is

eitherV11 orV2. We use the optimisation on the constructed faceted

values from Fig. 7.

Therefore, in the GIf-S rule after the evaluation of P ′ in two

contexts, we combine the resulting faceted memories µ̂ ′1\\y and µ̂ ′2\\y

and apply an optimisation operator [[]] for each newly constructed

faceted value. The correctness of [[]] used to optimize faceted values

is proven in Lemma 3.3.

Lemma 3.3. For all l , all V , it follows that l (V) = l ([[V]]).

Example 3.4 (Evaluation of if instruction). Consider the security

lattice ⟨L⋄,⊑⟩ from Fig. 3 and the evaluation of the following pro-

gram P with pc = L⋄ and µ̂, where µ̂ (x) = ⟨M1 ? ⟨H ?tt :ff⟩ :tt ⟩.

1: if x then z := 10 else z := 5

The evaluation follows theGIf-S rule sinceM19L⋄.We construct

P ′ = if y1 then P1 else P2 and first evaluate P ′ with pc1 = {l
′ ∈

pc | M1 ⊑ l ′} = {M1,H } and µ̂1 = µ̂ ⊎ (y 7→ ⟨H ?tt :ff⟩), and then

evaluate P ′ with pc2 = pc \ pc1 = {M2,L}, µ̂2 = µ̂ ⊎ (y 7→ tt).

Since pc1 = {H ,M1} and µ̂pc (y) = ⟨H ?tt :ff⟩, the evaluation

of P ′ with pc1 and µ̂1 is split again to two evaluations: one with

P ′′ = if t then P1 else P2, pc11 = {H }, and µ̂11 = µ̂1 ⊎ (t 7→ tt);

and the other one with P ′′, pc12 = {M1}, and µ̂12 = µ̂1 ⊎ (t 7→ ff).

The evaluation of P ′′ with pc11 and with pc12 follow the GIf-C

rule and we get two faceted memories µ̂ ′11 and µ̂ ′12, where µ̂
′
11 (z) =

10 and µ̂ ′12 (z) = 5. Then, µ̂ ′11 \\t and µ̂ ′12 \\t are combined and we

get µ̂ ′1, where µ̂
′
1 (z) = ⟨H ? 10 : 5⟩.

The evaluation of P2 with pc2 follows the GIf-C rule and the

result is µ̂ ′2, where µ̂
′
2 (z) = 10. At this point, µ̂ ′1 \\y1 and µ̂ ′2 \\y1 are

combined and the result is µ̂ ′, where µ̂ ′(z) = ⟨M1 ? ⟨H ? 10 : 5⟩ : 10⟩.

Example 3.5 (Evaluation with the GMF rule). Consider the lattice

⟨L⋄,⊑⟩ from Fig. 3 and program P from Example 3.4 with one more

instruction x := x1 > x2. Suppose that Γ(x1) = M1, Γ(x2) = H ,

Γ(z) = H , µ (x1) = 10, µ (x2) = 5, the default values for x1 and

x2 are respectively 100 and 20 2. Let µ̂ = µ ↑
def
Γ

. It follows that

µ̂ (x1) = ⟨M1 ? 10 : 100⟩ and µ̂ (x2) = ⟨H ? 5 : 20⟩.

1: x := x1 > x2
2: if x then z := 10 else z := 5

2The values and default values for x1 and x2 are chosen so that the value of x after
the evaluation of the assignment instruction is ⟨M1 ? ⟨H ?tt :ff⟩ :tt ⟩.

Following GMF rule, the program is evaluated with pc = L⋄ =

{H ,M1,M2,L}. For the assignment instruction, the value of x is

updated to µ̂pc (x1 > x2) = ⟨M1 ? ⟨H ?tt :ff⟩ :tt ⟩. The rest of the

evaluation is described in Example 3.4, and the resultant faceted

memory is µ̂ ′, where µ̂ ′(z) = ⟨M1 ? ⟨H ? 10 : 5⟩ : 10⟩.

The memory after the application of rule GMF is µ ′ = µ̂ ′ |Γ . Since

Γ(z) = H , the value of z is µ ′(z) = H (⟨M1 ? ⟨H ? 10 : 5⟩ : 10⟩) = 10.

3.3 Equivalence to SME-TINI and Security

Guarantee

SME-TINI. The semantics of SME-TINI, termination-insensitive

version of SME, for an arbitrary security lattice is presented below,

where µ⃗ is a vector that maps levels to normal memories; µ ⊎l Γ

constructs a memory where values of variables at levels that are not

visible to l are replaced by default values; ⊙Γ (µ⃗) (x) ≜ µ⃗[Γ(x)](x)

constructs a memory by combining all memories in µ⃗; and def is a

function mapping variables to default values.

SME-TINI
∀l ∈ L : (P ,µ ⊎l Γ) ⇓ µ⃗[l]

Γ ⊢ (P ,µ) ⇓SME−TINI ⊙Γ (µ⃗)

µ ⊎l Γ ≜

def (x) if Γ(x) ̸⊑ l ,

µ (x) if Γ(x) ⊑ l .

We now prove that SME-TINI enforces termination-insensitive

noninterference (TINI). Two memories µ and µ ′ are equivalent at l

w.r.t. Γ (denoted by µ =Γ
l
µ ′) iff for all x , Γ(x) ⊑ l =⇒ µ (x) = µ ′(x).

When Γ is clear from the context, µ =Γ
l
µ ′ is written as µ =l µ

′.

Definition 3.6 (TINI). An enforcement mechanism A is termina-

tion insensitive non-interferent (TINI) if for all security environments

Γ, programs P , and memories µ1, and µ2, we have

µ1 =l µ2 ∧ Γ ⊢ (P ,µ1) ⇓A µ ′1 ∧ Γ ⊢ (P ,µ2) ⇓A µ ′2 =⇒ µ ′1 =l µ
′
2.

Theorem 3.7. SME-TINI is TINI.

Equivalence to SME-TINI. To prove the equivalence between GMF

and SME-TINI, we formally define the semantic equivalence of two

mechanisms.

Definition 3.8. Two enforcement mechanisms A and B are equiv-

alent if for any Γ, P and µ, we have that Γ ⊢ (P ,µ) ⇓A µ ′ iff

Γ ⊢ (P ,µ) ⇓B µ ′.

We next establish the relation between the execution with GMF

semantics and the execution with the standard semantics.

Lemma 3.9. (P , µ̂) ↓
pc
G

µ̂ ′ iff (P ,l (µ̂)) ⇓ l (µ̂ ′) for all l ∈ pc .

Thanks to Lemma 3.9, we now prove the equivalence of GMF

and SME-TINI.

Theorem 3.10. GMF and SME-TINI are equivalent.

As a consequence, we have that GMF is TINI.

Remark 3.1. MF [3] is constructed for a set of principals. When

the set P of principals is fixed, we can use GMF to encode MF: we

construct the lattice ⟨2P,⊆⟩, where each element is a set of principals;

we prove that GMF for ⟨2P,⊆⟩ and MF for P are equivalent [23].

WWW ’18 Companion, April 23ś27, 2018, Lyon, France M. Ngo et al.

4 OPTIMIZING GMF

In Section 3, we presented the semantics of Generalised Multiple

Facets (GMF) for arbitrary lattice and have proven it to be equivalent

to SME-TINI. However, GMF from Fig. 6 can be further optimised

and avoid repeating evaluations of the same commands. The fol-

lowing example demonstrates the sub-optimality of GMF.

Example 4.1 (GMF is not optimal). We consider the below pro-

gram from Example 2.1. The lattice is ⟨LB,⊑⟩ from Fig. 2.

1: winner := 0;

2: test := (x1 ≤ x2) and (x2 ≤ x3);

3: if test then winner := 2 else skip

Suppose that the bid offers of B1, B2, and B3 are respectively 10, 5,

and 7, and the default values forBi are 0.W.r.t. this setting, the initial

faceted memory is µ̂, where µ̂ (x1) = ⟨B1 ? 10 : 0⟩, µ̂ (x2) = ⟨B2 ? 5 : 0⟩,

and µ̂ (x3) = ⟨B3 ? 7 : 0⟩. We consider the execution of the program

with GMF.

After line 2, test = ⟨B1 ? ⟨B2 ?ff :ff⟩ : ⟨B2 ?ff : ⟨B3 ?tt :tt ⟩⟩⟩. Fol-

lowing the semantics of GMF, the assignment instruction winner :=

2 is evaluated twice with pcB3 = {B3}, and pc⊥ = {⊥}; the skip

instruction is evaluated three times with pc⊤ = {⊤}, pcB1 = {B1},

and pcB2 = {B2}.

The main idea of our optimisation lays in reducing the number

of sub-evaluations and hence the number of faceted memory com-

binations. For Example 4.1, we propose a mechanism that merges

the evaluations corresponding to pcB3 and pc⊥ into one evaluation

with pc1 = {B3,⊥}. This simplification is possible since test denotes

the same value (i.e., tt) under pcB3 and pc⊥. Similarly, our simplifi-

cation merges the evaluations corresponding topc⊤,pcB1, andpcB2,

where test denotes ff, into one evaluation with pc2 = {⊤,B1,B2},

and thus evaluates each branch of the if command only once.

In this section, we propose semantics of optimized GMF (OGMF)

that reduces the number of sub-evaluations, and hence is more

resource-friendly than GMF.

4.1 Semantics

The ideas behind the OGMF rule, and the rules for skip, assignment,

sequence, and while instructions are similar to the corresponding

ones of GMF. The functions µ ↑
def
Γ

(x) and µ̂ |Γ (x) are defined

in Fig. 5. We now explain the semantic rules for the conditional

instruction.

Consider evaluation of the program if e then P1 else P2 with pc

and memory µ̂, and µ̂pc (e) = V . In order to evaluate each branch

of the conditional only once, we split the pc in two subsets: in the

first subset pc1 the visible value of V is true, and in the remaining

subset pc2, V is false. We now have three distinct cases.

If pc1 = pc , meaning that for all levels in pc , the visible value of

V is true, then P1 is evaluated (rule OIf-T). If pc2 = pc , then for all

levels in pc , the visible value of V is false, and only P2 is evaluated

(rule OIf-F). Finally, when pc is split in non-empty pc1 and pc2,

then both P1 and P2 are evaluated, and their results (µ̂ ′1 and µ̂ ′2) are

combined by µ̂ ′1 ⊕
pc1,pc2 µ̂ ′2 (rule OIf-S) to a new faceted memory.

The intuition behind this combination is that the projection of

µ̂ ′1 ⊕
pc1,pc2 µ̂ ′2 at l ∈ pc1 is taken from the evaluation of P1 and its

projection at l ∈ pc2 is taken from the evaluation of P2.

OGMF
(P, µ ↑

def
Γ

) ↓L
O

µ̂′

Γ ⊢ (P, µ) ⇓OGMF µ̂′ |Γ

OAssign
(x := e, µ̂) ↓

pc

O
µ̂[x 7→ µ̂pc (e)]

OSkip
(skip, µ̂) ↓

pc

O
µ̂

OSeq
(P1, µ̂) ↓

pc

O
µ̂′ (P2, µ̂

′) ↓
pc

O
µ̂′′

(P1; P2, µ̂) ↓
pc

O
µ̂′′

OIf-T

µ̂pc (e) = V

pc1 = {l ∈ pc |l (V) = tt } pc1 = pc (P1, µ̂) ↓
pc

O
µ̂′

(if e then P1 else P2, µ̂) ↓
pc

O
µ̂′

OIf-F

µ̂pc (e) = V pc1 = {l ∈ pc |l (V) = tt }

pc2 = pc \ pc1 pc2 = pc (P2, µ̂) ↓
pc

O
µ̂′

(if e then P1 else P2, µ̂) ↓
pc

O
µ̂′

OIf-S

µ̂pc (e) = V pc1 = {l ∈ pc |l (V) = tt } pc2 = pc \ pc1
pc1 , ∅ pc2 , ∅ (P1, µ̂) ↓

pc1
O

µ̂′1 (P2, µ̂) ↓
pc2
O

µ̂′2

(if e then P1 else P2, µ̂) ↓
pc

O
µ̂′1 ⊕

pc1,pc2 µ̂′2

OWhile
P ′ = if e then P ;while e do P else skip (P ′, µ̂) ↓

pc

O
µ̂′

(while e do P, µ̂) ↓
pc

O
µ̂′

(µ̂′1 ⊕
pc1,pc2 µ̂′2) (x) =

[[µ̂′1 (x)]] if µ̂′1 (x) = µ̂′2 (x),

JF(µ̂′1 (x), µ̂
′
2 (x), pc1, pc2), pc1 ∪ pc2K otherwise.

Figure 8: Optimized multiple facets for arbitrary lattice

In the definition of combination of memories for OGMF (bottom

of Fig. 8), we distinguish two cases. If for some variable x , its value

in both faceted memories is the same, (µ̂ ′1 (x) = µ̂ ′2 (x)), then we do

not need to construct a new faceted value. Instead, we optimize the

current value using the optimisation operator from Fig. 7.

If the values of x in µ̂ ′1 (x) and µ̂ ′2 (x) are different, then we con-

struct a new faceted value V = F(V1,V2,pc1,pc2) and apply further

optimisation on the resulting value V using a new optimisation

operator that takes into account a faceted value and the current pc :

JV ,pcK optimizes the form of V and is described in Fig. 9. We show

an example of such optimisation in Example 4.4.

To combine two faceted memories, we first construct a new

faceted value by using F(V1,V2,pc1,pc2):

F(V1,V2,pc1,pc2) = ⟨⟨List (pc1 ∪ pc2),V1,V2,pc1,pc2⟩⟩

where List (S) is a list of security levels from a set S , such that if l

appears before l ′ in List (S) then l ̸⊑ l ′. If the relation ⊑ in a given

security lattice is not a total order, we can transform it into a total

order ⊑T provided that ⊑ is a finite partial order. We can then view

List (S) as a list such that for any l and l ′ in this list, if l appears

before l ′, then l ′ ⊑T l .

The definition of F(V1,V2,pc1,pc2) uses the following operator

that creates a faceted value based on an ordered list of security

A Better Facet of Dynamic Information Flow Control WWW ’18 Companion, April 23ś27, 2018, Lyon, France

levels L, two faceted values, pc1 and pc2:

⟨⟨L,V1,V2,pc1,pc2⟩⟩ =

l (V1) if L = l , l ∈ pc1,

l (V2) if L = l , l ∈ pc2,

⟨l ? l (V1) : ⟨⟨T ,V1,V2,pc1,pc2⟩⟩⟩

if L = l .T , T , [], l ∈ pc1,

⟨l ? l (V2) : ⟨⟨T ,V1,V2,pc1,pc2⟩⟩⟩

if L = l .T , T , [], l ∈ pc2.

Notice that the form of the faceted value created byF(V1,V2,pc1,pc2)

may be suboptimal.

Example 4.2 (Faceted value construction). Suppose that V1 =

2, V2 = 0, pc1 = {B3,⊥}, pc2 = {⊤,B1,B2}, List (pc1 ∪ pc2) is

⊤.B1.B2.B3.⊥, and the lattice ⟨LB,⊑⟩ is from Fig. 2.

Following the definition of combination of faceted memories, we

have F(2,0,pc1,pc2) = ⟨⊤ ? 0 : ⟨B1 ? 0 : ⟨B2 ? 0 : ⟨B3 ? 2 : 2⟩⟩⟩⟩. This

value can be further reduced to ⟨B1 ? 0 : ⟨B2 ? 0 : 2⟩⟩.

We therefore define an optimisation function JV ,pcK that further
optimises the result V of a F() function. The optimisation uses

the observation that faceted value returned by F() has the form of

⟨l ?v :V ′⟩, where V ′ is either a simple value or a faceted value 3.

The function JV ,pcK is defined in Fig. 9. If V is of the form

⟨l ?v :v ′⟩, then the optimisation is straightforward. We now con-

sider the case whenV is of the form ⟨l ?v : ⟨l ′ ?v ′ :V ′⟩⟩. For demon-

stration, consider the lattice ⟨LB,⊑⟩ from Fig. 2.

If the faceted valueV is of the form ⟨⊤ ?v : ⟨B1 ?v :V ′⟩⟩ (formally,

l ′ ⊑ l and v = v ′), then it can be reduced to J⟨B1 ?v :V ′⟩,pc ′K
(formally, J⟨l ′ ?v ′ :V ′⟩,pc ′K), where pc ′ = pc \ {⊤}.

If the faceted value V is of the form ⟨B1 ?v : ⟨B2 ?v :V ′⟩⟩, (l and

l ′ are incomparable and v = v ′), and moreover for all the levels in

the pc , for which either B1 or B2 is visible, it is guaranteed that they

observe the same value v (see the definition of cond (V ,pc) below),

then we distinguish the following two cases.

cond (V ,pc) ≜ V = ⟨l ?v : ⟨l ′ ?v ′ :V ′⟩⟩ ∧

∀l1 ∈ pc : glb(l ,l
′) ⊑ l1 =⇒ l1 (V) = v .

• If all levels in pc are greater than or equal to glb(l ,l ′) (i.e.

glb(l ,l ′) ≼ pc), then V is reduced to v . For example, if

pc = {B1,B2,B3}, glb(B1,B2) = ⊥, then glb(B1,B2) ≼ pc , and

thanks to the cond (V ,pc) we know that B1 (V) = B2 (V) =

B3 (V) = v , then we can reduce such faceted value to simply

v because value V ′ is not useful for such pc .

• If only some levels in pc are greater than or equal to glb(l ,l ′)

(i.e. glb(l ,l ′)9pc), thenV is reduced to ⟨glb(l ,l ′) ?v :V ′′⟩ and

this value is reduced further recursively. Consider that we

add one more security level L to the lattice ⟨LB,⊑⟩ such that

L ⊑ ⊥. If pc = {B1,B2,L}, glb(B1,B2) = ⊥, then glb(B1,B2)9
pc because ⊥ ̸⊑ L. We then construct a set of security levels

S from pc , which are higher or equal than glb(l ,l ′), and

therefore the view on V from all these levels is v (because

cond (V ,pc) holds). In our example, S = {B1,B2}, and we

construct a new faceted value V ′′ = ⟨⟨{L},V ′⟩⟩ = L(V ′). We

then define a new pc ′ = (pc \ S) ∪ {glb(l ,l ′)} = {L,⊥}, and

we need to keep glb(l ,l ′) in pc ′ because we must ensure

3The function F() cannot return a simple value since it is called on non-empty pc1
and pc2 .

that all the levels present in the new faceted value are also

present in pc . Therefore, the reduced faceted value for our

example is J⟨⊥ ?v :L(V ′)⟩, {⊥,L}K.

Finally, if none of the above conditions hold then we recursively

reduce the facet ⟨l ′ ?v ′ :V ′⟩.

The correctness of µ̂1 ⊕
pc1,pc2 µ̂2 in the OIf-S rule is proven in

Lemma 4.3.

Lemma 4.3. For all levels l , variables x , sets of security levels pc1
and pc2, and memories µ̂1 and µ̂2,

• if l ∈ pc1, then l (µ̂1 ⊕
pc1,pc2 µ̂2) (x) = l (µ̂1) (x),

• if l ∈ pc2, then l (µ̂1 ⊕
pc1,pc2 µ̂2) (x) = l (µ̂2) (x).

Example 4.4 (Optimisation of faceted value). Consider a faceted

value ⟨⊤ ? 0 : ⟨B1 ? 0 : ⟨B2 ? 0 : ⟨B3 ? 2 : 2⟩⟩⟩⟩ andpc = {⊤,B1,B2,B3,⊥}

from Example 4.2. We show how this value is optimised with our

optimisation function J,K:

J⟨⊤ ? 0 : ⟨B1 ? 0 : ⟨B2 ? 0 : ⟨B3 ? 2 : 2⟩⟩⟩⟩, {⊤,B1,B2,B3,⊥}K =
= J⟨B1 ? 0 : ⟨B2 ? 0 : ⟨B3 ? 2 : 2⟩⟩⟩, {B1,B2,B3,⊥}K =
= ⟨B1 ? 0 : J⟨B2 ? 0 : ⟨B3 ? 2 : 2⟩⟩, {B2,B3,⊥}K⟩ =
= ⟨B1 ? 0 : ⟨B2 ? 0 : J⟨B3 ? 2 : 2⟩, {B3,⊥}K⟩⟩ = ⟨B1 ? 0 : ⟨B2 ? 0 : 2⟩⟩

Example 4.5 (OGMF is more resource-friendly than GMF). Con-

sider the program fromExample 4.1. To show optimisation of OGMF,

we evaluate it with pc = {⊤,B1,B2,B3,⊥} and µ̂, where µ̂ (x1) =

⟨B1 ? 10 : 0⟩, µ̂ (x2) = ⟨B2 ? 5 : 0⟩, and µ̂ (x3) = ⟨B3 ? 7 : 0⟩. After the

execution of the instruction at line 2, the faceted memory is µ̂ ′ =

µ̂[winner 7→ 0, test 7→ V], whereV = ⟨B1 ? ⟨B2 ?ff :ff⟩ : ⟨B2 ?ff : ⟨B3 ?tt :tt ⟩⟩⟩.

We consider the execution of the if instruction.

For levelspc1 = {B3,⊥}, the evaluation of test istt :B3 (µ̂
pc (test)) =

⊥(µ̂pc (test)) = tt . Moreover, pc1 , pc , therefore, the rule OIf-S

applies. The evaluation of the program is split to two: the first eval-

uation is with P1 = winner := 2 and pc1 = {B3,⊥}; and the second

evaluation is with P2 = skip and pc2 = {⊤,B1,B2}. Each branch of

the conditional will be evaluated only once.

The evaluation of P1 with pc1 terminates with µ̂ ′′1 (winner) = 2.

The evaluation of P2 with pc2 terminates with µ̂ ′′2 (winner) = 0.

These two facetedmemories are combined to µ̂ ′′, where µ̂ ′′(winner) =

⟨B1 ? 0 : ⟨B2 ? 0 : 2⟩⟩. The construction of this faceted memory is pre-

sented in Examples 4.2 and 4.4.

In the example above, OGMF has only two sub-evaluations, while

GMF has five, moreover OGMF combines faceted memories once,

while GMF combines them four times. Therefore, OGMF is more

resource-friendly than GMF.

4.2 Equivalence to SME-TINI and Security

Guarantee

We first establish the relation between the standard semantics and

the semantics of OGMF.

Lemma 4.6. (P , µ̂) ↓
pc
O

µ̂ ′ if and only if (P ,l (µ̂)) ⇓ l (µ̂ ′) for all

l ∈ pc .

We now can prove the semantic equivalence result for OGMF

and SME-TINI.

Theorem 4.7. OGMF and SME-TINI are equivalent.

As a consequence, OGMF and GMF are equivalent even though

OGMF is optimized. In addition, OGMF is TINI.

WWW ’18 Companion, April 23ś27, 2018, Lyon, France M. Ngo et al.

J⟨l ?v :v ′⟩, pcK =

v if v = v ′

⟨l ?v :v ′⟩ otherwise.

J⟨l ?v : ⟨l ′ ?v ′ :V ′⟩⟩, pcK =

J⟨l ′ ?v :V ′⟩, pc′K if l ′ ⊑ l , v = v ′, where pc′ = pc \ {l },

v if l ∥ l ′, v = v ′, cond (V , pc) and glb(l, l ′) ≼ pc ,

J⟨glb(l, l ′) ?v :V ′′⟩, pc′K if l ∥ l ′, v = v ′, cond (V , pc) and glb(l, l ′) 9 pc , where pc′ = (pc \ S) ∪ {glb(l, l ′) },

S = {l1 ∈ pc | glb(l, l
′) ⊑ l1 }, and V

′′
= ⟨⟨List (pc \ S),V ′⟩⟩,

⟨l ?v : J⟨l ′ ?v ′ :V ′⟩, pc′K⟩ otherwise, where pc′ = pc \ {l }.

⟨⟨L,V ⟩⟩ =

l (V) if L = l ,

⟨l ? l (V) : ⟨⟨T ,V ⟩⟩⟩ if L = l .T ,T , [].

Figure 9: Definition of JV ,pcK, and optimisation of a faceted value V with respect to the set of security levels pc.

5 A TERMINATION SENSITIVE VERSION OF

MULTIPLE FACETS

A termination sensitive model assumes that an attacker can observe

termination of evaluations. In [19], the model is explained further:

an attacker at level l can observe the termination of evaluations

at level l and lower. In the case of GMF and OGMF, an evalua-

tion marked with pc is an evaluation at l if l ∈ pc . Notice that an

evaluation is at more than one level whenever pc is not a singleton.

As illustrated by Example 5.1, GMF and OGMF do not prevent

the influence of private data at higher levels to the termination of

the evaluations at lower levels. In other words, GMF and OGMF do

not prevent leakage on termination channel [19].

Example 5.1. Suppose that L = {L,H }, where L ⊑ H . We look

at the evaluation of if x then (while tt do skip) else skip with

pc = L and µ̂ (x) = ⟨H ?tt :ff⟩. When GMF or OGMF is used,

the evaluation is split into two: one is with pc1 = {H }, the other

one is with pc2 = {L}. The evaluation with pc2 converges, while

the evaluation with pc1 diverges since its executing program is

while tt do skip. Therefore, the evaluation of the whole program

with pc = {L,H } also diverges and hence, to an attacker at L, the

evaluation at L diverges. However, if the program is evaluated

with µ̂ ′(x) = ⟨H ?ff :ff⟩, to the attacker at L, the evaluation at L

converges. Based on observations on those two evaluations, an

attacker at L can gain insight about the high facet of x . In other

words, GMF and OGMF do not prevent the influence of data at H

to the termination of the evaluation at L.

Therefore, we propose Termination SensitiveMultiple Facets (TSMF),

a version of MF that takes into account the termination sensitive

model. TSMF is a generalization of a version of MF presented in [8,

Appendix A]. The basic idea of TSMF is that when an if instruction

is evaluated, TSMF performs a bounded evaluation of the instruc-

tion by using OGMF. If the OGMF evaluation does not terminate

within the given time bound, then the instruction is evaluated in-

stead using SME semantics with a low-prio scheduler [14]. The

security guarantees offered by TSMF are the same as SME with

the same low-prio scheduler [19]. The semantics of TSMF and the

proofs about its security guarantees can be found in [23].

6 RELATED WORK

SME. Devriese and Piessens introduce the idea of Secure Multi-

Execution [14]. Since then, many researchers have developed differ-

ent aspects of this approach. Close to our work, Kashyap et al. [19]

discuss how schedulers might affect security guarantees (i.e., TSNI

and TINI) based on the chosen scheduler and the lattice ordering.

They show several schedulers and classify them according to the

strength of security guarantees and according to fairness properties.

This work complement theirs by providing a similar analysis but

for an interplay of MF and SME semantics. SME [14] has many im-

plementations: as a library in Haskell [18], as an experimental web

browser based on Firefox [13], as a static program transformation

for both Python and JavaScript [4], and as an adaptation to reactive

systems [6]. In the work above, SME preserves the semantics of

secure programs up to interleaving of events. To remedy that, Za-

narini et al. [37] carefully leverage SME to design a precise monitor

which exactly preserves semantics of secure programs up to termi-

nation. Several other works [10, 26, 33] expand SME and introduce

declassification. In this work, we focus on semantics guarantees up

to interleaving of eventsÐas in the SME original formulation.

MF. Austin and Flanagan introduce MF semantics [3]Ða tech-

nique often referred as an optimization for SME. However, as shown

by Bielova and Rezk [7], they do not provide the same security guar-

antees (i.e., TINI vs. TSNI) and differ in their treatment of default

values. This work provides yet another look into a comparison

between both techniques to show their differences, while introduc-

ing novel value-based optimizations to MF. Another work by the

same authors [9] compare and contrast five dynamic techniques,

including MF and SME, to mainly reason about the preservation of

semantics of secure programs, a property known as transparency.

In this work, we show that GMF and OGMF enjoy the same trans-

parency guarantees as SME-TINI (Theorems 3.10 and 4.7).

Tools. Most information flow control tools provide TINI, e.g., Jif

[21], FlowCaml [25], Laminar [27], Paragon [11], and JSFlow [16].

Similarly, termination leaks are often ignored in security tools com-

ing from the operating system research community, e.g., Asbestos

[15], HiStar [38], and Flume [20]. A few exceptions to this trend

are the security libraries LIO [31] and MAC [28], which provide

TSNI for concurrent programs.

Decentralized label models. The decentralized label model (DLM),

allows one to express the interests of mutually-distrusting prin-

cipals without a central authority [22]. The set of labels forms a

pre-order where the order relationship does not require to know

all the points in the relationship to determine the result of com-

paring two labelsÐbearing in mind that there might be an infinite

number of labels due to the dynamic creation of principals at run-

time. In a similar spirit, DC-labels [32, 34] provides a decentralized

A Better Facet of Dynamic Information Flow Control WWW ’18 Companion, April 23ś27, 2018, Lyon, France

label format which allows one to express rich policies dictated

by mutually-distrusting principals as propositional logic formulas

(without negation). In this work, we require to know all the points

in the chosen lattice in order to optimize MF as shown by OGMF.

Extending our techniques to DLM or DC-labels is an interesting

direction for future work.

7 CONCLUSION AND PERSPECTIVES

This work contributes to develop techniques to secure programs

using dynamic information flowÐa promising approach to secure

existing JavaScript code. We specially focus on proposing a tech-

nique that achieves a smaller number of executions than MF (and

hence smaller memory footprint) without diminishing security

guarantees. We further extend our MF-based technique to work

with arbitrary finite lattices (GMF) based on the observation that

off-the-shelf lattices with principals are not always the most conve-

nient ones to use. Knowing all the points in the lattice allows for

further optimizations: spawning multi-executions could be done

on a value-based basis (OGMF) rather than on security levelsÐas in

original MF. Finally, we propose a hybrid approach which present

an interesting balance between the number of executions and secu-

rity guarantees: it behaves as OGMF as long as it can and switches

to SME when termination leaks could occur (TSMF). In other words,

TSMF prioritizes resource usage as long as there are no risks for

termination leaks. We expect that these insights will help inform

future development of multi-execution-based techniques. In fact,

an intriguing question is what it would take for our optimizations

(or future ones) to work on potentially infinite lattices like the DLM

or DC-labelsÐan interesting direction for future work.

ACKNOWLEDGMENTS

We would like to thank anonymous reviewers for feedback that

helped to improve this paper. This research has been partially sup-

ported by the ANR projects AJACS ANR-14-CE28-0008, CISC ANR-

17-CE25-0014-01, the National Science Foundation under grants

CCF-1337278 and CCF-1421016, and Swedish research agencies

Vetenskapsrådet and SSF Cyber Security projects WebSec: Secur-

ing Web-driven Systems and Octopi: Secure Programming for the

Internet of Things.

REFERENCES
[1] Thomas H. Austin and Cormac Flanagan. 2009. Efficient Purely-dynamic Infor-

mation Flow Analysis. In Proc. of PLAS 2009 (PLAS ’09). 113ś124.
[2] Thomas H. Austin and Cormac Flanagan. 2010. Permissive Dynamic Information

Flow Analysis. In Proc. of PLAS 2010 (PLAS ’10). 1ś12.
[3] Thomas H. Austin and Cormac Flanagan. 2012. Multiple Facets for Dynamic

Information Flow. In Proc. of POPL 2012 (POPL ’12). 165ś178.
[4] Gilles Barthe, Juan Manuel Crespo, Dominique Devriese, Frank Piessens, and Exe-

quiel Rivas. 2012. Secure multi-execution through static program transformation.
In Formal Techniques for Distributed Systems. Springer, 186ś202.

[5] Abhishek Bichhawat, Vineet Rajani, Deepak Garg, and Christian Hammer. 2014.
Generalizing Permissive-Upgrade in Dynamic Information Flow Analysis. In
Proc. of PLAS 2014 (PLAS’14). 15ś24.

[6] N. Bielova, D. Devriese, F. Massacci, and F. Piessens. 2011. Reactive non-
interference for a Browser model. In Proc. of NSS 2011. 97ś104.

[7] Nataliia Bielova and Tamara Rezk. 2016. Spot the Difference: Secure Multi-
execution and Multiple Facets. In Proc. of ESORICS 2016. 501ś519.

[8] Nataliia Bielova and Tamara Rezk. 2016. Spot the Difference: SecureMulti-Execution
and Multiple Facets. Technical Report. https://goo.gl/b7yoQ9.

[9] Nataliia Bielova and Tamara Rezk. 2016. A Taxonomy of Information Flow
Monitors. In Proc. of POST 2016. 46ś67.

[10] Iulia Boloşteanu and Deepak Garg. 2016. Asymmetric Secure Multi-execution
with Declassification. In Proc. of POST 2016. 24ś45.

[11] Niklas Broberg, Bart van Delft, and David Sands. 2013. Paragon for Practical
Programming with Information-Flow Control.. In Proc. of APLAS 2013 (LNCS),
Vol. 8301. Springer, 217ś232.

[12] Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi. 2016. Content Security
Problems?: Evaluating the Effectiveness of Content Security Policy in the Wild.
In Proc. of CCS 2016 (CCS ’16). 1365ś1375.

[13] Willem De Groef, Dominique Devriese, Nick Nikiforakis, and Frank Piessens.
2012. FlowFox: a web browser with flexible and precise information flow control.
In Proc. of CCS 2012. ACM, 748ś759.

[14] Dominique Devriese and Frank Piessens. 2010. Noninterference Through Secure
Multi-execution. In Proc. of IEEE SP 2010 (SP ’10). 109ś124.

[15] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey, David
Ziegler, Eddie Kohler, David Mazières, Frans Kaashoek, and Robert Morris. 2005.
Labels and event processes in the Asbestos operating system. In Proc. of SOSP
2005 (SOSP). ACM.

[16] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. 2014. JSFlow: Tracking infor-
mation flow in JavaScript and its APIs. In Proc. of SAC 2014. ACM.

[17] Collin Jackson and Adam Barth. 2008. Beware of Finer-Grained Origins. In Web
2.0 Security and Privacy (W2SP’08).

[18] Mauro Jaskelioff and Alejandro Russo. 2011. Secure multi-execution in haskell.
In International Andrei Ershov Memorial Conference on Perspectives of System
Informatics. Springer, 170ś178.

[19] Vineeth Kashyap, Ben Wiedermann, and Ben Hardekopf. 2011. Timing- and
Termination-Sensitive Secure Information Flow: Exploring a New Approach. In
Proc. of IEEE SP 2011 (SP ’11). 413ś428.

[20] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans Kaashoek,
Eddie Kohler, and Robert Morris. 2007. Information Flow Control for Standard
OS Abstractions. In Proc. of SOSP 2007 (SOSP).

[21] Andrew C Myers. 1999. JFlow: Practical mostly-static information flow control.
In Proc. of POPL 1999. ACM, 228ś241.

[22] Andrew C Myers and Barbara Liskov. 2000. Protecting privacy using the decen-
tralized label model. ACM Transactions on Software Engineering and Methodology
(TOSEM) 9, 4 (2000), 410ś442.

[23] Minh Ngo, Nataliia Bielova, Cormac Flanagan, Tamara Rezk, Alejandro Russo,
and Thomas Schmitz. 2017. A Better Facet of Dynamic Information Flow Control.
(2017). https://goo.gl/Y2SEnw.

[24] Minh Ngo, Fabio Massacci, Dimiter Milushev, and Frank Piessens. 2015. Runtime
Enforcement of Security Policies on Black Box Reactive Programs. In Proc. of
POPL 2015.

[25] F. Pottier and V. Simonet. 2002. Information Flow Inference for ML. In ACM
Symp. on Principles of Programming Languages. 319ś330.

[26] Willard Rafnsson and Andrei Sabelfeld. 2013. Secure Multi-execution: Fine-
Grained, Declassification-Aware, and Transparent. In Proc. of CSF 2013. 33ś48.

[27] Indrajit Roy, Donald E. Porter, Michael D. Bond, Kathryn S. McKinley, and Emmett
Witchel. 2009. Laminar: Practical Fine-grained Decentralized Information Flow
Control. In Proc. of PLDI 2009 (PLDI). ACM.

[28] Alejandro Russo. 2015. Functional Pearl: Two Can Keep a Secret, if One of Them
Uses Haskell. In Proc. of ICFP 2015 (ICFP). ACM.

[29] José Fragoso Santos, Thomas Jensen, Tamara Rezk, and Alan Schmitt. 2015.
Hybrid Typing of Secure Information Flow in a JavaScript-Like Language. In
Proc. of TGC 2015. 63ś78.

[30] Dolière Francis Some, Nataliia Bielova, and Tamara Rezk. 2017. On the Content
Security Policy Violations Due to the Same-Origin Policy. In Proc. of WWW 2017
(WWW ’17). 877ś886.

[31] Deian Stefan, Alejandro Russo, Pablo Buiras, Amit Levy, John C Mitchell, and
David Mazieres. 2012. Addressing covert termination and timing channels in
concurrent information flow systems. In Proc. of ICFP 2012, Vol. 47. ACM, 201ś214.

[32] D. Stefan, A. Russo, D. Mazières, and J. C. Mitchell. 2011. Disjunction Category
Labels. In Proc. of NordSec 2011. Springer-Verlag.

[33] Mathy Vanhoef, Willem De Groef, Dominique Devriese, Frank Piessens, and
Tamara Rezk. 2014. Stateful Declassification Policies for Event-Driven Programs.
In Proc. of CSF 2014 (CSF ’14). 293ś307.

[34] Lucas Waye, Pablo Buiras, Dan King, Stephen Chong, and Alejandro Russo.
2015. It’s My Privilege: Controlling Downgrading in DC-Labels. In International
Workshop on Security and Trust Management.

[35] Wikipedia. 2017. Ad exchange. (2017). https://en.wikipedia.org/wiki/Ad_
exchange. Checked on Nov 08, 2017.

[36] Wikipedia. 2017. Real-time bidding. (2017). https://en.wikipedia.org/wiki/
Real-time_bidding. Checked on Nov 08, 2017.

[37] Dante Zanarini, Mauro Jaskelioff, and Alejandro Russo. 2013. Precise enforcement
of confidentiality for reactive systems. In Proc. of CSF 2013. IEEE, 18ś32.

[38] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières. 2006.
Making information flow explicit inHiStar. InUSENIX Symp. on Operating Systems
Design and Implementation. USENIX.

https://goo.gl/Y2SEnw
https://en.wikipedia.org/wiki/Ad_exchange
https://en.wikipedia.org/wiki/Ad_exchange
https://en.wikipedia.org/wiki/Real-time_bidding
https://en.wikipedia.org/wiki/Real-time_bidding

	Introduction
	Architecture of the Framework

	Translating Solidity to F
	Translation to F
	An effect for detecting vulnerable patterns

	Decompiling EVM Bytecode to F
	Conclusion
	Abstract
	1 Introduction
	2 Background on SME and MF
	3 MF for arbitrary security lattice
	3.1 Expression evaluation
	3.2 Semantics
	3.3 Equivalence to SME-TINI and Security Guarantee

	4 Optimizing GMF
	4.1 Semantics
	4.2 Equivalence to SME-TINI and Security Guarantee

	5 A termination sensitive version of Multiple Facets
	6 Related Work
	7 Conclusion and Perspectives
	Acknowledgments
	References

